Quickly Detecting Relevant Program Invariants

Michael Ernst, Adam Czeisler, Bill Griswold (UCSD), and David Notkin
University of Washington

http://www.cs.washington.edu/homes/mernst/daikon
Overview

Goal: improve dynamic invariant detection

[ICSE 99, TSE]

Relevance improvements:

- add desired invariants (2 techniques)
- eliminate undesired ones (3 techniques)

Experiments validate the success
Program invariants

Detect invariants (as in asserts or specifications)

- $x > \text{abs}(y)$
- $x = 16y + 4z + 3$
- array a contains no duplicates
- for each node n, $n = n\.child\.parent$
- graph g is acyclic
Uses for invariants

• Write better programs [Gries 81, Liskov 86]
• Document code
• Check assumptions: convert to `assert`
• Maintain invariants to avoid introducing bugs
• Locate unusual conditions
• Validate test suite: value coverage
• Provide hints for higher-level profile-directed compilation [Calder 98]
• Bootstrap proofs [Wegbreit 74, Bensalem 96]
Dynamic invariant detection is accurate

Recovered formal specifications, found bugs

Target programs:

• *The Science of Programming* [Gries 81]
• Program checkers [Detlefs 98, Xi 98]
• MIT 6.170 student programs
• *Data Structures and Algorithm Analysis in Java* [Weiss 99]
Dynamic invariant detection is useful

563-line C program: regexp search & replace

[Hutchins 94, Rothermel 98]

- Explicated data structures
- Contradicted expectations, preventing bugs
- Revealed bugs
- Showed limited use of procedures
- Improved test suite
- Validated program changes
Look for patterns in values the program computes:

- Instrument the program to write data trace files
- Run the program on a test suite
- Invariant engine reads data traces, generates potential invariants, and checks them
Checking invariants

For each potential invariant:

• instantiate
 (determine constants like a and b in $y = ax + b$)

• check for each set of variable values

• stop checking when falsified

This is inexpensive: many invariants, each cheap
Relevance

Usefulness to a programmer for a task

Contingent on task and programmer

We manually classified invariants

Perfect output is unnecessary (and impossible)
Improved invariant relevance

Add desired invariants:

1. Implicit values
2. Unused polymorphism

Eliminate undesired invariants (and improve performance):

3. Unjustified properties
4. Redundant invariants
5. Incomparable variables
1. Implicit values

Goal: relationships over non-variables

Examples:

- for array a: length(a), sum(a), min(a), max(a)
- for array a and scalar i: a[i], a[0..i]
- for procedure p: #calls(p)
Derived variables

Successfully produces desired invariants

Adds many new variables

Potential problems:

 • slowdown: interleave derivation and inference
 • irrelevant invariants: techniques 3–5, later in talk
2. Unused polymorphism

Variables declared with general type, used with more specific type

Example: given a generic list that contains only integers, report that the contents are sorted

Also applicable to subtype polymorphism
Unused polymorphism example

class MyInteger { int value; ... }
class Link { Object element; Link next; ... }
class List { Link header; ... }

List myList = new List();
for (int i=0; i<10; i++)
 myList.add(new MyInteger(i));

Desired invariant: in class List,
 header.closure(next) is sorted by \(\leq \)
 over key .element.value
Polymorphism elimination

Daikon respects declared types
Pass 1: front end outputs object ID, runtime type, and all known fields
Pass 2: given refined type, front end outputs more fields

Sound for deterministic programs
Effective for programs tested so far
3. Unjustified properties

Given three samples for x:

\[x = 7 \]
\[x = -42 \]
\[x = 22 \]

Potential invariants:

\[x \neq 0 \]
\[x \leq 22 \]
\[x \geq -42 \]
Statistical checks

Check hypothesized distribution

To show $x \neq 0$ for ν values of x in range of size r, probability of no zeroes is $(1 - \frac{1}{r})^\nu$

Range limits (e.g., $x \leq 22$):

- same number of samples as neighbors (uniform)
- more samples than neighbors (clipped)
Duplicate values

Array sum program:

// Sum array b of length n into variable s.
i := 0; s := 0;
while i ≠ n do
{ s := s+b[i]; i := i+1 }

b is unchanged inside loop

Problem: at loop head,

−88 ≤ b[n−1] ≤ 99
−556 ≤ sum(b) ≤ 539

Reason: more samples inside loop
Disregard duplicate values

Idea: count a value if its var was just modified

Front end outputs modification bit per value
 • compared techniques for eliminating duplicates

Result: eliminates undesired invariants
4. Redundant invariants

Given:

\[0 \leq i \leq j \]

Redundant:

\[a[i] \in a[0..j] \]
\[\max(a[0..i]) \leq \max(a[0..j]) \]

Redundant invariants are logically implied
Implementation contains many such tests
Suppress redundancies

Avoid deriving variables: suppress 25-50%
 • equal to another variable
 • nonsensical (a[i] when $i < 0$)

Avoid checking invariants:
 • false invariants: trivial improvement
 • true invariants: suppress 90%

Avoid reporting trivial invariants: suppress 25%
5. Unrelated variables

Problem: the following are of no interest

```c
bool b;
int *p;
b < p

int myweight, mybirthyear;
myweight < mybirthyear
```
Limit comparisons

Check relations only over comparable variables

• declared program types

• Lackwit [O’Callahan 97]: value flow analysis based on polymorphic type inference
Comparability results

Comparisons:

- declared types: 60% as many comparisons
- Lackwit: 5% as many comparisons; scales well

Runtime: 40-70% improvement

Few differences in reported invariants
Future work

Online inference
Proving invariants
Characterize good test suites
New invariants: temporal, existential
User interface
 • control over instrumentation
 • display and manipulation of invariants
Further experimental evaluation
 • apply to more and bigger programs
 • apply to a variety of tasks
Related work

Dynamic inference
 • inductive logic programming [Bratko 93, Cypher 93]
 • program spectra [Reps 97, Harrold 98]
 • finite state machines [Boigelot 97, Cook 98]

Static inference
 • checking specifications [Detlefs 96, Evans 96, Jacobs 98]
 • specification extension [Givan 96, Hendren 92]
 • other [Jeffords 98, Henry 90, Ward 96]
Conclusions

Naive implementation is infeasible
Relevance improvements: accuracy, performance
 • add desired invariants
 • eliminate undesired invariants
Experimental validation
Dynamic invariant detection is promising for research and practice
Questions?
Ways to obtain invariants

- Programmer-supplied
- Static analysis: examine the program text
 [Cousot 77, Gannod 96]
 - properties are guaranteed to be true
 - pointers are intractable in practice
- Dynamic analysis: run the program
 - complementary to static techniques
Unused polymorphism example

class MyInteger { int value; ... }
class Link { Object element; Link next; ... }
class List { Link header; ... }

List myList = new List();
for (int i=0; i<10; i++)
 myList.add(new MyInteger(i));

Desired invariant: in class List,

header.closure(next).element.value: sorted by ≤
Comparison with AI

Dynamic invariant detection:

Can be formulated as an AI problem

Cannot be solved by current AI techniques

• not classification or clustering
• no noise
• no negative examples; many positive examples
• intelligible output
Is implication obvious?

Want:
\[
\text{size}(\text{topOfStack.\text{closure}(next)}) = \\
\text{size}(\text{orig(\text{topOfStack.\text{closure}(next))}) + 1
\]

Get:
\[
\text{size}(\text{topOfStack.\text{next.\text{closure}(next)}) = \\
\text{size}(\text{topOfStack.\text{closure}(next)}) - 1
\]
\[
\text{topOfStack.\text{next.\text{closure}(next)} = \\
\text{orig(\text{topOfStack.\text{closure}(next))}
\]

Solution: interactive UI, queries on variables