Finding Latent Code Errors via Machine Learning over Program Executions

Yuriy Brun
University of Southern California

Michael D. Ernst
Massachusetts Institute of Technology
Bubble Sort

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
 double[] out = array_copy(in);
 for (int x = out.length - 1; x >= 1; x--)
 for (int y = x - 1; y >= 1; y--)
 if (out[y] > out[y+1])
 swap(out[y], out[y+1]);
 return out;
}
Bubble Sort

Faulty (?) Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
 double[] out = array_copy(in);
 for (int x = out.length - 1; x >= 1; x--)
 for (int y = x - 1; y >= 1; y--)
 if (out[y] > out[y+1])
 swap (out[y], out[y+1]);
 return out;
}

Fault-revealing properties

out[0] = in[0]
out[1] ≤ in[1]
Bubble Sort

Faulty Code:

// Return a sorted copy of the argument
double[] bubble_sort(double[] in) {
 double[] out = array_copy(in);
 for (int x = out.length - 1; x >= 1; x--)
 // lower bound should be 0, not 1
 for (int y = x - 1; y >= 1; y--)
 if (out[y] > out[y+1])
 swap (out[y], out[y+1]);
 return out;
}

Fault-revealing properties

out[0] = in[0]
out[1] ≤ in[1]
Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion
Outline

- Intuition for Fault Detection
 - Latent Error Finding Technique
 - Fault Invariant Classifier Implementation
 - Accuracy Experiment
 - Usability Experiment
 - Conclusion
Targeted Errors

• Latent Errors
 – unknown errors
 • may be discovered later
 • no manifestation
 – not discovered by test suite
Targeted Programs

- Programs that contain latent errors
- Test inputs are easy to generate, but test outputs can be hard to compute, e.g.:
 - Complex computation programs
 - GUI programs
 - Programs without formal specification
Learning from Fixes

Program A:

...
print (a[a.size] + "elements");
...

Fixed Program A:

...
print (a[a.size - 1] + "elements");
...

Program B:

...
if (store[store.length] > 0);
...

Outline

- Intuition for Fault Detection
 - **Latent Error Finding Technique**
- Fault Invariant Classifier Implementation
- Accuracy Experiment
- Usability Experiment
- Conclusion
Program Description Mapping

description of erroneous program A

description of corrected program A

Machine Learning

description of program B

classifier

error-revealing descriptions
Machine Learning Approach

• Extracts knowledge from a training set
• Creates a model that classifies new objects

• Requires a numerical description of the samples
Training a Model

Examples:

\[\text{out}[1] \leq \text{in}[1] \]

\[\langle 1,0,0,2 \rangle \]
Training a Model

Examples:

out[1] ≤ in[1]

⟨1,0,0,2⟩
Classifying Properties

1. User program
2. Program analysis
3. Properties
4. Characteristic extractor
5. Features
6. Model
7. Machine classifier
8. Fault-revealing properties
Related Work

• Redundancy in source code [Xie et al. 2002]
 – find an error
 – 1.5-2 times improvement over random sampling

• Relevance:
 • same goal
 • we have 50 times improvement over random sampling (for C programs)
Related Work

- [Xie et al. 2002]
- Partial invariant violation
 [Hangal et al. 2002]
 – is there an error?

• Relevance:
 • similar program analysis
 • similar goal
Related Work

- [Xie et al. 2002]
- [Hangal et al. 2002]
- Clustering of function call profiles [Dickinson et al. 2001, Podgurski et al. 2003]
 - find relevant tests
 - select faulty executions

• Relevance:
 • uses machine learning
Latent Error-Finding Technique

- Abstract properties
- Abstract features
- Generalizes to new properties and programs
Model

• A function:
 – \{\text{set of features}\} \rightarrow \{\text{fault-revealing, non-fault-revealing}\}

• Examples:
 – Linear combination functions
 – If-Then rules
Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
 ➢ Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment
• Conclusion
Tools Required for Fault Invariant Classifier

- Program Property Extractor
 - Daikon: Dynamic analysis tool
- Property to Characteristic Vector Converter
- Machine Learning
 - Support Vector Machines (SVMfu)

- technique is equally applicable to static and dynamic analysis
Daikon: Program Property Extractor

• Daikon
 – Dynamic analysis tool
 – Reports properties that are true over program executions

 – Examples:
 • myPositiveInt > 0
 • length = data.size
Characteristic Vector Extractor

• Daikon uses Java objects to represent properties

• Converter extracts all possible numeric information from those objects
 – # of variables e.g. $x > 5 \rightarrow 1 \ x \in \text{array} \rightarrow 2$
 – is inequality? e.g. $x > 5 \rightarrow 1 \ x \in \text{array} \rightarrow 0$
 – involves an array? e.g. $x > 5 \rightarrow 0 \ x \in \text{array} \rightarrow 1$

• Total: 388 features
Support Vector Machine Model

- Predictive power
- But not explicative power
- Consists of thousands of support vectors that define a separating area of the search space
Outline

- Intuition for Fault Detection
- Latent Error Finding Technique
- Fault Invariant Classifier Implementation
 - Accuracy Experiment
- Usability Experiment
- Conclusion
Subject Programs

• 12 Programs
 – C and Java programs
 – Largest: 9500 lines
 – 373 errors (132 seeded, 241 real)
 • with corrected versions
 – Authors (at least 132):
 • Students
 • Industry
 • Researchers
Accuracy Experiment

• Goal:
 – Test if machine learning can extrapolate knowledge from some programs to others

• Train on errors from all but one program
• Classify properties for each version of that one program
• Compare to expected results
Measurements and Definitions

• Fault-revealing property:
 – property of an erroneous program but not of that program with the error corrected
 – indicative of an error

• Brevity:
 – average number of properties one must examine to find a fault-revealing property
 – best possible brevity is 1
Accuracy Experiment Results

- C programs (single-error)
 - brevity = 2.2
 - improvement = 49.6 times
- Java programs (mostly multiple-error)
 - brevity = 1.7
 - improvement = 4.8 times
Outline

- Intuition for Fault Detection
- Latent Error Finding Technique
- Fault Invariant Classifier Implementation
- Accuracy Experiment
 ➢ Usability Experiment
- Conclusion
Fault Invariant Classifier Usability Study

• Would properties identified by the fault invariant classifier lead a programmer to errors in code?

• Preliminary experimentation:
 – 1 programmer’s evaluation
 – 2 programs (41 errors, 410 properties)
Usability Study Results

• Replace (32 errors)
 – 68% of properties reported fault-revealing would lead a programmer to the error

• Schedule (9 errors)
 – 58% of properties reported fault-revealing would lead a programmer to the error

The majority of the reported properties were effective in indicating errors
Outline

• Intuition for Fault Detection
• Latent Error Finding Technique
• Fault Invariant Classifier Implementation
• Accuracy Experiment
• Usability Experiment

➢ Conclusion
Conclusion

• Designed a technique for finding latent errors
• Implemented a fully automated Fault Invariant Classifier
• Fault Invariant Classifier revealed fault-revealing properties with brevity around 2
• Most of the fault-revealing properties are expected to lead a programmer to the error
• Overall, examining 3 properties is expected to lead a programmer to the error in our tests
Backup Slides

- Works Cited
- Explicative Machine Learning Model

Explicative Machine Learning Model

- C5.0 decision tree machine learner
- Examples:
 - Based on large number of samples and neither an equality nor a linear relationship of three variables \(\Rightarrow\) likely fault-revealing
 - Sequences contains no duplicates or always contains an element \(\Rightarrow\) likely fault-revealing
 - No field accesses \(\Rightarrow\) even more likely fault-revealing