
Locking discipline inference and checking

Michael D. Ernst∗ Alberto Lovato† Damiano Macedonio‡ Fausto Spoto†,‡ Javier Thaine∗
∗University of Washington, USA †Università di Verona, Italy ‡Julia Srl, Italy

mernst@cs.washington.edu, alberto.lovato@univr.it, damiano.macedonio@juliasoft.com,
fausto.spoto@univr.it, jthaine@cs.washington.edu

Abstract
Concurrency is a requirement for much modern software, but the
implementation of multithreaded algorithms comes at the risk of
errors such as data races. Programmers can prevent data races
by documenting and obeying a locking discipline, which indicates
which locks must be held in order to access which data.

This paper introduces a formal semantics for locking specifica-
tions that gives a guarantee of race freedom. The paper also provides
two implementations of the formal semantics for the Java language:
one based on abstract interpretation and one based on type theory. To
the best of our knowledge, these are the first tools that can soundly
infer and check a locking discipline for Java. Our experiments com-
pare the implementations with one another and with annotations
written by programmers.

1. Introduction
Concurrency allows computations to occur inside autonomous

threads, which are distinct processes that share the same heap mem-
ory. Threads increase program performance by scheduling parallel
independent tasks on multicore hardware and enable responsive
user interfaces [22]. However, concurrency might induce problems
such as data races (concurrent access to shared data), with conse-
quent unpredictable or erroneous software behavior. Such errors
are difficult to understand, diagnose, and reproduce at run time.
They are also difficult to prevent: testing tends to be incomplete due
to nondeterministic scheduling choices made by the run time, and
model-checking scales poorly to real-world code.

The standard approach to prevent data races is to follow a lock-
ing discipline while accessing shared data: always hold a given
lock when accessing a given shared datum. It is all too easy for
a programmer to violate the locking discipline. Therefore, tools
are desirable for formally expressing the locking discipline and for
verifying adherence to it [9, 28].

The book Java Concurrency in Practice [21] (JCIP) proposed
the syntax @GuardedBy to express a locking discipline and ensure
thread-safety. The intention is that when a locking discipline is
expressed with @GuardedBy, then “No set of operations performed
sequentially or concurrently on instances of a thread-safe class can
cause an instance to be in an invalid state”; a thread-safe class is
one that “use[s] synchronization whenever accessing the [shared,
mutable] state”. This annotation has been widely adopted; for
example, GitHub contains about 35,000 uses of the annotation in
7,000 files.

In an appendix, JCIP proposed a specification for @GuardedBy.
One of our contributions is our observation that this widely-used
specification is ambiguous; indeed, different tools interpret it in
different ways [30, 33]. A more important observation is that the
specification is incorrect: every interpretation of it permits data races

and therefore violates its design goal. Another of our contributions
is a formal specification for @GuardedBy that satisfies its design goals
and prevents data races. (This paper describes the semantics and
gives examples, but for reasons of space, the full formal development
appears in a technical report [13].) We have also implemented
two tools that implement our specification. One tool uses type-
checking to validate @GuardedBy annotations that are written in Java
source code. The other tool uses abstract interpretation to infer valid
@GuardedBy annotations for unannotated programs. Our techniques
are not specific to Java and generalize to other languages. In an
experimental evaluation, we compared these tools to one another
and to programmer-written annotations. Our evaluation shows that
programmers who use the @GuardedBy annotation do not necessarily
do so consistently with JCIP’s rules, and even when they do, their
programs still suffer data races.

An informal definition of @GuardedBy is that when a programmer
writes @GuardedBy(E) on a program element, then a thread may use
the program element only while holding the lock E. Section 2
illustrates important ambiguities in this informal definition. All of
these need to be resolved by a formal definition. The most important
problem with JCIP’s definition is that it provides name protection
rather than value protection [8]. Name protection is fine for primitive
values, which cannot be aliased in Java, but it allows data races on
reference values, which can be freely aliased. The Javadoc for
@GuardedBy states: “The field or method to which this annotation
is applied can only be accessed when holding a particular lock”.
Value protection is needed in order to prevent data races, not least
because the Java Language Specification defines locking in terms
of values rather than names [24]. Unfortunately, most tools that
check @GuardedBy annotations use JCIP’s inadequate definition and
therefore permit data races. Our definition prevents data races by
providing value protection: if a reference r is guarded by E, then for
any value v stored in r, v’s fields are only accessed while the lock E
is held. Checking and inference of this definition requires tracking
values v as they flow through the program, because the value may
be used through other variables and fields, not necessarily r. Since
this is relevant for reference values only, this article considers value
protection for reference variables and fields only.

The contributions of this paper include:

• A sound semantics for @GuardedBy that guarantees the absence
of data races, unlike the interpretation adopted by previous defi-
nitions and tools. The semantics is defined in terms of uses of
values (objects) rather than uses of names (variables).

• Two independent implementations of the locking discipline se-
mantics for an industrial-strength language, Java: as a modular
type analysis and as a whole-program abstract interpretation.

• Case studies of programmers’ use of @GuardedBy in practice. Pre-

1



1 public class Fork implements Comparable<Fork> {
2 private static int nextId = 0;
3 private final int id = nextId++;
4 // who is holding the fork, or null if on the table
5 private Philosopher usedBy = null;
6
7 void pickUp(Philosopher philosopher) {
8 this.usedBy = philosopher;
9 }

10
11 void drop() {
12 this.usedBy = null;
13 }
14
15 public int compareTo(@GuardedBy("itself") Fork other) {
16 return id - other.id;
17 }
18
19 public synchronized String toString() {
20 if (usedBy != null)
21 return "fork " + id + " used by " + usedBy.getName();
22 else
23 return "fork " + id + " on the table";
24 }
25 }

Figure 1: A fork, possibly held by a philosopher.

vious specifications of the annotation have been vague, and we
note places where the programmers’ interpretation does not pro-
vide a guarantee against data races. Furthermore, we note where
programmers have written annotations that are incorrect, illus-
trating the need for tools like ours.

• A practical comparison of the strengths of the two complemen-
tary and independent implementations above: local type-based
and global abstract interpretation.

The rest of this paper is organized as follows. Section 2 justifies
the need of a locking discipline in concurrent programs. Section 3
describes the checking tool based on a type system. Section 4
presents the inference tool based on abstract interpretation. Section 5
shows experiments with both tools. Section 6 presents related work.
Finally, Section 7 concludes.

2. Locking discipline semantics
This section shows how a locking discipline can enforce mutual

exclusion and the absence of data races; lays out the design space for
a locking discipline semantics; and discusses why such a semantics
should provide value protection rather than name protection.

2.1 Dining philosophers example
To illustrate how to specify a locking discipline, consider the

traditional dining-philosophers example. More examples are given
later. A group of philosophers sit around a table; there is a fork
between each pair of philosophers; and each philosopher needs its
left and right forks to eat. The locking discipline provides each
fork with a lock, and a philosopher must hold the lock in order to
use the fork; this guarantees mutual exclusion and the absence of
race conditions. (To prevent deadlock, the locks are acquired in
increasing order, but that is not a concern of this paper.)

Figure 1 shows Java code for the fork. The fork contains mutable
information (which philosopher holds it) in order to demonstrate
how a locking discipline can protect the access to its mutable field.
A philosopher (Figure 2) is modeled as a thread whose run method
repeatedly thinks, locks both forks, eats, and unlocks the forks.

In Java, each object is associated with a monitor [24, §17.1]. A
synchronized statement or method locks the monitor, and exiting

26 public class Philosopher extends Thread {
27 private final @GuardedBy("itself") Fork left;
28 private final @GuardedBy("itself") Fork right;
29
30 Philosopher(String name, @GuardedBy("itself") Fork left,
31 @GuardedBy("itself") Fork right) {
32 super(name);
33 // a fixed ordering avoids deadlock
34 if (left.compareTo(right) < 0) {
35 this.left = left; this.right = right;
36 } else {
37 this.left = right; this.right = left;
38 }
39 }
40
41 public void run() {
42 while (true) {
43 think();
44 synchronized (left) {
45 left.pickUp(this);
46 synchronized (right) {
47 right.pickUp(this);
48 eat();
49 right.drop();
50 }
51 left.drop();
52 }
53 }
54 }
55
56 private void think() {
57 ...
58 }
59
60 @Holding({ "left", "right" })
61 private void eat() {
62 ...
63 }
64 }

Figure 2: A philosopher.

the statement or method unlocks the monitor. Java also provides
explicit locks, which our theory and implementations handle.

The @GuardedBy type qualifiers express the locking discipline. In
the semantics that we will introduce in this article, the type qualifier
@GuardedBy("itself") on a variable’s type states that the variable
holds a value v whose non-final fields are only accessed at moments
when v’s monitor is locked by the current thread.

Our tools infer and verify the @GuardedBy annotations in these
figures. The @GuardedBy("itself") type qualifiers on fields left and
right guarantee that philosophers use their forks only after properly
locking them. The unlocked access to the final field id on line 16
of fig. 1 does not violate the @GuardedBy("itself") specification.

2.2 Design space for locking discipline semantics
Recall the informal definition of @GuardedBy: when a programmer

writes @GuardedBy(E) on a program element, then a thread may use
the program element only while holding the lock E. This definition
suffers the following ambiguities related to the guard expression E.

1. May a definite alias of E be locked? Given a declaration @GuardedBy

("lock") Object shared;, is the following permitted?

Object lockAlias = lock;
synchronized (lockAlias) {

... use shared ...
}

2. Is E allowed to be reassigned while locked? Given a declara-
tion @GuardedBy("lock") Object shared;, is either of the follow-
ing permitted?

2



synchronized (lock) {
lock = new Object();
... use shared ...

}

synchronized (lock) {
... use shared ...
lock = new Object();

}

What about other side effects to E? Given a declaration @GuardedBy

("anobject.field") Object shared;, are the following permitted?

synchronized (anobject.field) {
foo(); // might side-effect anobject and reassign field
... use shared ...

}

synchronized (anobject.field) {
foo(); // might side-effect but not reassign field
... use shared ...

}

3. Should E be interpreted at the location where it is defined or at
the location where it is used? Given a declaration

class C {
@GuardedBy("this") Object field;
...

}

are the following permitted?

C c;
synchronized (this) {

... use c.field ...
}
synchronized (c) {

... use c.field ...
}

The latter use assumes contextualization, such as viewpoint adap-
tation [12].

The informal definition suffers the same ambiguities in the in-
terpretation of the program element being guarded. These can be
summarized by asking, what is a “use” of the shared program el-
ement? Is it any occurrence of the variable name or only certain
operations; do uses of aliases count, and are reassignment and side
effects permitted? More relevantly, does the @GuardedBy annotation
specify restrictions on uses of a variable name (“name protection”),
or restrictions on uses of values (“value protection”)?

Current definitions of @GuardedBy do not provide guidance about
any of the ambiguities regarding the lock expression. Thus, there
is a danger that different tools interpret them differently, including
unsound interpretations that do not prevent data races. There is also
a danger that programmers will assume a different definition than a
tool provides, and thus do not obtain the guarantee they expect.

Current definitions of @GuardedBy are clearer about what consti-
tutes a use of the program element — any access to (that is, lexical
occurrence of) the name. This definition provides name protection,
but unfortunately it does not prevent data races. A program that
obeys this locking discipline is not thread-safe and may still suffer
data races, as illustrated below. Therefore, any definition that pro-
vides name protection is in general incorrect, because it does not
satisfy the stated goals of the @GuardedBy annotation.

1 public class Observable {
2 private @GuardedBy("this") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constr.
6 synchronized (original) {
7 listeners.addAll(original.listeners);
8 }
9 }

10 public void register(Listener listener) {
11 synchronized (this) {
12 listeners.add(listener);
13 }
14 }
15 public List<Listener> getListeners() {
16 synchronized (this) {
17 return listeners;
18 }
19 }
20 }

Figure 3: An implementation of the observer design pattern in
which locking is performed on the container Observable object.
This implementation suffers data races. The implementation
satisfies the name-protection semantics for @GuardedBy, but not
the value-protection semantics.

2.3 Name protection and value protection
To illustrate the differences between name protection and value

protection, consider an implementation of the observer design pat-
tern [19], which is a key part of the model-view-controller and other
software architectures. Figures 3 and 4 are patterned after the im-
plementation found in the Java JDK. An Observable object allows
clients to concurrently register listeners. When an event of interest
occurs, a callback method is invoked on each listener.

Synchronization is required to avoid data races. Synchronization
in the register method and copy constructor prevents simultane-
ous modifications of the listeners list, which might result in a
corrupted list or lost registrations. Synchronization is needed in
the getListeners() method as well, or otherwise the Java memory
model would not guarantee the inter-thread visibility of the regis-
trations. In fig. 3, synchronization is performed on the container
object, and in fig. 4, synchronization is performed on a field.

Figure 3 satisfies all interpretations of the name protection seman-
tics: every use of listeners occurs at a program point where the
current thread locks its container.1 Nevertheless, a data race is possi-
ble, since two threads could call getListeners() and later access the
returned value concurrently. This demonstrates that the name protec-
tion semantics does not prevent data races. Figure 3 does not satisfy
the value-protection semantics, as expected because those semantics
prevent data races, because the return type of getListeners() is not
compatible with the return statement. Figure 3 could be made to sat-
isfy the value-protection semantics by annotating the return type of
getListeners() as @GuardedBy("this"), which would force the client
program to do its own locking and would prevent data race.

Figure 4 specifies a different locking discipline. First consider
the value-protection semantics. @GuardedBy("itself") means that all
dereferences of the value of listeners occur while the current thread
locks that value. The annotation on the return type of getListeners()
imposes the same requirement on clients of Observable. The field
listeners could have been annotated @GuardedBy("listeners"), but
the syntax for the return type of getListeners() would have been
more complex, thus the @GuardedBy("itself") syntax. Figure 4 also
satisfies the name-protection semantics. Depending on how the se-

1The program also satisfies an interpretation of @GuardedBy that does not do contextu-
alization or viewpoint adaptation, since the constructor is implicitly synchronized on
this.

3



1 public class Observable {
2 private @GuardedBy("itself") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constr.
6 synchronized (original.listeners) {
7 listeners.addAll(original.listeners);
8 }
9 }

10 public void register(Listener listener) {
11 synchronized (listeners) {
12 listeners.add(listener);
13 }
14 }
15 public @GuardedBy("itself") List<Listener> getListeners() {
16 synchronized (listeners) {
17 return listeners;
18 }
19 }
20 }

Figure 4: An implementation of the observer design pattern in
which locking is performed on the listeners field.

mantics handles aliasing and side effects, the semantics may prevent
data races for clients of this program.

Figure 4’s choice of locking the field rather than the container
permits additional flexibility. Consider the following client code:

List<Listener> l = new Observable(original).getListeners();
... use l ...

At the use of l, there is no syntactic handle for the container, and it
might even have been garbage-collected.

Regardless of other choices for the semantics of @GuardedBy, the
name-protection and value-protection variants are not comparable:
neither entails the other. In fig. 5, field x is declared as @Guarded-

By("itself"). This annotation holds in the value-protection seman-
tics, since its value is only accessed at line 11 inside a synchroniza-
tion on itself, but not in name-protection semantics: x is used at
line 8. Field y is @GuardedBy("this.x") for name protection but not
for value protection: its value is accessed at line 14 via w. In some
cases the semantics do coincide. Field z is @GuardedBy("itself")

according to both semantics: its name and value are only accessed at
line 11, where they are locked. Field w is not @GuardedBy according
to any semantics: its name and value are accessed at line 14.

2.4 Definition of @GuardedBy

We can now state our semantics for the @GuardedBy annotation. In
this article, by dereference of a value v we mean the access of a
non-final field of v. The key idea is that values are protected rather
than names, and that dereferences of v are considered uses of v.

Suppose that the type of expression x contains the qualifier @Guard-
edBy(E). A program satisfies the locking discipline if, at program
point p where the program dereferences a value that has ever been
bound to x, the program holds the lock on the value of expression
E. Furthermore, the value of E must not change (in any thread)
during the time that the thread holds the lock. The protection is
shallow, since it applies to the value (reference) in x, not to other
references that might be reached from it. There is no restriction on
copying values, including passing values as arguments (including as
the receiver) or returning values.

This definition resolves the ambiguities noted in section 2.2. A
definite alias of the guard expression E is permitted to be locked.
The guard expression is not allowed to be reassigned to a different
value while locked. Side effects to the guard value are permitted,
since they do not affect the monitor. The lock expression undergoes
viewpoint adaptation so that it makes sense in the context of use.

1 public class K {
2 private K1 x = new K1();
3 private K2 y = new K2();
4 private K1 z;
5 private K2 w;
6
7 public void m() {
8 z = x;
9 w = new K2();
10 synchronized (z) {
11 y = z.f;
12 w = y;
13 }
14 w.g = new Object();
15 }
16 }
17
18 class K1 {
19 K2 f = new K2();
20 }
21
22 class K2 {
23 Object g = new Object();
24 }

name value
var protection protection
x – @GB("itself")

y @GB("this.x") –
z @GB("itself") @GB("itself")

w – –

Figure 5: Comparison of name-protection and value-protection
semantics for @GuardedBy (abridged as @GB).

A use of the program element is a dereference of any value it may
hold, regardless of aliasing, reassignment, and side effects.

We have formalized this definition, and also an alternate one that
provides name protection, as a structural operational semantics in
the style of Plotkin [34]. Our formalization includes a definition
of a data race and a proof that our definition prevents data races.
For reasons of space, the formal development appears as a technical
report [13].

A set of annotations expresses a locking discipline. For an infer-
ence tool, a maximal locking discipline is inferred that satisfies the
requirements. For a checking tool, the program is verified to check
if it satisfies its locking discipline. Every program trivially satisfies
the empty locking discipline.

2.5 Definition of @Holding

The @GuardedBy annotation is sufficient for expressing a locking
discipline. Inferring or checking a locking discipline requires rea-
soning about which locks are held at any given point in the program.
Our implementations provide a @Holding(E) annotation to express
these facts explicitly to aid in program comprehension or modular
checking.2 It annotates a method declaration to indicate that when
the method is called, the current value of E (possibly viewpoint-
adapted) is locked. An example appears on line 60 of fig. 2.

2.6 Other annotations
Our implementations support other features, such as type qualifier

polymorphism both without (@PolyGuardedBy) and with (@GuardSat-
isfied) a guarantee that all the value’s guarding locks are held at the
time of the call. For more details about the implementation, see the
Lock Checker manual [7].

3. Locking discipline checking
We have implemented a modular static analysis, based on a type

system, to verify a programmer-specified locking discipline ex-
pressed as Java @GuardedBy and @Holding annotations. The implemen-
tation is publicly available at http://checker-framework.org/.
2JCIP overloads the name @GuardedBy for two distinct purposes as a field annotation
and a method precondition. For clarity in this paper, we always refer to the latter as
@Holding.

4



@GB({E1,E2}) ... 

⊥ 

⊥ 

@GB({}) @GB(E1) @GB(E2) 

Figure 6: The subtype hierarchy of the locking-discipline type
system. E1 and E2 are lexically distinct expressions.

If the type-checker issues no warnings for a given program, then it
guarantees that the program satisfies the locking discipline; that is, a
value that is held in an expression of @GuardedBy type in the program
is never dereferenced unless the values of all the lock expressions
indicated in the @GuardedBy annotation are locked by the thread
performing the dereference, at the time of the dereference. At run
time, a lock expression E is held on a given thread at a given time
if java.lang.Thread.holdsLock(E) evaluates to true on that thread at
that time.

Our approach is standard for a static analysis. The goal is to
determine facts about values, but the program is written in terms
of variables and expressions. Therefore, the analysis computes an
approximation (an abstraction) in terms of expressions. Our static
analysis simultaneously computes two approximations. (1) The
analysis approximates the values that each expression in the program
may evaluate to; the abstraction is expressed by the annotations
such as @GuardedBy. (2) The analysis approximates the locks that
the program currently holds; the abstraction is expressed by the
annotations such as @Holding at method entry and exit.

Both abstractions are sound, so that if the type system approves
a program, the program satisfies the locking discipline; however,
the abstraction is conservative, so the type system might reject a
program that never suffers a race condition at run time.

3.1 Type qualifiers and hierarchy
The type system contains a single parameterized type qualifier,

represented by the @GuardedBy type annotation. Figure 6 shows
the subtype hierarchy. One surprising feature of the type system
is that no two @GuardedBy annotations are related in the type hier-
archy. If Eset1 6= Eset2, then @GuardedBy(Eset1) and @Guarded-

By(Eset2) are siblings in the type hierarchy. It might be expected
that @GuardedBy("x", "y")T is a supertype of @GuardedBy("x")T. The
first type requires two locks to be held, and the second requires only
one lock to be held and so could be used in any situation where
both locks are held. Our type system conservatively prohibits this
in order to prevent type-checking loopholes that would result from
aliasing and side effects — that is, from having two references, of
different types, to the same data. If our analysis incorporated an
analysis of such effects, its type hierarchy could be enriched.

@Holding is not part of the type hierarchy because it is a method
pre-condition rather than a type qualifier.

3.2 Typing rules
The type system enforces the usual object-oriented subtyping

rules at assignments, method calls, overriding method declarations,
etc. It also enforces behavioral subtyping [27] for @Holding precon-
ditions in overriding method declarations.

Throughout its lifetime, a value is only ever referenced by expres-
sions with the identical @GuardedBy type qualifiers (modulo viewpoint
adaptation), and this ensures that the value is never dereferenced
without the appropriate lock expressions being held.

A field dereference or method invocation type-checks if the re-

ceiver type is @GuardedBy(...) (that is, not > or ⊥), and for field
dereferences, all the locks in the type must be held. In addition, a
method invocation type-checks only if all the locks mentioned in
any @Holding precondition are held at the method call.

There are special rules for the polymorphic type qualifier @Guard-
Satisfied: any type may be assigned to it, usually by being passed as
an argument to a formal parameter of type @GuardSatisfied. Such an
expression may always be dereferenced. By contrast, an expression
of type @PolyGuardedBy, the general polymorphic type, may never be
dereferenced. No lock may be released within the dynamic scope of
an expression with @GuardSatisfied type.

The full type-checking rules are listed and explained in the Lock
Checker manual [7], which also explains additional features of the
implementation.

3.3 Held lock expressions analysis
The Lock Checker conservatively and flow-sensitively estimates

the lock expressions that are held at each point in a program. That
is, it computes a set of expressions whose locks are definitely held.
This process can be viewed as local type inference.

The Lock Checker considers a lock expression held starting when

• the lock expression is used to acquire a lock, or

• a @Holding annotation asserts that the lock is held.

The Lock Checker does not track aliasing (different lock expressions
that evaluate to the same value); it only considers the exact lock
expression used to acquire a lock to be held. The Lock Checker
considers a lock expression no longer held when

• the lock is released (explicitly or due to scoping), or

• the lock expression may be side-effected.

The analysis makes conservative approximations about when the
lock expression may be side-effected. For example, if a call is made
to a method not explicitly annotated as being side-effect free, then
the call is considered to side-effect any mutable lock expression.

3.4 Modular analysis and libraries
Our type analysis is modular: it analyzes each procedure in isola-

tion. This makes the analysis scalable and permits separate compi-
lation. A modular analysis requires a summary for each procedure
that is called by the one being analyzed. The Lock Checker uses the
programmer-written annotations as this specification.

To verify uses of Java’s monitor locks, the annotations as de-
scribed so far are sufficient. Because monitor locks are held through-
out the dynamic scope of a synchronized statement or invocation of a
synchronized method, a routine cannot affect the locks held, from the
point of view of the caller, and the @Holding method annotation can
specify a single set of held locks. For explicit locks, the summary
needs to be able to indicate different locks held on method entry and
method exit. For an analysis focused on deadlocks, the summaries
need to be even more complex [40], but deadlock detection and
prevention is outside the scope of this paper.

The use of @GuardSatisfied as the default annotation means that
most code, including external libraries, does not need any annota-
tions except near locking operations. The Lock Checker ships with
annotations for relevant parts of the JDK.

4. Locking discipline inference
Our abstract-interpretation-based, whole-program inference uses

four static analyses to infer @GuardedBy annotations (fig. 7), as de-
scribed in this section. Inference of @Holding is based on similar

5



Jars

Creation Points
Analysis

Definite Aliasing
Analysis

Definite Locked Expression
Analysis

@GuardedBy
Inference Annotations

Figure 7: The structure of the abstract interpretation inference
of @GuardedBy annotations.

lines variable/field creation points
8,12,16 this {Fork@80}
20,21,23 this {Fork@80}

16 other {Fork@80}
35,37 this {Philosopher@84}

- Philosopher.left {Fork@80}
- Philosopher.right {Fork@80}

21,21,23 arg. to String.concat {κ,π}
21 arg. to Thread.getName {Philosopher@84}

Figure 8: Julia’s creation points analysis of our example. Cre-
ation point π stands for a generic creation point inside the Java
library code; κ stands for an object held in the constant pool.

techniques but is simpler. Since data race protection holds for guards
E that keep their value constant in each thread of the program, our
inference tool only infers E made up of final fields and the special
variable itself, that refers to the same value being protected. In
particular, Julia never infers guards E using other variables.

4.1 Creation points analysis
Creation points analysis is an instance of class analysis [39].

Julia uses a concretization of Parlsberg and Schwarzbach’s class
analysis [32, 37]. For each variable and field of reference type,
creation points analysis infers an overapproximation of the set of
program points where the value bound to that variable or field might
have been created. This is a concretization since it does not track
types of values, but rather their creation point, from which the type
can be derived.

Figure 8 shows the result of Julia’s creation points analysis at
some selected points of the program of figs. 1 and 2 and a client
program that creates forks and philosophers and starts the philoso-
pher processes. It reports where the values of the variables at those
program points and of the fields of the objects have been created by
a new statement. For instance, the figure shows that variable other

at line 16 contains a value of type Fork that can only be created in
the driver program. The same holds for the values held in fields
left and right of all Philosopher objects in memory. Figure 8 also
reports the creation points of the objects passed to the Java library,
including the implicit argument (receiver) of getName, that will be
needed later. Note that, in Java bytecode, those arguments are held
in stack variables, hence the creation points analysis computes that
information. In this simple example, the approximation is always a
singleton, but in general it could be a set of creation points. If the
line numbers are dropped from column creation points, one gets a
class analysis. That extra information makes it into a creation points
analysis.

4.2 Definite aliasing analysis
This analysis infers, at each program point, definite aliasing be-

tween local variables and other local variables or expressions [31].
Definite means that that aliasing must hold at the program point,
however it is reached. In particular, we are interested in the definite

lines definite aliases of locked value
19 {this}
44 {this.left}
46 {this.right}

lines definite aliases of the container of the field
8,12,20 {this}

Figure 9: Julia’s expression aliasing analysis of our example.

aliases of the values that are used in the synchronized statements
in our example. Those values are held in a stack variable in byte-
code, whose definite aliases are shown in fig. 9, as computed by the
analysis. Note that the approximation is semantic. For instance, the
analysis would not change if one modified the code at line 44 into

Fork f = left;
synchronized (f) ...

Later, it will be useful to know the definite aliases of the container
E in each field access expression E. f where f is a non-final field.
Figure 9 provides that information for our example as well.

4.3 Definite locked expressions analysis
This analysis computes, at each program point, a set of expres-

sions that are definitely locked by the current thread at that point.
It uses the result of the definite aliasing analysis as a prerequisite.
It works as a data flow analysis. Namely, let Lp be a set of definite
locked expressions at each given program point p. The analysis
builds an inclusion constraint for every statement. In most cases,
those constraints just propagate the approximation, such as from
line 42 to line 43:

L42 ⊇ L43

Where a synchronization occurs, the set of definitely locked expres-
sions is instead enlarged with the definite aliases of the locked value,
as previously computed by the definite alias analysis (fig. 9). This is
the case at line 44:

L44∪{this.left} ⊇ L45

At the end of the synchronization, the analysis builds a constraint
that conservatively kills all definitely locked expressions whose type
is compatible with that of the unlocked expression, such as at line 50
of our example:

L50 \{l ∈ L50 | l has type Fork} ⊇ L51

The analysis is interprocedural. Namely, definitely locked expres-
sions are renamed at method call, such as at line 45, to implement
parameter passing:l

[
a1 7→ this

a2 7→ philosopher

]∣∣∣∣∣∣∣∣∣
l ∈ L45,
the rec. of pickUp
is definitely aliased to a1,
the par. of pickUp
is definitely aliased to a2

⊇ L7

A large simplification of the analysis comes from the fact that Java
enjoys the property that it does not allow one to write code where a
callee unlocks a lock taken by its caller, nor to lock a value without
unlocking it before returning to the caller (section 3.4). Hence
method calls can be safely approximated as no-operations:

L43 ⊇ L44

6



lines definitely locked expressions
8,12,20,21,23 {this}

16,35,37 {}

Figure 10: Julia’s definite locked expressions analysis of our
example.

At bytecode level, the same property is enforced by the Java Virtual
Machine and a violation leads to an IllegalMonitorStateException.
However, the implementation of this check is not mandatory. For
simplicity, we assume that it is implemented or that the analyzed
code is generated from Java.

In general, programmers do not modify the value of the expres-
sions that they use as locks, such as this.left, and this is the case
in our example. However, the analysis copes with the unusual case
of field updates that affect the locked expressions. For instance, if
line 45 were modified to

left = right;

and left made non-final, then Julia would build a constraint that
conservatively kills all potentially affected locked expressions:

L45 \{l ∈ L45 | left occurs in l} ⊇ L46

However, the analysis would be unsound if field updates were al-
lowed from a concurrent thread. For this reason, we preferred to
keep the analysis sound and, like some other work, only allow final

fields in the inferred definitely locked expressions.
After inclusion constraints have been built for each pair of consec-

utive statements and from callers to callees, the analysis computes a
fixpoint of the resulting set-constraint. Since this is a definite anal-
ysis, a maximal fixpoint is computed. The result for our example,
projected on some program points, is shown in fig. 10.

4.4 Inference of the @GuardedBy Property
Once the three previous supporting analyses have been performed,

Julia infers @GuardedBy annotations for fields and method parameters
(fig. 7). According to the definition of @GuardedBy(E), this amounts
to verifying that the non-final fields of all possible values ever held
in those fields or parameters are only accessed in a program point
where E is locked by the current thread. Julia uses creation points
as a conservative approximation of the identity of run-time values.
Objects created at distinct creation points must be distinct, while the
converse might not hold. Namely, it uses the following algorithm to
infer the @GuardedBy annotations for a field or parameter x:

1. it uses the creation points analysis to determine an overapproxi-
mation C of the creation points of the values ever held in x;

2. it computes the set of program points A = {p | a non-final field
f is accessed at p as Ep. f and the set Cp

Ep
of all possible creation

points of Ep at p is such that Cp
Ep
∩C 6= /0};

3. for each p ∈ A, it computes the set of expressions

Lp = {E[Ep 7→ itself] | E is a definite alias of Ep at p
and E is definitely locked at p};

4. it computes L =
⋂

p∈A Lp;

5. it infers the annotations @GuardedBy("E") for each E ∈ L where
no variable occurs.

Consider for instance field left in fig. 2. According to the creation
point analysis (fig. 8), we have C = {Fork@80}. Access to non-final

fields occur as this.usedBy at lines 8,12,20 and we have C8
this =

C12
this = C20

this = {Fork@80} (fig. 8). Hence A = {8,12,20}. At
those program points, this is obviously a definite alias of itself
(fig. 9). According to fig. 10, the expression this is always locked
at 8, 12 and 20. Then Lp = {this[this 7→ itself]} = {itself} for
each p ∈ A, and hence L = {itself}. Therefore, Julia infers the
annotation @GuardedBy("itself") for field left.

4.5 Calls to library methods
The algorithm sketched in section 4.4, at its step 2, requires to

check all program points A where a non-final field in accessed.
This includes the program points inside the libraries as well. Hence
the inference of @GuardedBy("itself") for field left above should be
corrected by considering in A also the program points outside the
application shown in figs. 1 and 2 and the driver program. However,
as already sketched in section 3.4, a simplifying and computationally
effective alternative solution is to consider only program points A
inside the application under analysis, as long as we also include in
A the program points where a value is passed to the libraries. That
is, point 2 of the algorithm from section 4.4 can be modified to

2. it computes the set of program points A = {p in the application
| a non-final field f is accessed at p as Ep. f or an expression
Ep is passed as an argument to libraries and the set Cp

Ep
of all

possible creation points of Ep at p is such that Cp
Ep
∩C 6= /0};

By applying this inference algorithm to all fields and method
parameters in figs. 1 and 2 and the driver program, Julia infers the
@GuardedBy annotations reported in the same figures.

5. Experiments
We performed experiments to understand how programmers cur-

rently use @GuardedBy and to evaluate the utility of our semantics.
Our implementations of the abstract-interpretation-based inference
for locking disciplines (section 4) and of the type-system-based
checker for locking disciplines (section 3) were written by different
people and they share no code, so the fact that they agree provides
extra confidence that they correctly implement the semantics.

5.1 Subject programs and methodology
We chose 14 open-source subject programs that use locking

(fig. 11). The programmers had partially documented the lock-
ing discipline in 5 of them. We counted not only @GuardedBy and
@Holding3 annotations but also commented annotations and English
comments containing the string “guard”. The programmers may
have used comments in order to obtain the benefits of documenting
a locking discipline without adding a compile-time and run-time de-
pendency on the @GuardedBy annotation. However, the documented
locking discipline may be incorrect because it was not checked by
any tool.

We determined a goal set of correct annotations, which are all
the annotations whose locking discipline the program obeys. To
determine this set, we manually analyzed every annotation written by
the programmer or inferred by Julia.4 We retained every annotation
from either set such that the program is guaranteed not to suffer a
data race on the annotated program element. Then, we compared the
3Our implementations use the type annotation @GuardedBy and the method annotation
@Holding. The programmer-written annotations overload the syntax @GuardedBy for
both purposes, but for clarity this paper treats the programs as if the programmer had
distinguished the two purposes by writing some annotations as @GuardedBy and some as
@Holding.
4There might exist other correct annotations that neither Julia, the original programmer,
nor we are aware of.

7



Programmer-written Infer-
@Guard @Hold- ence

Project Version LoC edBy ing time
BitcoinJ 0.12.2 102458 46 14 238
Derby Engine 10.11.1.1 119594 12 9 4077
Eclipse ECJ 4.4 161701 0 0 924
Guava 18.0 118190 64 72 621
Jetty Server 9.2.6.v20141205 59611 0 0 109
Velocity 1.7 54549 0 0 94
Zookeeper 3.4.6 75475 0 0 118
Catalina 8.0.15 121959 0 0 472
Coyote 8.0.15 71527 1 0 110
Dbcp 8.0.15 53181 16 0 84
Jasper 8.0.15 67380 0 0 105
Jni 8.0.15 32682 0 0 49
Util 8.0.15 42115 0 0 58
Websocket 8.0.15 39928 0 0 75

Figure 11: Subject programs. The last 7 programs are compo-
nents of Tomcat. LoC is the approximate number of lines of
code reached by Julia during the analysis. It is the count of the
entries in the line number table of each class included in the
analysis, plus 3 for each method or constructor. Inference time
is measured in seconds.

Goal Programmer-written Inference Type-checking
name value value value

Project # # P% R% P% R% # P% R% # P% R%
BitcoinJ 47 46 87 85 30 30 7 100 15 6 100 86
Derby Engine 16 12 83 63 58 44 6 100 38 6 100 100
Eclipse ECJ 6 0 - 0 - 0 6 100 100 6 100 100
Guava 22 64 19 55 14 41 5 100 23 5 100 100
Jetty Server 1 0 - 0 - 0 1 100 100 1 100 100
Velocity 4 0 - 0 - 0 4 100 100 4 100 100
Zookeeper 5 0 - 0 - 0 5 100 100 5 100 100
Catalina 2 0 - 0 - 0 2 100 100 2 100 100
Coyote 24 1 100 4 0 0 23 100 100 23 100 100
Dbcp 20 16 88 70 56 45 6 100 30 6 100 100
Jasper 7 0 - 0 - 0 7 100 100 7 100 100
Jni 1 0 - 0 - 0 1 100 100 1 100 100
Util 4 0 - 0 - 0 4 100 100 4 100 100
Websocket 9 0 - 0 - 0 9 100 100 9 100 100

Figure 12: Experimental results for @GuardedBy annotations.
The table gives the number of goal, programmer-written, in-
ferred, and verified annotations, and the precision and recall
for each approach along with whether the annotations are in-
terpreted according to the name protection or value protection
semantics. Computations whose denominator is zero are re-
ported as “-”.

goal annotations to both the programmer-written and the inferred
annotations. This comparison was not syntactical: annotations that
are conceptually the same or are expressing the same thing are
considered equal.

As is standard for an information retrieval problem [36], we report
results in terms of precision (number of correct reported annotations
divided by total number of reported annotations) and recall (number
of correct reported annotations divided by total number of goal an-
notations). Precision and recall are percent measurements between
0% and 100% inclusive, and larger numbers are better.

5.2 Inference experiments
We used Julia to infer the locking discipline in terms of @GuardedBy

and @Holding with value protection semantics.5

Experimental results for @GuardedBy annotations appear in fig. 12,

5Julia has two modes and can also infer annotations for name protection, but this article
focuses on value protection.

and results for @Holding appear in fig. 13. Programmers made signif-
icant numbers of mistakes (as shown by low precision) and omitted
significant numbers of annotations (as shown by low recall). Results
for the two annotations are reported separately because there are two
possible interpretations for @GuardedBy (providing value protection
or name protection), but @Holding means the same thing in both
semantics.

Programmer mistakes. In every program where programmers
documented a locking discipline, programmers wrote incorrect an-
notations that express a locking discipline that the code does not
satisfy.

For example, Guava’s LocalCache and MapMakerInternalMap classes
incorrectly use Segment.this as a guard expression. Julia infers the
correct guard this.

In other cases, a lock is acquired only around write accesses but
not read access to a variable. This can lead to corrupted data being
read for data larger than 32 bits, and even for 32-bit data it can lead
to inconsistencies between multiple reads of a variable. An example
is in the Guava class SerializingExecutor: the field private boolean

isThreadScheduled is annotated as @GuardedBy("internalLock"), but
it is read without protection at line 135, despite being always written
after acquiring the lock.

The most common programmer mistake, however, was creating
external aliases to a value. If a reference to a variable’s value leaks,
then a data race can occur even if a lock is held whenever the variable
is read or written. In other words, in the presence of aliasing the
value-protection semantics provides no guarantee. This is a natural
problem, given the lack of automated checking and even the lack of
a mention of the danger of aliasing in references such as JCIP [21].
An example is BitcoinJ field PaymentChannelClient.conn. It is always
accessed holding a lock inside the class, but the field is initialized
with a parameter of a public constructor. So there exists an external
alias to the object that can potentially be used to access the object
without protection.

Programmer omissions. The private BitcoinJ method Payment-

ChannelServer.truncateTimeWindow(long) is inferred to be @Holding(-

"lock"), and is indeed called always with lock held. Nevertheless,
the programmer didn’t write the annotation.

In Apache Velocity, a template engine, Julia finds four objects that
are @GuardedBy("itself"): the field XPATH_CACHE, in XPathCache, is
accessed in a synchronized(XPATH_CACHE) block; the field SimplePool

pool, in ParserPoolImpl, uses methods put and get of SimplePool,
that modify the object’s state inside a synchronized(this) block; the
receivers of the same two methods are thus guarded as well.

Inference mistakes. Julia’s output was correct: its precision is
always 100%, just as for any sound tool.

Inference omissions. There are two general reasons that Julia fails
to infer a correct programmer-written locking discipline: either
(1) the program’s correctness is too subtle for Julia to reason about,
or (2) the locking discipline is inexpressible in the value-protection
semantics.

(1) Julia incompleteness: Julia misses 1 @Holding in Derby Engine
and 16 in Guava because methods in the Monitor, AbstractService,
and ServiceManager classes use complex reasoning, ensuring for
instance that a call to a method happens only in flows of execution
where the lock is held by the executing thread. At the moment Julia
does not understand these tricks.

Julia only allows itself and final fields as a guard expression.
This is a sufficient but not necessary condition to ensure that the
guard expression evaluates to the same value throughout the scope
of the guard (section 2.4). Locks used by programmers usually

8



Programmer-written Abstract interpretation Type-based analysis
Project Goal OGoal Written Correct P% R% OR% Inferred Correct P% R% Verified Correct P% R%
BitcoinJ 113 45 14 14 100 12 31 113 113 100 100 112 112 100 99
Derby Engine 121 13 9 7 78 6 54 120 120 100 99 119 119 100 99
Eclipse ECJ 1 0 0 0 - 0 100 1 1 100 100 1 1 100 100
Guava 126 45 72 38 53 30 84 110 110 100 87 110 110 100 100
Jetty Server 4 0 0 0 - 0 100 4 4 100 100 4 4 100 100
Velocity 20 0 0 0 - 0 100 20 20 100 100 20 20 100 100
Zookeeper 16 0 0 0 - 0 100 16 16 100 100 16 16 100 100
Catalina 98 0 0 0 - 0 100 98 98 100 100 98 98 100 100
Coyote 13 0 0 0 - 0 100 13 13 100 100 13 13 100 100
Dbcp 18 0 0 0 - 0 0 18 18 100 100 16 16 100 89
Jasper 2 0 0 0 - 0 100 2 2 100 100 2 2 100 100
Jni 1 0 0 0 - 0 100 1 1 100 100 1 1 100 100
Util 4 0 0 0 - 0 100 4 4 100 100 4 4 100 100
Websocket 4 0 0 0 - 0 100 4 4 100 100 4 4 100 100

Figure 13: Experimental results for @Holding annotations. This table lists the number of annotations written by the programmer,
inferred by Julia, and verified by the Lock Checker, as well as the precision (P%) and recall (R%) percentages. Goal is the number
of goal annotations. OGoal (for “omission-tolerant goal”) is the number of goal annotations whose guard expression the programmer
used elsewhere, and OR% is the programmer recall based on the omission-tolerant goal set.

use variables in guard expressions (sometimes correctly, sometimes
incorrectly). As future work, we plan to support the container this
in guard expressions, which still protects against data races if it is
never aliased.

(2) Value protection semantics inflexibility: The only example that
seems a genuine value-protection programmer-written annotation
and not inferred by Julia is that related to the static field private

static Timer _timer; //@GuardedBy("EvictionTimer.class"). This
field is always accessed in synchronized static methods, it never
escapes, and is assigned with the code

_timer = AccessController.doPrivileged(
new PrivilegedNewEvictionTimer());

The doPrivileged method is native, and executes the run method
of the PrivilegedNewEvictionTimer class, that simply returns a new
Timer object. The guard refers to the class object and is permitted
under the value-protection semantics.

5.2.1 Omission-tolerant results
We computed precision and recall for programmer-written @Hold-

ing annotations, whose results are shown in fig. 13, but we computed
two sets for the programmer recall numbers. First, we determined
the overall recall, based on the full set of goal annotations. Second,
we determined the recall based on a reduced set of goal annotations.
The reduced, or omission-tolerant, set contains only @Holding an-
notations whose guard expressions appar in @GuardedBy annotations
that the programmer wrote. This latter metric considers only locks
that the programmer deemed significant enough to document.

The rationale for reporting two different measurements is that
there are two different reasons that a @Holding annotation might be
missing from the programmer-written set:

• The programmer wrote @GuardedBy on some variable v but omitted
@Holding(v). This incomplete specification of the locking disci-
pline for v is a programmer error. For example, the programmer
correctly annotated the unary method Wallet.maybeUpgradeToHD as
@Holding("keychainLock"), but didn’t annotate the no-argument
overloaded version.

• The programmer omitted @GuardedBy on some variable v and
also omitted @Holding(v). It is conceivable that the programmer
only intended to write specifications for some guarded variables
and intentionally omitted the @GuardedBy annotation on other
variables. The OR% measurement assumes every such omission

was intentional, even though the practice is undesirable because
someone calling or modifying the code could misuse it.

For example, Julia infers @Holding("enumConstantCache") for
Guava’s private method Enums.populateCache, which needs it for
a call to put. Indeed, the only invocation of populateCache is in a
synchronized (enumConstantCache) block. Nevertheless, the pro-
grammer did not annotate it as @GuardedBy("enumConstantCache").

5.3 Type-checking experiments

5.3.1 Methodology
In order to run the type-checking approach, we performed the

following steps for each target program:

1. Remove all the programmer-written @GuardedBy and @Holding an-
notations from the program’s source code. Leave all programmer-
written @SuppressWarnings annotations, as they are trusted.

2. Insert the Julia-inferred annotations in the program’s source code.
These use the value-protection semantics, which is what the Lock
Checker verifies.

3. Repeatedly run the Lock Checker and edit the annotations or the
code to eliminate the warning (e.g., add a missing annotation),
until the Lock Checker issues no more warnings.

A set of @GuardedBy and @Holding annotations is verified by the
Lock Checker if the Lock Checker issues no warnings when only
those annotations are present in the source code.

5.3.2 Type-checking results
Figures 12 and 13 describe the annotations that were verified by

the Lock Checker.
Overall, there were 5 annotations that were inferred by Julia but

could not be verified by the Lock Checker. Only one was due to a dif-
ference in the tools’ abstraction (static approximations to the seman-
tics). That annotation is @Holding("#1.lock") on BitcoinJ’s method
Transaction.isConsistent(TransactionBag, boolean), where #1 refers
to the first parameter of the method. Since TransactionBag is an in-
terface, the expression #1.lock is not legal Java (interfaces cannot
contain fields) and cannot be processed by the Lock Checker. Ju-
lia’s whole-program, closed-world analysis determined that every
implementing class has a field named lock. If the TransactionBag

interface were modified to include a getLock() method, the Lock
Checker would be able to resolve the expression #1.getLock().

9



The other 4 differences were due to limitations of the Java 8
language syntax. Julia inferred a @GuardedBy annotation on the
receiver parameter of a method declaration of an anonymous in-
ner class, and @Holding annotations on the constructors of anony-
mous inner classes. These parts of the program are implicit —
they cannot be written in the Java source code. Therefore, there
was no way to communicate this information to the Lock Checker,
which reads and verifies annotations in source code. An exam-
ple is that Julia inferred that the constructor of the anonymous
class within method PaymentChannelClient.incrementPayment should
be annotated with @Holding("#1.lock") and its receiver with @Guard-

edBy("itself.lock").

5.4 Abstract interpretation vs. type-checking
The abstract interpretation approach allows a codebase to be an-

notated from scratch, producing valuable documentation and also
permitting the type-checking approach to verify the absence of bugs
relevant to the locking discipline described by these annotations,
whereas a pure type-checking approach can only verify annotations
already present in the code. In a codebase completely free of annota-
tions, the type-checking approach will issue no warnings, regardless
of any bugs that might be present.

Type-checking is more naturally adequate to a compositional
analysis. This entails, for instance, that if an annotated program
type-checks, then the locking strategy holds for the program and
will still hold for future extensions of the program. Hence this will
stay true also if a class is extended and methods overridden, as long
as the overriding methods conservatively match the annotations of
the overridden ones.

A specific observation is the need to extend the syntax of the
type system to handle expressions that are not legal Java, such as
#1.lock as described in section 5.3.2. We also observed the need to
extend the Java language itself to make explicit locations that were
previously implicit. Java 8 already made an important step toward
this by permitting a programmer to optionally write the receiver
formal parameter explicitly — a change that was motivated by the
desire to write type annotations on the receiver [26]. That capability
was essential in our case studies, where many annotations on type
qualifiers were inferred.

It is interesting that these new syntax limitations became clear
only with the integration with an inference tool that inferred all
possible guards, even though the Lock Checker has been publicly
available in the Checker Framework distribution since June 2009
(over 70 monthly releases before the current writing). We speculate
that this is an issue of “out of sight, out of mind”: Java programmers
didn’t think about annotations on those locations and so they did not
specify them. The programmers also may have simply suppressed
type-checking errors related to those locations.

6. Related work
Despite the need for a formal specification for reasoning about

Java’s concurrency and for building verification tools [9, 28, 4], we
are not aware of any previous tool built upon a formalization of the
semantics of Java’s concurrency annotations.

Warlock [38] was an early tool that checked user-written spefici-
cations of a locking discipline, including annotations for variable
guards and locks held on entry to functions. ESC/Modula-3 [11]
and ESC/Java [17] provided similar syntax and checked them via
verification conditions and automated theorem-proving, an approach
also applied to other concurrency problems [16]. All these tools are
unsound and do checking rather than inference.

Our approach is a pure, flow-sensitive type system. A heavier-
weight alternative is a type-and-effect system, which can prevent

not just race conditions but also deadlocks [14, 1]. It can associate
guards not just with variables but also with specific side effects [29].

Most approaches, including ours, explicitly associate each vari-
able with a lock that guards access to it. An alternative is to use
ownership types and make each field fields are protected by its
owner, which is not necessarily the object that contains it [6, 10].
This approach is somewhat less flexible, but it can leverage existing
object encapsulation specifications and can be extended to prevent
deadlocks [5].

These concepts can also be expressed using fractional permis-
sions [41]. Grossman [25] extended type-checking for data races to
Cyclone, a lower-level language, but did not implement or experi-
mentally evaluate it.

Previous inference techniques include unsound dynamic inference
of lock types [2, 35] and Sound inference via translation to proposi-
tional satisfiability, for most of Java [15]. By contrast, our approach
is sound, more precise, and more scalable. Improving our aliasing
analysis [3] would improve the recall of our implementations.

Type systems have been applied to other concurrency problems,
such as atomicity [18]. Deadlocks are generally handled by impos-
ing a lock ordering: if all locks are acquired in the given order, then
no deadlock occurs. Recent type systems permit the lock ordering
not to be static throughout the program [20, 23].

7. Conclusion
A locking discipline makes concurrent programming manageable.

Used properly, it guarantees the lack of data races. Used improperly
(with vague definitions or no mechanical checking), it is error-prone
at best and misleading at worst.

Case studies of significant real-world code shows that program-
mers often make mistakes: they write locking-discipline specifica-
tions that their programs do not follow, and they fail to write ones
that their programs do follow. Programmers seem to often assume a
name-protection semantics for the locking-discipline specifications,
not realizing that it does not provide a guarantee against data races.
We have shown that the value-protection semantics is more restric-
tive and possibly harder to use; but the more accurate documentation
and the reduction in bugs should be worth it.

Two popular analysis approaches are abstract interpretation and
type-checking. We have implemented one of each type of tool. Each
tool is based on a firm semantic foundation that guarantees no data
races (modulo standard assumptions, such as regarding reflection).
Abstract interpretation is generally assumed to be more powerful and
precise, but we have quantified the differences, leading to insights
about the analysis approaches. In the future, others will be able
to make a more informed decision between the approaches. The
two tools have completely independent implementations, and the
fact that their results agree, up to differences in their underlying
analysis, lends confidence to our semantics and implementations.
The inference can also find bugs when a value is usually but not
always accessed when a lock is taken. Our tools are scalable, robust,
and publicly available, so programmers can take advantage of them
today.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for Java. ACM Transactions on
Programming Languages and Systems, 28(2):207–255, March
2006.

[2] R. Agarwal, A. Sasturkar, and S. D. Stoller. Type discovery for
Parameterized Race-Free Java. Technical Report DAR-04-16,
Computer Science Department, SUNY at Stony Brook,

10



September 2004.
[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking

and inferring local non-aliasing. In PLDI 2003, Proceedings of
the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 129–140, San
Diego, CA, USA, June 9–11, 2003.

[4] D. Bogdanas and G. Rosu. K-Java: A complete semantics of
Java. In ACM SIGPLAN-SIGACT POPL, pages 445–456,
Mumbai, India, 2015.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2002), pages 211–230, Seattle, WA,
USA, October 28–30, 2002.

[6] C. Boyapati and M. Rinard. A parameterized type system for
race-free Java programs. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 2001), pages
56–69, Tampa Bay, FL, USA, October 14–18, 2001.

[7] The Checker Framework Manual: Custom pluggable types for
Java, version 1.9.4 edition, August 2015.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’98), pages
48–64, Vancouver, BC, Canada, October 20–22, 1998.

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing
Checkable Properties of Dynamic Systems: the Bandera
Specification Language. STTT, 4(1):34–56, 2002.

[10] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universes
for race safety. In Verification and Analysis of Multi-threaded
Java-like Programs (VAMP), pages 20–51, Lisbon, Portugal,
September 3, 2007.

[11] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. SRC Research Report 159, Compaq
Systems Research Center, December 18, 1998.

[12] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In ECOOP 2007 — Object-Oriented Programming, 21st
European Conference, pages 28–53, Berlin, Germany,
August 1–3, 2007.

[13] M. Ernst, D. Macedonio, M. Merro, and F. Spoto. Semantics for
locking specifications. Technical Report UW-CSE-15-09-01,
University of Washington Department of Computer Science
and Engineering, Seattle, WA, USA, September 2015.

[14] C. Flanagan and S. N. Freund. Type-based race detection for
Java. In PLDI 2000, Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and
Implementation, pages 219–232, Vancouver, BC, Canada,
June 18–23, 2000.

[15] C. Flanagan and S. N. Freund. Type inference against races. In
Proceedings of the Eleventh International Symposium on Static
Analysis, SAS 2004, pages 116–132, Verona, Italy,
August 26–28, 2004.

[16] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular
verification for shared-memory programs. In 11th European
Symposium on Programming, pages 262–277, Grenoble,
France, April 2002.

[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In PLDI
2002, Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages
234–245, Berlin, Germany, June 17–19, 2002.

[18] C. Flanagan and S. Qadeer. A type and effect system for

atomicity. In Proceedings of the 30th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 338–349, New Orleans, LA, January 15–17,
2003.

[19] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, Reading, MA, 1995.

[20] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type and effect
system for deadlock avoidance in low-level languages. In TLDI
2011: The sixth ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pages 15–28, Austin,
TX, USA, January 25, 2011.

[21] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

[22] A. Göransson. Efficient Android Threading. O’Reilly Media,
June 2014.

[23] C. S. Gordon, M. D. Ernst, and D. Grossman. Static lock
capabilities for deadlock freedom. In TLDI 2012: The seventh
ACM SIGPLAN Workshop on Types in Language Design and
Implementation, pages 67–78, Philadelphia, PA, USA,
January 28, 2012.

[24] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
Java Language Specification. Addison Wesley, Boston, MA,
Java SE 8 edition, 2014.

[25] D. Grossman. Type-safe multithreading in Cyclone. In TLDI
2003: The ACM SIGPLAN Workshop on Types in Language
Design and Implementation, pages 13–25, New Orleans, LA,
USA, January 18, 2003.

[26] JSR 308 Expert Group. Annotations on Java types.
http://download.oracle.com/otndocs/jcp/
annotations-2014_01_08-pfd-spec/, January 8, 2014.
Proposed Final Draft.

[27] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[28] B. Long and B. W. Long. Formal Specification of Java
Concurrency to Assist Software Verification. In IPDPS, page
136, Nice, France, April 2003.

[29] Y. Lu, J. Potter, and J. Xue. Structural lock correlation with
ownership types. In 22nd European Symposium on
Programming, pages 391–410, Rome, Italy, March 19–22,
2013.

[30] NASA. Java PathFinder.
http://babelfish.arc.nasa.gov/trac/jpf.

[31] D. Nikolic and F. Spoto. Definite Expression Aliasing Analysis
for Java Bytecode. In 9th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2012), pages 74–89,
Bangalore, India, September 2012.

[32] J. Palsberg and M. I. Schwartzbach. Object-oriented type
inference. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 146–161,
Phoeniz, AZ, USA, October 1991.

[33] V. Pech. Concurrency is Hot, Try the JCIP Annotations.
http://jetbrains.dzone.com/tips/
concurrency-hot-try-jcip, February 2010.

[34] G. D. Plotkin. A structural approach to operational semantics.
Journal of Logic and Algebraic Progamming, 60-61:17–139,
July–December 2004.

[35] J. Rose, N. Swamy, and M. Hicks. Dynamic inference of
polymorphic lock types. In Workshop on Concurrency and
Synchronization in Java Programs (CSJP), pages 18–25, St.
John’s, Newfoundland, Canada, July 25–26, 2004.

11



[36] G. Salton. Automatic Information Organization and Retrieval.
McGraw-Hill, 1968.

[37] F. Spoto and T. P. Jensen. Class Analyses as Abstract
Interpretations of Trace Semantics. ACM Trans. Program.
Lang. Syst., 25(5):578–630, 2003.

[38] N. Sterling. Warlock: A static data race analysis tool. In
Proceedings of the Winter 1993 USENIX Conference, pages
97–106*, San Diego, CA, USA, January 5–29, 1993.

[39] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 2000), pages
281–293, Minneapolis, MN, USA, October 15–19, 2000.

[40] A. Williams, W. Thies, and M. D. Ernst. Static deadlock
detection for Java libraries. In ECOOP 2005 —
Object-Oriented Programming, 19th European Conference,
pages 602–629, Glasgow, Scotland, July 27–29, 2005.

[41] Y. Zhao and J. Boyland. Assuring lock usage in multithreaded
programs with fractional permissions. In ASWEC’09: 20th
Australian Software Engineering Conference, pages 277–286,
Gold Coast, Australia, April 15–17, 2009.

12


