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Abstract. Lock-based synchronization disciplines, like Java’s @GuardedBy,
are widely used to prevent concurrency errors. However, their semantics
is often expressed informally and is consequently ambiguous. This article
highlights such ambiguities and overcomes them by formalizing two pos-
sible semantics of @GuardedBy, using a reference operational semantics for
a core calculus of a concurrent Java-like language. It also identifies when
such annotations are actual guarantees against data races. Our work aids
in understanding the annotations and supports the development of sound
tools that verify or infer them.

1 Introduction

Data races are common errors in concurrent programs which occur when a shared
data structure is manipulated by different threads, without synchronization, with
consequent unpredictable or erroneous software behavior. Such errors are difficult
to understand, diagnose, and reproduce. They are also difficult to prevent: testing
tends to be incomplete due to nondeterministic scheduling choices made by the
runtime, and model-checking scales poorly to real-world code.

The simplest approach to prevent data races is to follow a lock-based syn-
chronization discipline: always hold a given lock when accessing a shared data
structure. Since a lock can be held by at most one thread at any time, this
discipline ensures data-race freedom. However, it is easy to violate a locking
discipline, so tools that verify adherence to the discipline are desirable. These
tools require a specification language to express the intended locking discipline.
The focus of this paper is on the formal definition of such a specification language,
its semantics, and the guarantees that it gives against data races.

In Java, the most popular specification language for expressing a locking disci-
pline is the @GuardedBy [16]. Informally, if the programmer annotates a field f as
@GuardedBy(E) then a thread may access f only while holding the monitor corre-
sponding to the guard expression E. The @GuardedBy annotation was proposed by
Goetz [12] as a documentation convention only, without tool support. It has been
adopted by practitioners; GitHub contains about 35,000 uses of the annotation in
7,000 files of distinct projects. Tool support now exists in Java PathFinder [18],
the Checker Framework [10], Houdini/rcc [1], IntelliJ [22], and Julia [23].

All of these tools, except for [1], rely on the previous informal definition of
@GuardedBy(E) [16]. However, such an informal description is prone to many
ambiguities. Suppose a field f is annotated as @GuardedBy(E), for some guard
expression E. (1) The definition above does not clarify how an occurrence of the
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self-reference variable this in E should be interpreted in client code; this actually
depends on the context in which f is accessed. (2) It does not define what an
access is. (3) It does not say whether a synchronization block must use the guard
expression E as written in the annotation or whether a different expression that
evaluates to the same value is permitted. (4) It does not indicate whether the
lock that must be taken is the value of E at the time of synchronization or that
at the time of field access: side effects on E might make a difference here. (5) It
does not clarify whether the lock on the guard E must be taken when accessing
the field named f or the value bound to f . The latter ambiguity is particularly
important. The interpretation of @GuardedBy based on names is adopted in most
tools appearing in the literature [18, 22, 23, 1], whereas the interpretation based
on values seems to be less common [10, 23]. As a consequence, it is interesting to
understand whether and how these two possible interpretations actually protect
against data races on the annotated field.

The main contribution of this article is the formalization of two different
semantics for annotations of the form @GuardedBy(E) Type f: a name-protection
semantics, in which accesses to the annotated field f need to be synchronized
on the guard expression E, and a value-protection semantics, in which accesses
to a value referenced by f need to be synchronized on E. The semantics clarify
all the above ambiguities, so that programmers and tools know what those
annotations mean and which guarantees they entail. We then show that both
the name-protection and the value-protection semantics can protect against data
races under proper restrictions on the variables occurring in the guard expression.
The name-protection semantics requires further constraints — the protected field
must not be aliased and the guard expression E must be final (its value must
not change during program execution).

Finally, we have used our formalization to extend the Julia static analyzer [23]
to check and infer @GuardedBy annotations in arbitrary Java code. Our companion
paper [11] presents the implementation in Julia together with experiments that
show how the tool scales to large real software. Julia allows the user to select
either name-protection or value-protection. For instance, in the code of Google
Guava [13] (release 18), the programmer put 64 annotations on fields; 17 satisfy
the semantics of name protection; 9 satisfy the semantics of value protection; the
others do no satisfy any of the two. Julia automatically infers all annotations for
name-protection and 5 of those that satisfy the value-protection semantics.

In this extended abstract proofs are omitted; for details see the Appendix.

Outline. Sec. 2 discusses the informal semantics of @GuardedBy by way of examples.
Sec. 3 introduces a calculus for a concurrent fragment of Java. Sec. 4 gives formal
definitions for both the name-protection and value-protection semantics in our
calculus. Sec. 5 shows which guarantees they provide against data races. Sec. 6
describes the implementation in Julia. Sec. 7 discusses related work and concludes.

2 Informal Semantics of @GuardedBy

This section illustrates the use of @GuardedBy by example. Fig. 1 defines an
observable object that allows clients to concurrently register listeners. Registration
must be synchronized to avoid data races: simultaneous modifications of the
ArrayList might result in a corrupted list or lost registrations. Synchronization
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Fig. 1 This code has a potential data race due to aliasing of the listeners field.

1 public class Observable {
2 private @GuardedBy(this) List<Listener> listeners = new ArrayList<>();
3 public Observable() {}
4 public Observable(Observable original) { // copy constructor
5 synchronized (original) {
6 listeners.addAll(original.listeners);
7 }
8 }
9 public void register(Listener listener) {

10 synchronized (this) {
11 listeners.add(listener);
12 }
13 }
14 public List<Listener> getListeners() {
15 synchronized (this) {
16 return listeners;
17 } } }

is needed in the getListeners() method as well, or otherwise the Java memory
model does not guarantee the inter-thread visibility of the registrations.

The interpretation of the @GuardedBy(this) annotation on field listeners re-
quires resolving the ambiguities explained in Sec. 1. The intended locking discipline
is that every use of listeners should be enclosed within a construct synchronized

(container) {...}, where container denotes the object whose field listeners is
accessed (ambiguities (1) and (2)). For instance, the access original.listeners

in the copy constructor is enclosed within synchronized (original) {...}. This
contextualization of the guard of synchronized blocks is not clarified in any
informal definitions of @GuardedBy (ambiguity (3)). Furthermore, it is not clear
if a definite alias of original can be used as synchronization guard at line 5. It
is not clear if original would be allowed to be reassigned between lines 5 and
6 (ambiguity (4)). Note that the copy constructor does not synchronize on this

even though it accesses this.listeners. This is safe so long as the constructor
does not leak this. This paper assumes that an escape analysis [6] has established
that constructors do not leak this. The @GuardedBy(this) annotation on field
listeners suffers also from ambiguity (5): it is not obvious whether it intends
to protect the name listeners (i.e., the name can be only used when the lock
is held) or the value currently bound to listeners (i.e., that value can be only
accessed when the lock is held). Another way of stating this is that @GuardedBy

can be interpreted as a declaration annotation (a restriction on uses of a name)
or as a type annotation (a restriction on values associated to that name).

The code in Fig. 1 seems to satisfy the name-protection locking discipline
expressed by the annotation @GuardedBy(this) for field listeners: every use of
listeners occurs in a program point where the current thread locks its container,
and we conclude that @GuardedBy(this) name-protects listeners. Nevertheless,
a data race is possible, since two threads could call getListeners() and later
access the returned value concurrently. This cannot be avoided when critical
sections leak guarded data. More generally, name protection does not prevent
data races if there are aliases of the guarded name (such as a returned value in
our example) that can be used in an unprotected manner. The value-protection
semantics of @GuardedBy is not affected by aliasing as it tracks accesses to the
value referenced by the name, not the name itself.
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Fig. 2 Value protection prevents data races; see itself in the guard expression.

1 public class Observable {
2 private @GuardedBy(itself) List<Listener> listeners = new ArrayList<>();
3 public Observable() {}
4 public Observable(Observable original) { // copy constructor
5 synchronized (original.listeners) {
6 listeners.addAll(original.listeners);
7 }
8 }
9 public void register(Listener listener) {

10 synchronized (listeners) {
11 listeners.add(listener);
12 }
13 }
14 public List<Listener> getListeners() {
15 synchronized (listeners) {
16 return listeners;
17 } } }

Any formal definition of @GuardedBy must result in mutual exclusion in order
to ban data races. If f is @GuardedBy(E), then at any program point where a
thread accesses f (or its value) that thread must hold the lock on E. Let P be
the set of such program points where f is accessed. Mutual exclusion requires two
conditions: (i) E can be evaluated at all program points P ∈ P, and (ii) these
evaluations, at a given instant of time, always yield the same value at all P ∈ P.

Point (i) is syntactic and related to the fact that E cannot refer to variables
or fields that are not always in scope or visible at all program points in P.
This problem exists for both name protection and value protection, but is more
significant for the latter, that is meant to protect values that flow in the program
through arbitrary aliasing. For instance, the annotation @GuardedBy(listeners)

cannot be used for value protection in Fig. 1, since the name listeners is not
visible outside class Observable, but its value flows outside that class through
method getListeners() and must be protected also if it accessed there. For this,
we support a special variable itself that refers to the current value of f . For
instance, for value protection, the code in Fig. 1 should be rewritten as in Fig. 2.

Point (ii) is semantical and related to the intent of providing a guarantee
of mutual exclusion. This point bans the use of a variable in E that, although
in scope and visible at every program point in P, might have different values
at distinct program points. We need this requirement for both semantics, but
it translates into two distinct constraints on the guard E for each semantics.
As we will see in Sec. 5, a simple restriction that allows us to satisfy (ii) is to
allow only variables itself, pointing to the value of the guarded field itself, and
variable this, pointing to the container of the guarded field, when that container
can be identified unambiguously. These two variables have the same value at
every program points and this is why we only allow them in E. Moreover, in the
semantics for name protection we will require that E only refers to final fields,
since the instant of time when the field name is locked and that when the field
value gets dereferenced might be arbitrarily away. This latter restriction is not
needed for the semantics for value protection, since it requires that a thread
holds the lock on the value of a field exactly when that value is accessed.

Thus, in Fig. 2 value protection bans data races on listeners since the guard
itself can be evaluated everywhere (point (i)) and always yields the value of
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Fig. 3 Mutable guard expressions may lead to data races.

1 public class Observable {
2 private @GuardedBy(guard) List<Listener> listeners = new ArrayList<>();
3 private Object guard1 = new Object();
4 private Object guard2 = new Object();
5 public Observable() {}
6 public Observable(Observable original) { // copy constructor
7 Object guard = guard1;
8 synchronized (guard) {
9 listeners.addAll(original.listeners);

10 }
11 }
12 public void register(Listener listener) {
13 Object guard = guard2;
14 synchronized (guard) {
15 listeners.add(listener);
16 } } }

listeners itself (point (ii)). Here, the @GuardedBy(itself) annotation requires
all accesses to the value of listeners to occur only when the current thread locks
the same monitor — even outside class Observable, in a client that operates
on the value returned by getListeners(). In Fig. 3, instead, field listeners is
@GuardedBy(guard) according to both name protection and value protection, but
the value of guard is distinct at different program points: no mutual exclusion
guarantee exists and data races on listeners occur.

3 A Core Calculus for Multithreaded Java

Our calculus is a variant of RACEFREEJAVA [1]. We begin with some preliminary
notions. A partial function f from A to B is denoted by f : A ⇀ B, and its domain
is dom(f). The symbol φ denotes the empty function; {v1 7→ t1, . . . , vn 7→ tn}
denotes a function f such that f(vi) = ti for i ∈ 1..n; f [v1 7→ t1, . . . , vn 7→ tn]
denotes the update of f , where dom(f) is enlarged for every i such that vi /∈
dom(f). A poset is a structure 〈A,≤〉 where A is a set and ≤ is a partial order.
For a ∈ A, we define ↑ a def

= {a′ : a ≤ a′}. A chain is a totally ordered poset.

3.1 Syntax

Letters f, g, x, y, . . . range over a set of variables Var that includes this. Variables
identify either local variables in methods or instance variables (fields) of objects.
Symbols m, p, . . . range over a set MethodName of method names. There is a set
Loc of memory locations, ranged over by l. Symbols κ, κ0, κ1, . . . range over a
set of classes (or types) Class, ordered by a subclass relation ≤; 〈Class, ≤〉 is a
poset such that for all κ ∈ Class the set ↑κ is a finite chain. If m ∈ MethodName,
then κ.m denotes the implementation of m inside class κ, if any. The partial
function lookup( ) : Class ×MethodName ⇀ Class formalizes Java’s dynamic
method lookup, i.e. the runtime process of determining the class containing the
implementation of a method on the basis of the class of the receiver object:
lookup(κ,m) def

= min(↑ κ.m) if ↑ κ.m 6= ∅ and is undefined otherwise, where
↑κ.m def

= {κ′ ∈↑κ | m is implemented in κ′} is a finite chain since ↑κ.m ⊆↑κ.
Let us provide the syntax of our core language.
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Fig. 4 Running example.
1 public class K {
2 private C x = new C();
3 private C y = new C();
4 private C z = new C();
5 private Object h = new Object();
6 public void m() {
7 this.z = this.x;
8 synchronized (this.z) {
9 this.h = this.z.f;

10 this.z = this.y;
11 }
12 this.z.f = new Object();
13 }
14 }
15 class C {
16 Object f = new Object();
17 }

name protection value protection

field x – @GuardedBy(itself)

field y @GuardedBy(this.x) –
field z – –

E ::= x
∣∣ l

∣∣ E.f
∣∣ κ〈f1 = E1, . . . , fn = En〉

C ::= let x = E in C
∣∣ E.f := E

∣∣ C;C
∣∣ skip

∣∣ E.m( )
∣∣

spawn E.m( )
∣∣ sync(E){C}

∣∣ monitor enter(l)
∣∣ monitor exit(l)

Expressions Exp, ranged over by E, are given by variables, locations, field
accesses, and object allocation, κ〈f1 = E1, . . . , fn = En〉, to create an object of
class κ and initialize each field fi to the value of Ei. For simplicity, we only have
classes and no primitive types, so the only possible values are locations.

Commands Com are ranged over by C. Method bodies, ranged over by B, are
skip-terminated commands. Formally, B ::= skip | C; skip. The set of classes
is Class def

= {κ : MethodNames ⇀ B | dom(κ) is finite}. The binding of fields
to their defining class is not relevant in our formalization. Given a class κ and
a method name m, if κ(m) = B then κ implements m with body B. With
“this” we denote the standard self-reference variable. In our syntax, self-reference
binding is implicit; methods have no formal parameters and/or return value.

Terms containing locations (such as l.f or monitor enter(l)) cannot be used
by the programmer: they are introduced by the semantics.

We write U{E1/x1
, . . . ,En/xn

} to denote the capture-free substitution of ex-
pressions Ei, for all free occurrences of xi, within U ∈ Com ∪Exp, for all i ∈ 1..n.

A program is a finite set of classes including a special class Main that only
defines a method main where the program starts: Main def

= {main 7→ Bmain}.
Example 1. Fig. 4 gives our running example in Java. In our core language, the
body of method m is translated as follows: Bm = this.z := this.x; sync(z)

{this.h := this.z.f; this.z := this.y}; this.z.f := Object〈〉; skip, with
classes K def

= {m 7→ Bm}, C def
= φ, and Object def

= φ.

3.2 Semantic Domains

Threads, ranged over by T , are constituted by a sequence of commands C and a
set L ⊆ Loc of locations that it currently locks, formally T ::= dCeL. We use
letters P and Q to denote a pool of threads. Formally, P,Q ::= T ∗.

A running program consists of a pool of threads that share a memory. Initially,
a single thread runs the main method. The spawn E.m( ) command adds a new
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thread to the existing ones. A memory µ maps a finite set of already allocated
memory locations into objects.

An object o is a triple containing the object’s class, the object’s state binding
its fields to their corresponding values, and a lock, i.e., an integer counter
incremented whenever a thread locks the object (locks are re-entrant).

Definition 1. Objects and memories are defined as Object def
= Class × State ×N

and Memory def
= {µ : Loc ⇀ Object | dom(µ) is finite}, with selectors class(o) def

=
κ, state(o) def

= σ and lock#(o) def
= n, for every o = 〈κ, σ, n〉 ∈ Object. We also

define o[f 7→ l] def
= 〈κ, σ[f 7→ l], n〉 and lock+(o) def

= 〈κ, σ, n+1〉 and lock−(o) def
=

〈κ, σ,max(0, n−1)〉.

The evaluation of an expression E in a memory µ, written JEKµ, yields a pair
〈l, µ′〉, where l is the runtime value of E, and µ′ is the memory resulting from the
evaluation of E. Given a pair 〈l, µ〉 we define loc (〈l, µ〉) = l and mem (〈l, µ〉) = µ.

Definition 2 (Evaluation of Expressions). The evaluation function has the
type J K : (Exp ×Memory) ⇀ (Loc ×Memory) and is defined as:

JlKµ def
= 〈l, µ〉 JE.fKµ def

= 〈state(µ′(l))(f), µ′〉, where JEKµ=〈l, µ′〉

Jκ〈f1=E1, .., fn=En〉Kµ
def
= 〈l, µn[l 7→ 〈κ, σ, 0〉]〉, where

(1)µ0 = µ and 〈li, µi〉 = JEiKµi−1 , for i ∈ [1..n]

(2) l is fresh in µn, that is µn(l) ↑
(3)σ ∈ State is such that σ(fi) = li for i ∈ [1..n], while σ(y)↑ elsewhere.

We assume that J K is undefined if any of the function applications is undefined.

In the evaluation of the object creation expression, a fresh location l is allocated
and bound to an unlocked object whose environment σ binds its fields to the
values of the corresponding initialization expressions.

3.3 Structural Operational Semantics

We define a reduction semantics on configurations of the form 〈P, µ〉. We write
〈P, µ〉 −→ 〈P ′, µ′〉 for representing an execution step. We write −→∗ to denote
the reflexive/transitive closure of −→, and −→i for i consecutive reduction steps.

Table 1 deals with sequential commands. Rule [seq] assumes that the first
command is not of the form spawn E.p( ); this case is treated separately. In rule
[invoc] the receiver E is evaluated and the method implementation is looked up
from the dynamic class of the receiver. The body of the method is then executed
after binding this to the receiver.

Table 2 focuses on concurrency and synchronization. The spawn of a new
method is similar to a method call, but the method body runs in its own new
thread with an initially empty set of locked locations. Note that if a sequence
of commands starts with a spawn then rule [spawn] is the only rule which can
be used. In rule [sync] the location l associated to the guard E is computed; the
computation can proceed only if a lock action is possible on l. The lock will be
released only at the end of the critical section C. Rule [acquire-lock] models the
entering of the monitor of an unlocked object. Rule [reentrant-lock] models Java’s
lock reentrancy. Rule [decrease-lock] decreases the lock counter of an object that
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Table 1 Structural operational semantics for sequential commands.

JEKµ = 〈l, µ′〉
〈dlet x = E in CeL, µ〉 −→ 〈dC{l/x}eL, µ′〉

[let]

JEKµ = 〈l, µ′〉 JE′Kµ
′

= 〈l′, µ′′〉 o = µ(l) o′ def
= o[f 7→ l′] µ′′′ def

= µ′′[l 7→ o′]

〈dE.f := E′eL, µ〉 −→ 〈dskipeL, µ′′′〉
[field-ass]

〈dC1eL, µ〉 −→ 〈dC′1eL′, µ′〉 C1 6= spawn E.p()

〈dC1;C2eL, µ〉 −→ 〈dC′1;C2eL′, µ′〉
[seq]

−
〈dskip;CeL, µ〉 −→ 〈dCeL, µ〉

[seq-skip]

JEKµ = 〈l, µ′〉 κ′ = lookup(class(µ′(l)),m) κ′(m) = B

〈dE.m( )eL, µ〉 −→ 〈dB{l/this}eL, µ′〉
[invoc]

still remains locked, as it was locked more than once. When the lock counter
reaches 0, rule [release-lock] can release the lock of the object. Rule [thread-pool]
lifts the execution to a pool of threads.

Definition 3 (Operational Semantics of a Program). The initial configu-
ration of a program is 〈P0, µ0〉 where P0

def
= dBmain{linit/this}e∅, µ0

def
= {linit 7→

〈Main, φ, 0〉} and Main = {main 7→ Bmain} The operational semantics of a
program is the set of traces of the form 〈P0, µ0〉 −→∗ 〈P, µ〉.
Example 2. The implementation in Ex. 1, becomes a program by defining Bmain

as: K〈 x = C〈f = Object〈〉〉, y = C〈f = Object〈〉〉, z = C〈f = Object〈〉〉, h = Object〈〉〉.m(); skip.
The operational semantics builds the following maximal trace from 〈P0, µ0〉 that,
for convenience, we divide in eight macro-steps:

1. −→∗ 〈dl.z := l.x; sync(z){l.h := l.z.f; l.z := l.y}; l.z.f := Object〈〉; skip; skipe∅, µ1〉
with µ1

def
= µ0[l 7→ o, l1 7→ o1, l2 7→ o2, l3 7→ o3, l4 7→ o4, l

′
1 7→ o4, l

′
2 7→ o4, l

′
3 7→ o4];

o def
= 〈K, {x 7→ l1, y 7→ l2, z 7→ l3, h 7→ l4}, 0〉; oi def

= 〈C, {f 7→ l′i}, 0〉, for i ∈ 1..3;

o4
def
= 〈Object, φ, 0〉

2. −→∗ 〈dsync(z){l.h := l.z.f; l.z := l.y}; l.z.f := Object〈〉; skip; skipe∅, µ2〉
with µ2

def
= µ1[l 7→ o[z 7→ l1]]

3. −→∗ 〈dl.h := l.z.f; l.z := l.y; monitor exit(l1); l.z.f := Object〈〉; skip; skipe{l1}, µ3〉
with µ3

def
= µ2[l1 7→ lock+(o1)]

4. −→∗ 〈dl.z := l.y; monitor exit(l1); l.z.f := Object〈〉; skip; skipe{l1}, µ4〉
with µ4

def
= µ3[l 7→ o[z 7→ l1][h 7→ l′1]]

5. −→∗ 〈dmonitor exit(l1); l.z.f := Object〈〉; skip; skipe{l1}, µ5〉
with µ5

def
= µ4[l 7→ o[z 7→ l2, h 7→ l′1]]

6. −→∗ 〈dl.z.f := Object〈〉; skip; skipe∅, µ6〉, with µ6
def
= µ5[l1 7→ o1]

7. −→∗ 〈dskipe∅, µ7〉, with µ7
def
= µ6[l2 7→ o2[f 7→ l′′2 ], l′′2 7→ o4].

Our semantics lets us formalize some properties on the soundness of the locking
mechanism, that we report in Appendix B. Here we just give a key property used
in our proofs, that states that two threads never lock the same location (i.e.,
object) at the same time. It is proved by induction on the length of the trace.

Proposition 1 (Locking correctness). Let 〈P0, µ0〉 −→∗ 〈dC1eL1...dCneLn , µ〉
be an arbitrary trace. For any i, j ∈ {1 . . . n}, i 6= j entails Li ∩ Lj = ∅.
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Table 2 Structural operational semantics for concurrency and synchronization.

JEKµ = 〈l, µ′〉 κ′ = lookup(class(µ′(l)), p) κ′(p) = B

〈dspawn E.p( );CeL, µ〉 −→ 〈dB{l/this}e∅.dCeL, µ′〉
[spawn]

JEKµ = 〈l, µ′〉
〈dsync(E){C}eL, µ〉 −→ 〈dmonitor enter(l);C; monitor exit(l)eL, µ′〉

[sync]

lock#(µ(l)) = 0 L′ def
= L ∪ {l} µ′ def

= µ[l 7→ lock+(µ(l))]

〈dmonitor enter(l)eL, µ〉 −→ 〈dskipeL′, µ′〉
[acquire-lock]

l ∈ L µ′ def
= µ[l 7→ lock+(µ(l))]

〈dmonitor enter(l)eL, µ〉 −→ 〈dskipeL, µ′〉
[reentrant-lock]

lock#(µ(l)) > 1 µ′ def
= µ[l 7→ lock−(µ(l))]

〈dmonitor exit(l)eL, µ〉 −→ 〈dskipeL, µ′〉
[decrease-lock]

lock#(µ(l)) = 1 L′ def
= L \ {l} µ′ def

= µ[l 7→ lock−(µ(l))]

〈dmonitor exit(l)eL, µ〉 −→ 〈dskipeL′, µ′〉
[release-lock]

〈T, µ〉 −→ 〈P, µ′〉
〈P1.T.P2, µ〉 −→ 〈P1.P.P2, µ

′〉
[thread-pool]

4 Two Semantics for @GuardedBy Annotations

This section gives two distinct formalizations for locking specifications of the form
@GuardedBy(E) Type f, where E is a guard expression allowed by the language,
possibly using a special variable itself that stands for the protected field f.

In a name-protection interpretation, a thread must hold the lock on the value
of the guard expression E whenever it accesses (reads or writes) the name of the
guarded field f. Def. 4 formalizes the notion of accessing an expression when a
given command is executed. For our purposes, it is enough to consider a single
execution step; thus the accesses in C1;C2 are only those in C1. When an object
is created, only its creating thread can access it. Thus field initialization cannot
originate data races and is not considered as an access. The access refers to
the value of the expression, not to its lock counter, hence sync(E){C} does not
access E. For accesses to a field f , Def. 4 keeps the exact expression used for the
container of f , that will be used in Def. 5 for the contextualization of this.

Definition 4 (Expressions Accessed). The set of expressions accessed in a
single execution step is defined as follows:

acc(l) def
= ∅ acc(κ〈f1=E1, . . . , fn=En〉) def

=
⋃n
i=1 acc(Ei)

acc(let x = E in C) def
= acc(E) acc(E.f) def

= acc(E) ∪ {E.f}
acc(C1;C2) def

= acc(C1) acc(E.f := F ) def
= acc(E.f) ∪ acc(F )

acc(E.m( )) def
= acc(E) acc(spawn E.m( )) def

= acc(E)
acc(monitor enter(l)) def

= ∅ acc(monitor exit(l)) def
= ∅

acc(sync(E.f){C}) def
= acc(E) acc(sync(x){C}) def

= ∅
acc(skip) def

= ∅ acc(sync(l){C}) def
= ∅

acc(sync(κ〈f1 = E1, . . . , fn = En〉){C}) def
= acc(κ〈f1=E1, . . . , fn=En〉).

We say that C accesses a field f if and only if E.f ∈ acc(C), for some E.
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Def. 5 formalizes when a field f is name-protected by @GuardedBy(E) in a program.
In Sec. 2 we have discussed the reasons for using the special variable itself in
the guard expressions when working with a value-protection semantics. In the
name-protection semantics, itself denotes just an alias of the accessed name:
@GuardedBy(itself) Type f is the same as @GuardedBy(f) Type f.

Definition 5 (Name-protection @GuardedBy). A field f in a program is name
protected by @GuardedBy(E) if and only if for any trace of that program

〈P0, µ0〉 −→∗ 〈P1.T.P2, µ〉 −→ 〈P1.T̂ .P2, µ̂〉

where T = dCeL, whenever C accesses f , i.e. E′.f ∈ acc(C), for some E′, with
JE′Kµ = 〈l′, µ′〉 and l′′ = state(µ′(l′))f , we have loc(JE{l′,l′′/this,itself}Kµ

′
) ∈ L.

Def. 5 evaluates the guard expression E at those program points where f is
accessed, in order to verify that its lock is held by the current thread. Thus, E
is evaluated in a memory µ′ obtained by the evaluation of the container of f ,
that is E′. Actually, we evaluate E only after having replaced the occurrences of
the variable this with l′, i.e. the evaluation of E′, and the occurrences of itself
with l′′, i.e. the evaluation of f .

Example 3. In Ex. 2, field y is name protected by @GuardedBy(this.x). It is
accessed during the 5th macro-step, when Jthis.x{l/this}Kµ4=Jl.xKµ4=〈l1, µ4〉,
and l1 is locked. Fields x and z are name protected by @GuardedBy(E), for no E,
as they are accessed at macro-step 2, when no location is locked.

An alternative semantics for @GuardedBy protects the values held in a fields
rather than the field name. In this value-protection semantics, a field f is
@GuardedBy(E) if wherever a thread dereferences a location l eventually bound
to f , it holds the lock on the object obtained by evaluating E at that point. In
object-oriented parlance, dereferencing a location l means accessing the object
stored at l in order to read or write a field. In Java, accesses to the lock counter
are synchronized at a low level and the class tag is immutable, hence their accesses
cannot give rise to data races and are not relevant here. Dereferences (Def. 6)
are very different from accesses (Def. 4). For instance, statement v.f := w.g.h

accesses expressions v, v.f, w, w.g and w.g.h but dereferences only the locations
held in v, w and w.g: locations bound to v.f and w.g.h are left untouched. Def. 6
formalizes the set of locations dereferenced by an expression or command to
access some field and keeps track of the fact that the access is for reading (⇒) or
writing (⇐) the field. Hence dereference tokens are l.f⇐ or l.f⇒, where l is a
location and f is the name of the field that is accessed in the object held in l.

Definition 6 (Dereferenced Locations). Given a memory µ, the derefer-
ences in a single reduction are defined as follows:

deref(l)µ def
= ∅ deref(E.f)µ def

= {loc (JEKµ) .f⇒}∪deref(E)µ

deref(κ〈f1 = E1, . . . , fn = En〉)µ def
=
⋃n
i=1 deref(Ei)

µ

deref(let x = E in C)µ def
= deref(E)µ deref(skip)µ def

= ∅
deref(sync(E){C})µ def

= deref(E)µ deref(C1;C2)µ def
= deref(C1)µ

deref(monitor enter(l))µ def
= ∅ deref(monitor exit(l))µ def

= ∅
deref(E.f := E′)µ def

= {loc (JEKµ) .f⇐}∪deref(E′)µ

deref(E.m( ))µ def
= deref(E)µ deref(spawn E.m( ))µ def

= deref(E)µ

We define derefloc(C)µ def
= {l | ∃f s.t. l.f⇐ ∈ deref(C)µ ∨ l.f⇒ ∈ deref(C)µ}.
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Def. 7 formalizes when a field f is value-protected by @GuardedBy(E) in a program.
Intuitively, for any execution trace t we collect the set F of locations that have
ever been bound to a guarded field f in t. Then, we require that whenever a
thread dereferences one of those locations, that thread must hold the lock on the
object obtained by evaluating the guard E.

Definition 7 (Value-protection @GuardedBy). A field f in a program is value-
protected by @GuardedBy(E) if and only if for any trace of that program

〈P0, µ0〉 −→i 〈Pi, µi〉 = 〈P.T.Q, µi〉 −→ 〈P.T ′.Q, µi+1〉 −→ . . .

letting T=dCeL; letting F =
⋃
j>0{state(µj(l))f | l∈dom(µj) ∧ state(µj(l))f ↓}

be the set of locations eventually associated to field f ; letting ∆f = derefloc(C)µi∩
F be those locations in F dereferenced at the i+1-th step of the trace above. Then,
for every l ∈ ∆f it follows that loc

(
JE{l/itself}Kµi

)
∈ L.

Note that F contains all locations eventually bound to f , at any time, in the
past or the future, not just those bound in the last configuration 〈Pi, µi〉. This
is because value-protection @GuardedBy(E) is a kind of type annotation that
predicates on the values held in the annotated field, and the properties of such
values must remain unchanged as they flow through the program.

Note alse that the only variable allowed in the guard expression E is itself.
This is because there is no value that we can bind to the container this of the
guarded value (in Definition 5, instead, we had the value of E′). It is actually
possible that the value of the guarded field f might be held in more fields of
distinct containers, hence the unique identification of the value of the container
this becomes impossible here.

Example 4. In Ex. 2 field x is value protected by @GuardedBy(itself). This
because ∆x = {l1} and l1 is dereferenced only at macro-step 4, when the
corresponding object o1 is accessed to obtain the value of its field f . At that
program point, l1 is locked by the current thread. Fields y and z are value
protected by @GuardedBy(E), for no E, since ∆y = {l2}, ∆z = {l1, l2}, and l2 is
dereferenced at macro-step 7, when the thread holds no locks.

The two semantics for @GuardedBy are incomparable: neither entails the other. In
Ex. 2 field x is value protected by @GuardedBy(itself), but is not name protected.
Field y is name protected by @GuardedBy(this.x), but is not value protected.

5 Protection against Data Races

In this section we provide sufficient conditions that ban data races when @GuardedBy

annotations are satisfied, in either of the two versions. Intuitively, a data race
occurs when two threads dereference the same location l, at the same time, to
access a field of the object stored at l, and at least one modifies the field.

Definition 8 (Data race). Let 〈P0, µ0〉 −→∗ 〈P, µ〉 = 〈P1.T1.P2.T2.P3, µ〉,
with Ti = dCieLi, for i ∈ 1..2. A data race occurs at a location l during the access
to some field f in 〈P, µ〉, only if

– 〈P, µ〉 −→ 〈P1.T
′
1.P2.T2.P3, µ

′〉, for some T ′1 6= T1
– 〈P, µ〉 −→ 〈P1.T1.P2.T

′
2.P3, µ

′′〉, for some T ′2 6= T2

where l.f⇐ ∈ deref(C1)µ and (l.f⇐ ∈ deref(C2)µ or l.f⇒ ∈ deref(C2)µ).
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In Sec. 2 we said that accesses to fields (or their value) that are @GuardedBy(E)

occur in mutual exclusion if the guard E is such that it can be evaluated at
distinct program points and its evaluation always yields the same value. This
implies that E cannot contain local variables as they cannot be evaluated at
distinct program points. Thus, we restrict the variables that can be used in E.
In particular, itself can always be used since it refers to the location being
dereferenced. For the name-protection semantics, this can also be used, since
it refers to the container of the guarded field, as long as it can be uniquely
determined; for instance, if there is no aliasing. Indeed, Sec. 2 shows that name
protection without aliasing restrictions does not ban data races, since it protects
the name but not its value, that can be freely aliased and accessed through other
names, without synchronization. In a real programming language, aliasing arises
from assignments, returned values, and parameter passing. Our simple language
has no returned values and only the implicit parameter this.

Definition 9 (Non-aliased fields). A field f is non-aliased in a program if
and only if for any trace 〈P0, µ0〉 −→∗ 〈P, µ〉 of that program, there are no l′, l′′,
and g such that state(µ(l′))f = state(µ(l′′))g, and l′ = l′′ entails f 6= g.

Field aliasing can be inferred through a may-alias analysis (that is, a must-non-
alias analysis) [3] or prevented by syntactic restrictions, as currently done by
Julia. Although the precision of this aliasing analysis might in principle affect
the precision of the results, it must be said that programmers who use name
protection do not alias the protected fields. When they do it, the field is not
actually data race free, hence simple syntactic restrictions are enough in practice.

However, as discussed in Sec. 2, to ensure the soundness of the name-protection
semantics we need a further assumption: the value of the guard expression must
not change during program execution.

Definition 10 (Final expressions). An expression E where the only allowed
variables are this and itself is said to be final in a program if for every trace
〈P0, µ0〉 −→i 〈Pi, µi〉 of that program, for all 0≤p≤q≤i and for all l, l′ ∈ dom(µp),

JE{l,l′/this,itself}Kµp = 〈l1, µ1〉 and JE{l,l′/this,itself}Kµq = 〈l2, µ2〉 entails l1=l2.

We can now prove that, for non-aliased fields and final guard expressions, the
name-protection semantics of @GuardedBy protects against data races.

Theorem 1 (Name-protection semantics vs. data race protection). Let
E be a final expression in a program, and f be a non-aliased field that is name
protected by @GuardedBy(E). Let E contain no variable distinct from itself and
this. Then, no data race can occur at those locations bound to f , at any execution
trace of that program.

As argued in Sec. 2, the assumptions on non-aliased fields and final guard
expressions are not necessary in the value-protection semantics as this locking
discipline protects directly the value of the guarded field f .

Theorem 2 (Value-protection semantics vs. data race protection). Let
E be an expression in a program, and f be a field that is value-protected by
@GuardedBy(E). Let E have no variable distinct from itself. Then no data race
can occur at those locations bound to f , during any execution of the program.

Both results are proved by contradiction, by supposing that a data race occurs
and showing that two threads would lock the same location, against Prop. 1
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6 Implementation in Julia

The Julia analyzer infers @GuardedBy annotations. The implementation has been
completed after the theory of this article being formalized. At the same time, the
theoretical results have been inspired by actual case studies analyzed by Julia, as
it is often the case when research must formalize a property that is already used
in real code. The user selects name-protection or value-protection semantics.

As said in Sec. 2, and formalized in Sec. 4, a field f is @GuardedBy(E) if, at all
program points P where f is accessed (for name protection) or one of its locations
is dereferenced (for value protection), the value of E is locked by the current
thread. The inference algorithm of Julia builds on two phases: (i) compute the
set P of program points where f is accessed; (ii) find expressions E locked at all
program points P ∈ P.

Point (i) is obvious for name protection, since accesses to f are syntactically
apparent in the program. For value protection, the set P is instead undecidable,
since there might be infinitely many objects potentially bound to f at runtime,
that flow through aliasing. Hence Julia overapproximates the set P by abstracting
objects into their creation point in the program: if two objects have distinct
creation points, they must be distinct. The number of creation points is finite,
hence the approximation is finitely computable. Julia implements creation points
analysis as a concretization of the class analysis in [21], where objects are
abstracted in their creation points instead of just their class tag.

Point (ii) uses the definite aliasing analysis of Julia, described in [19]. At each
synchronized(G) statement, that analysis provides a set L of expressions that are
definitely an alias of G at that statement (i.e., their values coincide there, always).
Julia concludes that the expressions in L are locked by the current thread after
the synchronized(G) and until the end of its scope. Potential side-effects might
however invalidate that conclusion, possibly due to concurrent threads. Hence,
Julia only allows in L fields that are never modified after being defined, which can
be inferred syntactically for a field. For name protection, viewpoint adaptation
of this is performed on such expressions (Def. 5). These sets L are propagated
in the program until they reach the points in P . The expressions E in point (ii)
are hence those that belong to L at all program points P.

Since @GuardedBy(E) annotations are expected to be used by client code, E
should be visible to the client. For instance, Julia discards expressions E that
refer to a private field or to a local variable that is not a parameter, since these
would not be visible nor useful to a client.

The supporting creation points and definite aliasing analyses are sound, hence
Julia soundly infers @GuardedBy(E) annotations that satisfy the formal definitions
in Sec. 4. Such inferred annotations protect against data races if the sufficient
conditions in Sec. 5 hold for them.

More detail and experiments with this implementation can be found in [11].
There, we have analyzed 15 large open-source programs, including parts of Eclipse
and Tomcat, for a total of 1, 290, 060 non-blank lines of code. Julia has often
inferred the annotations already present in code (if any), while the annotations
not inferred by Julia have often been proved to be programmers mistakes (either
fields that are not actually guarded as expected, or they are guarded in a way
that do not prevent data races).
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7 Conclusions, Future and Related Work

Coming back to the ambiguities sketched in Sec. 1, we have clarified that: (1)
this in the guard expression must be interpreted as the container of the guarded
field and consistently contextualized (Def. 5). (2) An access is a field use for
name protection (Def. 4 and 5). A value access is a dereference (field get/set or
method call) for value protection; copying a value is not an access in this case
(Def. 6 and 7). (3) The value of the guard expression must be locked when a name
or value is accessed, regardless of how it is accessed in the synchronized block
(Def. 5 and 7). (4) The lock must be held on the value of the guard expression
as evaluated at the access to the guarded field (name or value) (Def. 5 and 7).
(5) Either the name or the value of a field can be guarded, but this choice leads
to very different semantics. Namely, in the name-protection semantics, the lock
must be held whenever the field’s name is accessed (Def. 4 and 5). In the value-
protection semantics, the lock must be held whenever the field’s value is accessed
(Def. 6 and 7), regardless of what expression is used to access the value. Both
semantics yield a guarantee against data races, though name protection requires
an aliasing restriction on the field and final guard expressions (Th. 1 and 2).

This work could be extended by enlarging the set of guard expressions that
protect against data races. For instance, it could be extended with static fields.
We believe that the protection results in Sec. 5 still hold for them. Another aspect
to investigate is the scope of the protection against data races. In this article, a
single location is protected (Def. 8), not the whole tree of objects reachable from
it: our protection is shallow rather than deep. Deep protection is possibly more
interesting to the programmer, since it relates to a data structure as a whole,
but it requires to reason about boundaries and encapsulation of data structures.

The work of Abadi et al. [1] is the closest to ours. It proposes a type system for
detecting data races in Java programs by introducing @GuardedBy type annotations,
according to a name-preservation semantics. Theoretical results are stated on
a significant concurrent subset of Java, RACEFREEJAVA, which shares many
similarities with our calculus. The main result of the paper is that well-typed
programs do not have data races. This result relies on a few constraints: (i) like
us, in GuardedBy(E) annotations, E must be final, so this is the only admitted
variable in E; (ii) unlike us, in blocks sync(E){C}, E must be final; (iii) unlike
us, field updates are admissible (typable) only if they are guarded by some final
expression; (iv) unlike us, Java lock reentrancy is not admitted; (v) unlike us,
they overcome the limitation (i) by extending the type system to allow fields of
a class to be protected by locks external to the class. Note that non-aliasing is
not required in [1], although this seems to be a consequence of the (quite) strong
requirement (iii) that field updates can only occur on guarded fields.

We refer to [1] for a careful review of tools developed for detecting data races.
There are many other formalizations of concurrent fragments of Java, such

as [2, 8]. Our goal here is the semantics of annotations such as @GuardedBy. Hence
we kept the semantics of the language to the minimum core needed for the
formalization of those program annotations. Another well-known formalization
is Featherweight Java [15], a functional language that provides a formal kernel
of sequential Java. It does not include threads, nor assignment. Thus, it is not
adequate to formalize data races, which need concurrency and assignments. A
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similar argument applies to Middleweight Java [5] and Welterweight Java [20].
The need of a formal specification for reasoning about Java’s concurrency and
for building verification tools is recognized [9, 17, 7] but we are not aware of any
formalization of the semantics of Java’s concurrency annotations.

Our formalization will support tools based on model-checking such as Java
PathFinder [18] and Bandera [14, 4], on type-checking such as the Checker Frame-
work [10] and Houdini/rcc [1], or on abstract interpretation such as Julia [23].
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A Proofs of Sec 5

Theorem 3 (Name-protection semantics vs. data race protection). Let
E be a final expression in a program, and f be a non-aliased field that is name
protected by @GuardedBy(E). Let E contain no variable distinct from itself and
this. Then, no data race can occur at those locations bound to f , at any execution
trace of that program.

Proof. The proof is by contradiction. We recall that P and Q range over thread
pools and T ranges over threads. Let 〈P0, µ0〉 −→i 〈Pi, µi〉 be an arbitrary trace
of our program. By Def. 8, if a data race occurred in 〈Pi, µi〉, at some location l,
bound to f ,3 then there would be Q1, T1 = dC1eL1, Q2, T2 = dC2eL2 and Q3,
such that 〈Pi, µi〉 = 〈Q1.T1.Q2.T2.Q3, µi〉 and

– 〈Pi, µi〉 −→ 〈Q1.T
′
1.Q2.T2.Q3, µ1〉, for some T ′1 6= T1

– 〈Pi, µi〉 −→ 〈Q1.T1.Q2.T
′
2.Q3, µ2〉, for some T ′2 6= T2

with l.g⇐ ∈ deref(C1)µ and (l.g⇐ ∈ deref(C2)µ or l.g⇒ ∈ deref(C2)µ), for
some field g. That is g is a field accessed by both threads T1 and T2 to dereference
the location l, and at least one of these two accesses is an assignment.

As l ∈ dom(µ) and f is a non-aliased field (there is no other field pointing at l)
both T1 and T2 must have previously accessed f , to get access to l. For instance,
thread T1 accessed the expression E1.f at time p, and thread T2 accessed the
expression E2.f at time q, with p ≤ q ≤ i.

As f is name protected by @GuardedBy(E) (Def. 5) both threads T1 and T2
hold the lock on the value (i.e. the location) of E at time p and q, respectively.
Formally,

– at time p, JE1Kµp = 〈lp, µ′p〉 and the location loc
(
JE{lp,l/this,itself}Kµ

′
p

)
is

locked by T1 (we recall that itself refers to f , and f is non-aliased)

– at time q, JE2Kµq = 〈lq, µ′q〉 and the location loc
(
JE{lq,l/this,itself}Kµ

′
q

)
is

locked by T2 (we recall that itself refers to f , and f is non-aliased).

As f is a non-aliased field (Def 9) it cannot have two different containers,

thus lp = lq = l̂.
Without loss of generality, thread T1 never released the lock between step

p and i. In fact, if p < i then only possibility is that T1 at time p (when
the expression E1.f is accessed) the execution of a let construct of the form
let x = E1.f in (. . . y.g . . .) (where x and y are placeholders for the same value
l) started within a critical section where the value of E, call it l1E , is already
locked. And at time i, when the field g is accessed to dereference l, l1E is still
locked by T1, that is l1E ∈ L1 (the case p = i is straightforward). Thus,

l1E = loc
(
JE{l̂,l/this,itself}Kµ

′
p

)
3 Formally, there is lf ∈ µi such that state(µi(lf ))f = l.
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With a similar reasoning for T2 we derive there is l2E ∈ L2 such that

l2E = loc
(
JE{l̂,l/this,itself}Kµ

′
q

)
However, as E is final it follows that:

l1E = l2E = loc
(
JE{l̂,l/this,itself}Kµ

′
p

)
= loc

(
JE{l̂,l/this,itself}Kµ

′
q

)
.

By Prop. 1 this is not possible as two different threads cannot lock the same
location at the same time.

The requirement on the absence of aliasing is not necessary when working
with a value-protection semantics.

Theorem 4 (Value-protection semantics of @GuardedBy vs. data race pro-
tection). Let E be an expression in a program, and f be a field that is value-
protected by @GuardedBy(E). Let E contain no variable distinct from itself. Then
no data race can occur at those locations bound to f , during any execution trace
of the program.

Proof. Again, the proof is by contradiction and it is similar to the previous one.
Let 〈P0, µ0〉 −→i 〈Pi, µi〉 be an arbitrary trace of our program. By Def. 8, if
a data race occurred in 〈Pi, µi〉, at some location l, bound to f , then there
would be Q1, T1 = dC1eL1, Q2, T2 = dC2eL2 and Q3, such that 〈Pi, µi〉 =
〈Q1.T1.Q2.T2.Q3, µi〉 and

– 〈Pi, µi〉 −→ 〈Q1.T
′
1.Q2.T2.Q3, µ1〉, for some T ′1 6= T1

– 〈Pi, µi〉 −→ 〈Q1.T1.Q2.T
′
2.Q3, µ2〉, for some T ′2 6= T2

with l.g⇐ ∈ deref(C1)µ and (l.g⇐ ∈ deref(C2)µ or l.g⇒ ∈ deref(C2)µ), for
some field g. That is g is a field accessed by both threads T1 and T2 to dereference
the location l, and at least one of these two accesses is an assignment.

As f is value protected by @GuardedBy(E) (Def. 7) both threads T1 and T2
hold the lock on the value (i.e. the location) of E at time i. Formally,

– loc
(
JE{l/itself}Kµi

)
∈ L1

– loc
(
JE{l/itself}Kµi

)
∈ L2.

Again, by Prop. 1, this is impossible, as two threads cannot lock the same
location at the same time.

B Properties of the Operational Semantics

Let us provide a few properties showing the soundness of both the locking and
unlocking mechanisms of our operational semantics.

Two different threads never lock the same location. First we need a technical
lemma.
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Lemma 1. Given an arbitrary execution trace

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉

if lock#(µk(l)) = 0 for some l ∈ dom(µk) then l 6∈ Li, for any i ∈ 1..n.

Proof. By a simple induction on the length k of the trace.

Proposition 2 (Locking correctness). Given an arbitrary execution trace

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉

then for any i, j ∈ {1 . . . n}, i 6= j entails Li ∩ Lj = ∅.

Proof. By induction on the length k of the trace. Suppose to have:

〈P0, µ0〉 −→k 〈dC1eL1...dCieLi...dCneLn , µk〉 −→ 〈dC1eL1...P...dCneLn , µk+1〉.

Here the k+1-th step is due to the i-th thread. By inductive hypothesis we know
that after k steps the sets Lj , for 1 ≤ j ≤ n, are pairwise disjoint. Let us prove
that after the k+1-th step this property is preserved. Let proceed by case analysis
on the reduction rule applied to derive the k+1-th step.

– Let the step be due to an application of one rule among [let], [field-ass],
[seq-skip], [invoc], [sync], [reentrant-lock], [decrease-lock] (possibly together
with rule [seq]). Then P = dC ′ieLi, for some C ′i, and the set of locked
location of the i-th thread remained unchanged, thus the property is trivially
preserved.

– Let the step be due to an application of rule [spawn]. Thus,

P = dB{l/this}e∅ . dC ′ieLi

for some B, l and C ′i. In this case a new thread has been spawn with an
empty set of locked locations. Again the property is trivially maintained.

– Let the step be due to an application of rule [acquire-lock] (possibly together
with rule [seq]). Thus, P = dC ′1eL′i with L′i = Li ∪ {l}, for some l such that
lock#(µk(l)) = 0. Then, by Lemma 1 the property is preserved also after the
k+1-th step.

– Let the step be due to an application of rule [release-lock] (possibly together
with rule [seq]). Then, P = dC ′ieL′i for some C ′i and L′i = Li \ {l}, for some l.
In this case, as the lockset of the i-th thread becomes smaller the property is
preserved.

When a thread starts its execution it does not hold any lock:

Proposition 3 (Thread initialization vs. locking ). Let

〈P0, µ0〉 −→∗ 〈dC1eL1...dCieLi...dCneLn , µ〉 −→ 〈dC1eL1...P...dCneLn , µ′〉

be an arbitrary trace where Ci = spawnE.p( );C ′i, for some E, p and C ′i, then
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– JEKµ = 〈l, µ′〉
– κ′ = lookup(class(µ′(l)), p)

– κ′(p) = B

– P = dB{l/this}e∅ . dC ′ieLi.

Proof. This is a direct consequence of the semantic rules [spawn], the only one
which can be applied to perform the reduction step.

When a thread terminates it does not keep locks on locations:

Proposition 4 (Thread termination vs. locking ). Let

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉

be an arbitrary run where Ci = skip, then Li = ∅.

Proof. By induction on the length of the reduction.

A thread may not lock a location by mistake:

Proposition 5 (Locking). Let

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉 −→ 〈dĈ1eL̂1 . . . dĈmeL̂m , µ̂〉

be an arbitrary run. Then
⋃n
j=1 Lj ⊂

⋃m
j=1 L̂j, if and only if

– there is i ∈ 1..n such that Ci = monitor enter(l);C ′i, for some l and C ′i
– lock#(µ(l)) = 0 and lock#(µ̂(l)) = 1

– m = n and L̂j = Lj for every j ∈ {1 . . . n} \ {i}
– L̂i = Li ] {l}.

Proof. By case analysis on the rules applied to perform the reduction step.

Reentrant locks are allowed: only threads that already own the lock on an
object can synchronize again on that object.

Proposition 6 (Reentrant locking). Given an arbitrary run

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉

where l ∈
⋃n
j=1 Lj , for some l, and Ci = monitor enter(l);C ′i, for some i ∈ 1..n

and C ′i. Then

〈dC1eL1...dCieLi...dCneLn , µ〉 −→ 〈dC1eL1...dC ′ieL′i...dCneLn , µ′〉

if and only if

– l ∈ Li
– lock#(µ′(l)) = lock#(µ(l)) + 1

– L′i = Li.
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Proof. By case analysis on the rule applied to perform the reduction. Here the
only rule which can be applied is [reentrant-lock].

Locks on locations are never released by mistake:

Proposition 7 (Lock releasing). Let

〈P0, µ0〉 −→∗ 〈dC1eL1 . . . dCneLn , µ〉 −→ 〈dĈ1eL̂1 . . . dĈmeL̂m , µ̂〉

be an arbitrary run. Then
⋃n
j=1 Lj ⊃

⋃m
j=1 L̂j, if and only if

– there is i ∈ 1..n such that Ci = monitor exit(l);C ′i, for some l and C ′i
– lock#(µ(l)) = 1 and lock#(µ̂(l)) = 0

– m = n and L̂j = Lj for every j ∈ {1 . . . n} \ {i}
– Li = L̂i ] {l}.

Proof. By case analysis on the rule applied to perform the reduction. Here the
only possible rule is [release-lock].

Unlocking always happens after some locking: it may release the lock or not,
depending on the number of previous lockings.

Proposition 8 (Unlocking). Let

〈P0, µ0〉 −→∗ 〈dC1eL1...dCieLi...dCneLn , µ〉 −→ 〈dC1eL1...dC ′ieL′i...dCmeLm , µ′〉

be an arbitrary run where Ci = monitor exit(l);C ′i, for some l, then

– l ∈ Li
– if lock#(µ(l)) > 1 then L′i = Li else Li = L′i ] {l}
– lock#(µ′(l)) = lock#(µ(l))− 1.

Proof. By case analysis on the rules applied to perform the reduction. Here there
are two possible rules: [decrease-lock] and [release-lock].


