
Combined Static and Dynamic Mutability Analysis

Shay Artzi Michael D. Ernst David Glasser Adam Kie.zun
MIT CSAIL

{artzi,mernst,glasser,akiezun}@csail.mit.edu

Abstract

Knowing which method parameters may be mutated dur-
ing a method’s execution is useful for many software engi-
neering tasks. We present an approach to discovering pa-
rameter immutability, in which several lightweight scalable
analyses are combined in stages, with each stage refining
the overall result. The resulting analysis is scalable and
combines the strengths of its component analyses. As one of
the component analyses, we present a novel, dynamic mu-
tability analysis and show how its results can be improved
by random input generation. Experimental results on pro-
grams of up to 185 kLOC demonstrate that, compared to
previous approaches, our approach increases both scala-
bility and overall accuracy.

1 Introduction

Knowing which method parameters are accessed in a
read-only way, and which ones may be modified, is useful
in many software engineering tasks, such as modeling [4],
verification [24], compiler optimizations [6, 21], program
transformations [12], test input generation [1], regression
oracle creation [14, 27], invariant detection [11], specifica-
tion mining [7], and program comprehension [10].

Different approaches to the mutability problem have dif-
ferent strengths. For example, a static analysis uses static
approximations regarding points-to information and which
parameters are mutated, whereas a dynamic analysis can
observe the actual run-time behavior. A dynamic analy-
sis, however, is limited to the specific observed execution,
which may not cover all of the code or exercise it in all
possible ways. This paper presents an approach to the mu-
tability problem that works by combining several different
mutability analyses, and takes advantage of their relative
strengths to create an accurate and scalable analysis.

Previous approaches to mutability analysis [22, 19] were
developed with the assumption that a mutable parameter
must never be misclassified asimmutable, even when it
leads to misclassifications in the other direction.1 Because

1This assumption is justified when the results of mutability analysis are
used in a compiler, where such misclassifications may lead to incorrect
optimizations.

a dynamic analysis cannot prove the absence of a mutation,
previous mutability analyses were typically static and could
not draw on the many established techniques for dynamic
program analysis. To reduce misclassifications, previous
techniques used expensive pointer and call-graph construc-
tion analyses, which affected their scalability.

In certain contexts, such as many software engineering
tasks, scalability and accuracy are key metrics of quality,
so the assumptions made by previous work are unnecessar-
ily restrictive. As one example, test suite generators should
use methods with side effects in the bodies of test cases,
and should use methods without side effects as “observers”
in their assertions [14, 27, 1]. Misclassification is not fa-
tal: if a method is mistakenly marked as side-effect-free,
this merely reduces test suite coverage, and even if a sup-
posed observer actually modifies some of its parameters, a
test case can still be effective in revealing errors. Similar ar-
guments apply to invariant detection and specification min-
ing. Program understanding is yet another domain in which
perfect classification is not essential, since humans easily
handle some inaccuracy [16]. Human judgment is required
in any event, because automatically generated results do not
necessarily match programmer abstractions (e.g., automatic
analyses do not ignore modifications to caches).

This paper makes the following contributions:

• A staged analysis approach for discovering parameter
mutability. The idea of staged analyses is not new, but a
staged approach has not been investigated in the context
of mutability analysis. Our staged approach is unusual
in that it combines static and dynamic stages and it ex-
plicitly represents analysis imprecision. The framework
is sound, but an unsound analysis may be used as a com-
ponent, and we examine the tradeoffs involved.

• Mutability analyses. The primary contribution is a
novel, dynamic analysis that scales well, yields accurate
results (it has a sound mode as well as optional heuris-
tics), and complements existing analyses. We extend the
dynamic analysis with random input generation, which
improves the analysis results by increasing code cov-
erage. Other contributions include an extension to a
state-of-the-art static analysis [22] that improves accu-
racy while reducing scalability, and a simple static anal-
ysis that helps to reveal the costs and benefits of more
sophisticated algorithms.

1



• Evaluation. We have implemented our framework and
analyses for Java, and we investigate the costs and ben-
efits of various techniques, including both our own and
that of S̆alcianu and Rinard [22]. The results yield in-
sight into the design and implementation of program
analysis tools, with a particular emphasis on mutabil-
ity analysis. For example, one finding is that a well-
designed collection of fast, simple analyses can outper-
form a sophisticated analysis in both scalability and ac-
curacy.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the problem of inferring parameter im-
mutability. Section 3 presents our staged mutability anal-
ysis. Sections 4 and 5 describe the dynamic and static mu-
tability analyses that we developed to be used in the staged
analysis. Section 6 describes the experiments we performed
to evaluate our work. Section 7 surveys related work, and
Section 8 concludes.

2 Parameter and Method Mutability

The goal of mutability analysis is the classification of
each method parameter as eithermutableor immutable.
Throughout this paper, “parameter” refers to a formal
method parameter or receiver. Our implementation also dis-
covers modifications of the program’s global state, but in
this paper we focus on parameter and method mutability.

Parameterp of methodm is mutableif some execution
of m can change the state of an object that at run-time cor-
responds top. If no such execution exists, the parameterp
is immutable. The change in the state may occur inm itself
or in any method thatm (transitively) calls. The state of an
objecto consists of the values ofo’s primitive (e.g., int ,
float ) fields and the states of the objects pointed to by
o’s non-primitive fields. Arrays are treated analogously. A
method isside-effect freeif all its parameters are immutable.

As with previous work [22, 3, 18, 4], our immutabil-
ity definition excludes aliasing—on top-level entry to a
method, all parameters are considered to be fully un-aliased
(i.e., point to disjoint parts of the heap). Accounting for all
possible side effects under all possible aliasing conditions
would yield unusably conservative results. For example, in
the following code,

void mutateArg1(Cell c1, Cell c2) {
c1.data = null;

}

only thec1 parameter is mutable, even though a client could
call themutateArg1 method using the same object for both
arguments, as inmutateArg1(c,c) .

3 Staged Mutability Analysis

Combining mutability analyses can yield an analysis that
has better accuracy than any of the components. In our ap-

proach, mutability analyses are combined in stages, form-
ing a “pipeline”. (A fixed-point analysis that iterates some
stages is also possible.) Each pipeline stage refines the re-
sults computed by the previous analysis. An analysis can
ignore code that has already been adequately analyzed; this
can permit the use of techniques that would be too compu-
tationally expensive if applied to an entire program.

The problem of mutability inference is undecidable, so
no analysis can be both sound and complete. An analy-
sis is sound if it never misclassifies a mutable parameter as
immutableor vice versa. An analysis is precise if it classi-
fies every parameter as eithermutableor immutable. Our
approach permits an analysis to explicitly represent its im-
precision. An analysis result classifies parameters into three
groups:mutable, immutable, andunknown.

Some previous work [22, 19, 18] has used the term
“sound” to denote a weaker concept in which some mis-
classification is permitted, and provided proofs of this prop-
erty [22]. For example, in the context of compiler optimiza-
tions, misclassifying a mutable parameter asimmutablecan
lead to impermissible changes in behavior, but misclassi-
fication in the other direction does not lead to such errors.
Such an analysis could be made sound by converting allmu-
tableoutputs tounknown(and sometimes that is the implied
semantics even when the outputs are labeledimmutableand
mutable). Having only two output classifications loses in-
formation by conflating parameters that are known to be
mutable with those where analysis approximations prevent
definitive classification. As noted earlier, in many software
engineering contexts, misclassification in either direction is
undesirable but not fatal.

In a staged analysis, the input to the first stage in the
staged analysis is an initial classification of all parame-
ters (e.g., allunknown, with the possible exception of pre-
analyzed standard libraries). The output of the last stage is
the final classification, in which some parameters may re-
mainunknown.

4 Dynamic Analysis

Our dynamic mutability analysis observes the program’s
execution and classifies asmutablethose method param-
eters that correspond to actually mutated objects. It can
soundly classify all other parameters asunknown, or it can
optionally use heuristics that allow it to classify certain pa-
rameters asimmutableor that improve its run time with
some risk of unsoundness. The analysis has an iterative
variation with random input generation for increased effec-
tiveness and precision.

4.1 Dynamic Analysis Algorithm

Conceptually, the analysis tags each reference (not each
object—more than one reference can point to the same ob-
ject) in the running program with the set of all formal pa-

2



rameters (from any method invocation on the call stack)
whose fields were directly or indirectly accessed to obtain
the reference. Primitives need not be tagged, as they are all
immutable.

For example, consider the methodmutateArg1 of Sec-
tion 2. If a client callsmutateArg1(a,a) , then the algo-
rithm observes the execution and classifies only parameter
c1 asmutable.

Due to space constraints, we give the flavor of the
dataflow rules with a few examples.

1. On method entry, each formal parameter (that is clas-
sified asunknown) is added to the parameter set of the
corresponding actual argument reference.

2. On method exit, all parameters for the current invoca-
tion are removed from all references in the program.

3. Assignments propagate the parameter set unchanged.
4. Field accesses also propagate the set unchanged: the set

of parameters forx.f is the same as that ofx .
5. For a field writex.f = v , the analysis classifies asmu-

tableall the parameters in the set forx .

4.2 Dynamic Analysis Heuristics

The dynamic analysis algorithm described in Section 4.1
is sound—a parameter is classified asmutableonly if it is
modified during execution. We found the sound algorithm
to be impractical for two reasons. First, the algorithm does
not take advantage of theabsenceof parameter modifica-
tions. It never classifies any parameters asimmutable, even
if a method was executed a million times without modify-
ing its parameters. Second, the run time of the algorithm
suffers due to the need to maintain reference tags.

We addressed these problems by implementing heuris-
tics. The heuristics potentially introduce unsoundness to the
analysis, but in practice, they cause few misclassifications.
The heuristics are also critical in achieving acceptable run
time. We developed two kinds of heuristics.

The first kind classifiesunknown parameters asim-
mutable.

(A) Classifying parameters asimmutableat the end of
the analysis.This heuristic classifies asimmutableall (un-
known) parameters of methods that were executed during
the dynamic analysis.

A related pipeline stage isA’, which classifies asim-
mutableall (unknown) parameters of methods that were ex-
ecuted during some dynamic analysis. This heuristic differs
from A in that it is not applied during the dynamic anal-
ysis, but rather at any point in a pipeline—most sensibly,
at the end, giving other analyses a chance to discover mu-
table parameters beforeA’ classifies them asmutable. A’
has no effect when heuristicA is enabled, because the set
of parameters classified asimmutableby A contains the all
parameters that would be classified byA’.

(B) Classifying parameters asimmutableafter a fixed
number of calls. This heuristic classifies asimmutableall

unknownparameters after a fixed numberN of calls to their
method (our experiments usedN = 10). Alternatively,
it could stochastically sample subsequent executions. The
heuristic allows the analysis to ignore a parameter (i.e., not
look for mutations via it, thus reducing computational load).
This heuristic is especially useful for methods that are in-
voked millions of times without ever modifying (some of)
their arguments.

The second kind of heuristic classifies otherwiseun-
knownparameters asmutable:

(C) Using current mutability classification. When an
object is passed to a formal parameter that is already clas-
sified asmutable, the object is treated as if it were mutated
immediately (i.e., without waiting for a field write), and is
not tracked thereafter. A misclassification is possible if the
object would have not actually have been changed by this
execution of the method.

(D) Classifying aliased mutated parameters. This
heuristic classifies a parameterp as mutableif the object
that p points to changes state, regardless of whether the
modification happened through an alias top or through the
referencep itself. For example, if parametersa andb hap-
pen to point to the same objecto, ando is modified, then
this heuristic will classify botha andb asmutable, even if it
the modification is only done using the formal parameter’s
reference toa.

This heuristic permits a more efficient dynamic analy-
sis algorithm: when a methodm is called during the pro-
gram’s execution, the analysis computes the setr(m, p) of
objects that are transitively reachable from each parameter
p via field references. When the program writes to a field in
objecto, the analysis finds all parametersp of methods that
are currently on the call stack. For each such parameterp,
if o ∈ r(m, p), then the analysis classifiesp asmutable.

Our implementation includes the following three opti-
mizations, which improve run time by over 30×. First,
the algorithm determines reachability by maintaining and
traversing its own data structure that mirrors the heap; this is
faster than using reflection. Second, the set of reachable ob-
jects is computed lazily, when a modification occurs. Third,
the analysis caches the set of objects transitively reachable
from every object, invalidating it when one of the objects in
the set changes.

Our implementation performs load-time instrumentation
and works online (in tandem with the target program, with-
out creating a trace file).

4.3 Input to the Dynamic Analysis

The inputs to the dynamic mutability analysis are the
current classification and an example execution. The ex-
ample execution can be provided by the user or it can be
randomly generated.

An execution provided by a user may exercise the pro-
gram in ways in which a randomly generated code may not

3



be able to, such as by creating and mutating complex ob-
jects. However, dynamic mutability analysis is limited only
to the part of the program that is covered by the example
execution.

To analyze larger parts of the program, or even elimi-
nate the need for a sample execution, the dynamic muta-
bility analysis can generate random sequences of method
calls [17]. The generator gives higher probability to to
methods withunknownparameters and methods that have
not yet been executed by other dynamic analyses in the
pipeline. By default, the number of generated tests for each
round ismax(500, #methodsInProgram).

Once the dynamic analysis has classified some parame-
ters, it makes sense to propagate that information (see Sec-
tion 5.3) and to re-focus random input generation on the
remainingunknownparameters. Iterations continue as long
as at least 1% of theunknownparameters are classified (the
threshold is user-settable).

5 Static Analysis

This section describes a simple, scalable static mutabil-
ity analysis. It consists of two phases:S, an intraprocedu-
ral analysis that classifies as (im)mutableparameters (never)
affected by field writes within the procedure itself, andP,
an interprocedural analysis that propagates mutability in-
formation along a graph of dependencies between method
parameters.P may be executed at any point in an analy-
sis pipeline afterS has been run, and may be run multiple
times (interleaving with other analyses).S andP both rely
on a coarse intraprocedural pointer analysis that calculates
the parameters pointed to by each local variable. We built
a new analysis rather than re-using a previous implementa-
tion primarily to explore trade-offs in analysis complexity
and accuracy.

5.1 Intraprocedural Points-To Analysis

The static analysis computes the mutability of each
method parameter. Thus, the analysis must determine
which parameters can be pointed to by which locals. Both
phases of the static analysis use a coarse points-to analysis
to determine this. For simplicity and scalability, we have
made the design choices that the pointer analysis should
be purely intraprocedural, flow-insensitive, and not incor-
porate an escape analysis.

The points-to analysis calculates, for each local variable
l, a setP0(l) of parameters thatl can point to directly and a
setP (l) of parameters thatl can point to directly or transi-
tively. (In either case,l can be pointing either to the param-
eter object itself or to an object that the parameter points to
transitively through its fields.) The points-to analysis has
“overestimate” and “underestimate” varieties; they differ in
how method calls are treated (see below).

The points-to analysis executes a fixpoint computation,
calculating for each locall and parameterp the minimum
numberD(l, p) of dereferences (possibly 0) that can be ap-
plied to l to find an object pointed to byp. At the begin-
ning of the computation,D(l, p) is ∞ for all l andp. Af-
ter the computation reaches a fixpoint, it setsP (l) = {p |
D(l, p) 6= ∞} andP0(l) = {p | D(l, p) = 0}. Due to
space constraints, we give the flavor of the dataflow rules
with a few examples:

• Direct assignments of a parameterp to a locall such as
l = this result in settingD(l, p) = 0.

• A field assignmentl1.f = l2 results in setting
D(l1, p) = min(D(l1, p), D(l2, p) + 1)
D(l2, p) = min(D(l2, p), D(l1, p)− 1)

• Method calls are handled either by assuming they create
no aliasing (creating an underestimate of the true points-
to sets) or by assuming they might alias all of their pa-
rameters together (for an overestimate). If an underesti-
mate is desired, noD(l, p) are changed. For an overes-
timate, letS be the set of all locals used in the statement
(including receiver and return value); for eachl ∈ S and
each parameterp, setD(l, p) = minl′∈S D(l′, p).

5.2 Intraprocedural Phase: S

The intraprocedural phase first calculates the “overesti-
mate” points-to analysis described in Section 5.1.

The analysis marks asmutablesome parameters that are
currently marked asunknown: For each mutationl1.f = l2,
the analysis marks all elements ofP0(l1) asmutable. (Array
mutations are treated analogously.)

Next, S marks asimmutablesome parameters that are
currentlyunknown. The analysis computes a “leaked set”
L of locals, consisting of all arguments (including re-
ceivers) in all method invocations and any local assigned to
a static field (in a statement of the formGlobal.field =
local ). The analysis then marks asimmutableall unknown
parameters that are not in the set∪l∈LP (l) .

S never marks any parameter asimmutableif the param-
eter can be referred to in a mutation or escape to another
method body, so the analysis never mistakenly marks a pa-
rameter asimmutable. However, because its pointer anal-
ysis is an overestimate,S can mark parameters asmutable
that are actually immutable. For example,l.f = this;
l.g++ will lead to P0(l) = {this }, and so the receiver
will be marked asmutableafter the second statement. (This
is unavoidable with a pointer analysis that just returns sets
of parameters for each local; a more nuanced pointer analy-
sis could avoid this problem.)

5.3 Interprocedural Propagation Phase: P

The interprocedural propagation phase constructs a call-
graph for the analyzed program and uses the graph to refine
the parameter classification given as input, by propagating

4



both mutability and immutability information. This phase
does not itself search in the program for mutations; it merely
“distributes” the information that is already available. Prop-
agation is sound in classifying parameters asimmutable—
given a correct input classification and a precise call-graph,
propagation never misclassifies a mutable parameter asim-
mutable.

Our algorithm is parametrized by a call-graph construc-
tion algorithm. Our experiments used CHA [8]—the sim-
plest and least precise call-graph construction algorithm of-
fered by Soot. In the future, we want to investigate using
more precise but still scalable algorithms, such as RTA [2]
(available in Soot, but containing bugs that prevented us
from using it), or those proposed by Tip and Palsberg [23]
(not implemented in Soot).

5.3.1 Parameter Dependency Graph

The propagation uses aParameter Dependency Graph
(PDG). It is a directed graph, similar to a call graph. In a
PDG, each node is a method parameterm.p . An edge from
m1.p1 to m2.p2 exists iff m1 calls m2, passing as position
p2 eitherp1 or an object that may be transitively pointed-to
by p1.

We create PDGs by generating a call-graph and translat-
ing each method call edge into a set of parameter depen-
dency edges, using the setsP (l) described in Section 5.1
to tell which parameters correspond to which locals. The
true PDG is not computable, because determining perfect
aliasing and call information is undecidable. Our analy-
sis uses an under-approximation and an over-approximation
to the PDG as safe approximations for determining mu-
table and immutable parameters, respectively. Our over-
approximation (i.e., it contains a superset of edges of the
ideal graph) is called thefully-aliasedPDG, which is cre-
ated with an overestimating points-to analysis which as-
sumes that method calls introduce aliasings betweenall pa-
rameters. Our under-approximation (i.e., it contains a sub-
set of edges of the ideal graph) is theun-aliasedPDG,
which is created with an underestimating points-to analy-
sis which assumes that method calls introduceno aliasings
between parameters.

To construct the under-approximation of the true
PDG, propagation needs a call-graph that is an under-
approximation of the real call-graph. However, most ex-
isting call-graph construction algorithms [8, 9, 2, 23] create
an over-approximation. Therefore, our implementation uses
the same call-graph for building the un- and fully-aliased
PDGs. In our experiments, this never caused misclassifica-
tion of parameters asimmutable, and only a minimal num-
ber of parameters misclassified asmutable.

5.3.2 Propagation Algorithm

Propagation starts with the initial classifications of parame-
ters, and refines the classification in 2 phases.

In themutability propagation phase, the analysis clas-
sifies additional parameters asmutable. It classifies as mu-
table all theunknownparameters in the PDG that can reach
in the graph (flow to in the program) a parameter that is
classified asmutable. To propagate mutability, the analysis
uses the under-approximation to the PDG (the un-aliased
PDG, introduced above). Using an over-approximation to
the PDG would be unsound because spurious edges may
lead propagation to incorrectly classify parameters as muta-
ble.

In the immutability propagation phase, the analysis
classifies additional parameters asimmutable. This phase
uses a fix point computation: in each step, the analysis clas-
sifies asimmutableall unknownparameters that have no
mutableor unknownsuccessors (callees) in the PDG. To
soundly propagate immutability, the analysis must use an
over-approximation to the PDG (the fully-aliased PDG, in-
troduced above). Otherwise, if an edge is missing in the
PDG, the analysis may classify a parameter asimmutable
even though the parameter is really mutable. This is be-
cause the parameter may be missing, in the PDG, amutable
successor.

Because propagation ignores the bodies of methods, the
P phase is sound only if the method bodies have already
been analyzed. It is intended to be run only after theS
phase of Section 5.1 has already be run. However, it can be
run multiple times (with other analyses in between).

6 Evaluation

We experimentally evaluated 168 combinations of muta-
bility analyses, comparing the results with each other and
with a manually computed (and inspected) optimal classifi-
cation of parameters. Our results indicate that staged muta-
bility analysis can be accurate, scalable, and useful.

6.1 Methodology

We performed our experiments on 6 open-source sub-
ject programs (see Figure 1). When an example input was
needed (e.g., for a dynamic analysis), we ran each subject
program on a single, small input.

• jolden2 is a benchmark suite of 10 small programs. As
the example input, we used themain method and argu-
ments that were included with the benchmarks. We in-
cluded these programs primarily to permit comparison
with Sălcianu’s evaluation [22].

• tinysql3 is a minimal SQL engine. We used the pro-
gram’s test suite as the example input.

2http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
3http://sourceforge.net/projects/tinysql

5



program LOC classes parameters
all non-trivial

jolden 6215 56 705 470
sat4j 15081 122 1499 1136
tinysql 32149 119 2408 1708
htmlparser 64019 158 2270 1738
eclipsec 107371 320 9641 7936
daikon 185267 842 16781 13319
Total 410102 1617 33304 26307

Figure 1. Subject programs.

• htmlparser4 is a real-time parser for HTML. We used
our research group’s webpage as the example input.

• sat4j5 is a SAT solver. We used a file with an unsatisfi-
able formula6 as the example input.

• eclipsec7 is the Java compiler supplied with the Eclipse
project. The example input was JLex8 (one file
with 7841 LOC).

• daikon9 is an invariant detector. We used a test case
included in the distribution as the example input.

As the input to the first analysis in the pipeline, we used
a pre-computed (manually created) classification for all pa-
rameters in the standard Java libraries. The use of a pre-
computed classification is justified because it has to be cre-
ated only once, and it can be reused many times. Addi-
tionally, the pre-computed classification covers otherwise
unanalyzable code, such as native calls.

We measured the results only for non-trivial parameters
declared in the application. We ignored parameters declared
in external or JDK libraries, and ignored all parameters with
a primitive, boxed primitive, orString type.

For jolden and eclipsec, we manually determined the op-
timal classification (mutableor immutable) for all param-
eters. For each other program, we used a random number
generator to choose 5 classes, then manually determined the
optimal classification for each parameter in those classes.
In all, we manually classified over 8600 parameters, spot-
checking many of these later. Knowing the optimal classifi-
cation allowed us to measure the accuracy of each mutabil-
ity analysis.

6.2 Evaluated Analyses

Our experiments use the following component analyses:

• S is our intraprocedural static analysis (Section 5.2).
• P is our interprocedural static propagation (Section 5.3).
• D is our dynamic analysis (Section 4).

4http://htmlparser.sourceforge.net/
5http://www.sat4j.org/
6ftp://dimacs.rutgers.edu/
7http://www.eclipse.org/
8http://www.cs.princeton.edu/˜appel/modern/java/JLex/
9http://pag.csail.mit.edu/daikon/

• DH is D, augmented with all the heuristics described in
Section 4.2.DA, DB, andDC areD, augmented with
just one of the heuristics.

• DRH is DH enhanced with random input generation
(Section 4.3); likewise forDRA, etc.

• A’ classifies executed parameters never observed to be
mutated, as described in Section 4.2.

• JPPA is S̆alcianu and Rinard’s state-of-the-art static
analysis [22]. It never classifies parameters asmuta-
ble—only immutableandunknown.

• JPPAM is the classification computed byJPPA using a
main method that contains calls to all the public meth-
ods in the subject program (including the originalmain
method); this increases coverage. SinceJPPA is a
whole program analysis, it only analyzes methods that
are reachable from themain .

• JPPAH is JPPA augmented with a heuristic to classify
asmutableany parameter in whichJPPA’s explanation
of its unknownclassification is a specific potential mod-
ification (as opposed to unanalyzed code or other rea-
sons).

• JPPAMH is the same asJPPAM but uses the heuristics
from JPPAH to classify parameters asmutable.

X-Y-Z denotes the staged analysis in which component
analysisX is followed by component analysisY and then
by component analysisZ.

6.3 Experimental Observations

We experimented with 6 programs and 168 different
analysis pipelines. This section discusses several observa-
tions that stem from the results of our experiments. We
present the results in a way that helps us to determine the
best combined static and dynamic analysis.

We compared the computed classifications to the
manually-computed optimal one. Thecorrect category col-
lects cases where an analysis correctly classified a mutable
parameter asmutable, or an immutable one asimmutable.
The impreciseare cases where an analysis classified a pa-
rameter asunknown. Themisclassifiedare cases where an
analysis incorrectly classified an immutable parameter as
mutable, or vice versa.

The tables in this section present results for eclipsec. Re-
sults for other programs were similar. For smaller programs,
all analyses did better, so the differences in the analyses
were not as pronounced.

6.3.1 Effect of Interprocedural Propagation

The propagation stepP of Section 5.3 requires computing a
call graph; thereafter, it is fast (see Section 6.5). Although
it is the major source of misclassification in our analyses, it
increases correct classifications by substantially more.

6



Analysis correct % imprecise % misclassified %
S 42.0 57.6 0.4
S-P 83.7 13.7 2.6
S-P-DRH 89.9 7.3 2.8
S-P-DRH-P 90.2 7.0 2.8

In the sequel, we always runP after every stage that fol-
lows aS stage. For example,D-S-DRH is shorthand for
D-S-P-DRH-P (we sometimes explicitly state theP stages
for emphasis).

6.3.2 Combining Static and Dynamic Analysis

We evaluated the effect of combining static and dynamic
analysis. The following table shows representative results.
For brevity, we present the results only forDRH (the best
dynamic analysis; see Sections 6.3.3 and 6.3.4) and not for
all combinations of dynamic analyses.

Analysis correct % imprecise % misclassified %
DRH 33.1 56.5 10.5
DRH-S 81.7 6.9 11.4
S 83.7 13.7 2.6
S-DRH 90.2 7.0 2.8

Combining static and dynamic analysis in either order
is helpful—the two types of analysis are complementary.
However, for best results, the static stage should precede
the dynamic stage. (This has positive effects on run time,
as well.) Therefore, in the sequel, we will always present
pipelines that start with a static analysis.

A dynamic analysis can improve even a very accurate
static analysis.

Analysis correct % imprecise % misclassified %
JPPA 27.5 72.5 0.0
JPPA-DRH 42.1 47.9 10.0
JPPA-S 89.3 10.5 0.2
JPPA-S-DRH 93.6 6.0 0.4
JPPAM 34.1 65.9 0.0
JPPAM-DRH 46.2 43.2 10.6
JPPAM-S 91.2 8.8 0.0
JPPAM-S-DRH 94.5 5.1 0.4
S 83.7 13.7 2.6
S-DRH 90.2 7.0 2.8

Adding a dynamic stage to the sophisticatedJPPA anal-
ysis reduces imprecision from 72.5% to 47.9%. Including
the simple static analysisS helps even more, in part by clas-
sifying missed parameters and in part by enabling the prop-
agationP to be run. Adding the dynamic analysis tended to
level the playing field: it provided greater improvement to
less accurate analyses.

6.3.3 Random Input Generation

We evaluated the use of random executions, instead of ex-
ecutions provided by the user, by the dynamic mutability

analysis. We compared pipelines that useDH with those
that useDRH, DH-DRH, or DRH-DR instead.

Analysis correct % imprecise % misclassified %
S-DH 86.9 9.3 3.8
S-DH-DRH 90.6 5.5 3.9
S-DRH 90.2 7.0 2.8
S-DRH-DH 91.1 5.5 3.4

Using both a user-supplied execution and random execu-
tions fares best. However, those results are very little bet-
ter than only using a random execution; since it also had
the lowest misclassification rate, we consider it best. Us-
ing only a user-supplied execution comes in a distant fourth
place.

Random input generation is able to explore parts of the
program that the user-supplied execution may not have.
Furthermore, the tool requires only the program’s source
code—the user is not forced to select a representative exe-
cution. Depending on the size of the sample execution, the
analysis may run faster as well.

The surprising finding that randomly generated code is
as effective as using an example execution suggests that
other dynamic analyses might also benefit from replacing
example executions with random executions.

6.3.4 Dynamic Analysis Heuristics

By exhaustive evaluation, we determined that each of the
heuristics except forA’ is beneficial:DRH is the best dy-
namic analysis. This section indicates the unique contri-
bution of each heuristic, by removing it from the optimal
combination (because some heuristics, e.g.,A andB, have
overlapping benefits). As noted in Section 4.2, heuristicD is
always enabled in our current implementation, and heuristic
A is mutually exclusive withA’.

Analysis correct % imprecise % misclass’d % time
S-DR 83.7 13.6 2.7 140.7
S-DRBC 89.3 7.7 3.0 128.4
S-DRBC-A’ 90.3 6.7 3.0 128.4
S-DRAC 90.1 7.0 2.9 143.7
S-DRAB 90.2 7.0 2.8 135.4
S-DRH 90.2 7.0 2.8 132.9

HeuristicA (evaluated by theDRBC line) has the great-
est effect. Replacing it byA’ decreases accuracy. Heuristics
B andC are primarily performance optimizations. The table
shows that they have no effect on the eclipsec results, and
that they reduce time (the time shown is for the first itera-
tion of DR, andB helps most). The benefits of the heuris-
tics are greater on sample executions (D) than on random
executions (DR, which is shown). For example,B alone
improves the run time of the dynamic analysis by an order
of magnitude on the eclipsec example execution.

7



P
ro

g. correct % imprecise % misclass’d %
Analysis i/i m/m sum u/i u/m sum m/i i/m sum

ec
lip

se
c

Optimal 45.9 54.1 100.0 0.0 0.0 0.0 0.0 0.0 0.0
JPPA 27.5 0.0 27.5 18.454.1 72.5 0.0 0.0 0.0
JPPAMH 34.1 54.0 88.1 7.9 0.1 8.0 3.9 0.0 3.9
JPPAMH-S-DRH 42.0 54.0 96.0 0.0 0.0 0.0 4.0 0.0 4.0
S-P 35.0 48.6 83.7 8.3 5.5 13.7 2.6 0.0 2.6
S-P-DRH-P 41.4 48.8 90.2 1.9 5.1 7.0 2.7 0.1 2.8

jo
ld

en

Optimal 73.1 26.9 100.0 0.0 0.0 0.0 0.0 0.0 0.0
JPPA 65.0 0.0 65.0 8.1 26.9 35.0 0.0 0.0 0.0
JPPAMH 72.2 22.5 94.7 0.3 4.4 4.7 0.6 0.0 0.6
JPPAMH-S-DRH 70.7 28.8 99.5 0.0 0.0 0.0 0.5 0.0 0.5
S-P 60.3 24.4 84.7 11.9 2.5 14.4 0.8 0.0 0.8
S-P-DRH-P 70.0 26.9 96.9 1.1 0.0 1.1 1.9 0.0 1.9

da
ik

on

Optimal 60.3 39.7 100.0 0.0 0.0 0.0 0.0 0.0 0.0
JPPA 42.5 0.0 42.5 17.839.7 57.5 0.0 0.0 0.0
JPPAMH - - - - - - - - -
JPPAMH-S-DRH - - - - - - - - -
S-P 38.4 37.0 75.3 15.1 2.7 17.8 6.8 0.0 6.8
S-P-DRH-P 42.5 37.0 79.5 11.0 2.7 13.7 6.8 0.0 6.8

tin
ys

ql
+

sa
t4

j+
ht

m
lp

ar
se

r Optimal 76.6 23.4 100.0 0.0 0.0 0.0 0.0 0.0 0.0
JPPA - - - - - - - - -
JPPAMH - - - - - - - - -
JPPAMH-S-DRH - - - - - - - - -
S-P 63.3 20.4 83.7 10.8 3.0 13.8 2.5 0.0 2.5
S-P-DRH-P 72.7 22.4 95.1 1.2 0.0 1.2 2.7 1.0 3.7

Figure 2. Mutability analyses on subject programs. The columns
illustrate six outcomes of comparing the computed classification
with the optimal one. Casem/m (i/i ) is when the analysis cor-
rectly classifies an (im)mutable parameter. Caseu/m (u/i) is when
the analysis classifies an (im)mutable parameter asunknown. Case
m/i is when the analysis incorrectly classifies an immutable pa-
rameter asmutable(i/m is the opposite). Empty cells mean that
the analysis finished with an error. As noted in Section 6.3.1, in
this tableJPPAMH-S-DRHstands forJPPAMH-S-P-DRH-P.

6.4 Accuracy of Staged Analyses

Figure 2 compares the accuracy of several mutability
analyses. The two programs on whichJPPA andJPPAM
work are given separately; other programs are grouped by
whether those analyses work. We make several observa-
tions.

(1) The results indicate that a staged mutability anal-
ysis, combined of static and dynamic phases, can achieve
better accuracy than a complex static analysis. The results
achieved byS-P-DRH-P are better than those achieved by
JPPA (90.2% vs 27.5% correctly classified parameters).

(2) 45.9% of the non-trivial parameters in eclipsec are
immutable, butJPPA detects less than half of these. By
contrast, Rountev [18] detected 97.5% or 100% of pure
methods (not parameters) in a set of data structures. On the
smaller jolden programs,JPPA finds 89% of the immutable
parameters.

(3) Our very simple static analysis,S-P, outperforms
JPPA on eclipsec:S-P finds over 3/4 of the immutable pa-

Analysis total last component
JPPA 5586 5586
JPPAM error n/a
DH 318 318
S 167 167
S-P 564 397
S-P-DH 859 295
S-P-DH-P 869 10
S-P-DRH 1484 920
S-P-DRH-P 1493 9

Figure 3. Run time, in seconds, of analyses on daikon: both the
cumulative time and the time for the last analysis in the pipeline.
All P stages are explicit in this figure. The experiments were run
using a 3GHz machine with 3GB of RAM, running Debian Linux
and Sun JVM 1.5.0-b64.

rameters instead of under 1/2. (Both analyses are sound
with respect toimmutableclassifications.)S-P is slightly
worse thanJPPA on jolden and daikon, but is simpler and
more scalable.

(4) Our preferred staged analysis,S-P-DRH-P, always
finds at least as manyimmutableparameters asJPPA.

(5) i/m misclassifications are generally considered worse
thanm/i ones.S-P-DRH-P has none of the bad misclassifi-
cations on jolden or daikon, and only 0.1% (10 parameters)
on eclipsec. These parameters are all modifiable on execu-
tion paths not taken by any execution.

(6) Staged analysis misclassifications in them/i direc-
tion are modest—typically only a few percent.JPPA avoids
these misclassifications by never issuing anymutableclas-
sification, but this dramatically reduces overall accuracy.

6.5 Scalability

Figure 3 shows run times of analyses on daikon (185
kLOC, which is larger than previous evaluations [19, 18,
22]). Staged mutability analysis scales to large code-bases
and runs in about a quarter the time ofJPPA; augmented
versions ofJPPA are even slower.

The figure overstates the cost of both theP and DRH
stages, due to limitations of our implementation. First, the
major cost of propagation (P) is computing the PDG, which
can be reused later in the same pipeline. Sălcianu says that
JPPA’s RTA call graph construction algorithm takes sec-
onds, and our tool takes two orders of magnitude longer
to to perform CHA (a less precise algorithm) using Soot.
Use of a more optimized implementation could greatly re-
duce the cost of propagation. Second, theDRH step iterates
many times, each time performing load-time instrumenta-
tion and other tasks that could be cached;DRH can be much
faster thanDH. These algorithmic fixes would save between
1/2 and2/3 of the totalS-P-DRH-P time.

JPPA focuses onimmutableclassifications and is sound
with respect to them. In our experiments,S-P is as sound as
JPPA and classifies about as many parameters asimmutable

8



analysis nodes edges time (s)
jolden + eclipsec + daikon
no immutability 444729 624767 6703
JPPA 131425 210354 4626
S--DRH 124601 201327 4271
htmlparser + tinysql + sat4j
no immutability 48529 68402 215
JPPA - - -
S--DRH 8254 13047 90

Figure 4. Palulu model size and run time, when assisted by im-
mutability classifications. Smaller models are better.

(more for eclipsec, fewer for daikon)—yet it runs an or-
der of magnitude faster (or even better, if differences in call
graph construction are discounted).

6.6 Application: Test Input Generation

In addition to evaluating the accuracy of mutability anal-
ysis, we evaluated how much the computed immutability
information helps a client analysis. We experimented with
Palulu [1], a system that generates tests based on a model.
The model is a directed graph that describes permitted se-
quences of method calls. The model can be pruned (without
changing the space it describes) by removing calls that do
not mutate specific parameters; non-mutating calls are not
useful in constructing complex test inputs. A smaller model
permits a systematic test generator to explore the state space
more quickly, or a random test generator to explore more of
the state space.

We ran Palulu on our subject programs using no im-
mutability information, and immutability information com-
puted byS-P-DRH-P andJPPA. Figure 4 shows the num-
ber of nodes and edges in the generated model graph, and
the time Palulu took to generate the model (not counting
the immutability analysis). BecauseJPPA did not run for
all programs, Figure 4 has two parts.

Purity information permitted Palulu to run faster and to
generate smaller models. On the programs whichJPPA
was able to analyze, both evaluated analyses helped Palulu
to create significantly smaller models than running without
purity information; the two analyses created models of very
similar sizes. Our staged analysis was able to run on sev-
eral programs whichJPPA could not analyze, and similarly
helped Palulu on those programs.

7 Related Work

Previous side effect analyses [5, 19, 15, 18, 22, 21] have
largely originated in the compiler community, and so their
focus has been quite different than ours. This different fo-
cus led to different tradeoffs in their design and implemen-
tation, most notably acceptance of imprecision in return for
soundness ofimmutableclassifications. Our work inves-
tigates other tradeoffs and other uses for the information.

For instance, our work includes a novel dynamic analysis, it
combines dynamic and static stages, it aims to compute both
mutableandimmutableclassifications, it focuses on overall
accuracy and permits an analysis to explicitly represent its
precision, and it is scalable to substantial programs.

Our static analysis stage is similar in flavor to, but sim-
pler than, other static analyses for Java. This makes it more
scalable, but potentially less accurate. Our comparison fo-
cuses on the most recent projects.

Our analysis is similar to Rountev’s [18] in that it com-
bines pointer analysis (it permits an arbitrary pointer anal-
ysis to be plugged in), intraprocedural analysis to deter-
mine “immediate” side effects, and propagation to deter-
mine transitive side effects. Rountev applies his analysis
to program fragments by creating an artificialmain routine
that calls all methods of interest; we adopted this approach
in enhancing JPPA. One difference is that Rountev’s analy-
sis computes only one side-effect bit per method rather than
determining per-parameter mutability. In experiments on
7 components with 9–35 public methods, it found all 40
side-effect free methods using a context-sensitive pointer
analysis and 39 methods using the less precise RTA algo-
rithm. This suggests that very sophisticated pointer analy-
sis may not be necessary to achieve good results. Inspired
by this result, we have extended the comparison to an even
less precise static analysis. Our focus is on the evalua-
tion, not on the novelty of the static analysis. (This mirrors
other work questioning the usefulness of very sophisticated
pointer analysis, e.g., [20, 13].) We have been unable to
run Rountev’s analysis on our subject programs, but hope
to perform such a comparison in the future.

Sălcianu’s analysis uses a more sophisticated pointer
analysis, so it represents a different tradeoff. It is also
based on an intra- and an inter-procedural stage. Its flow-
insensitive method summary specially represents objects al-
located by the current method invocation, so (unlike previ-
ous analyses) a pure method may to perform side effects on
a newly-allocated but non-captured objects. It is composi-
tional, analyzing methods separately and without knowing
their calling context, then combining their summaries. (This
feature is intended for program fragments rather than for ar-
bitrary code that could be placed in a context in which call-
backs (e.g.,toString ) can have arbitrary effects.) It han-
dles unanalyzable calls such as native methods. Sălcianu
gives a proof of correctness of his analysis. We evaluated
against S̆alcianu’s implementation, which, like ours, com-
putes parameter immutability.

Tschantz [25] presents an inference algorithm for ref-
erence immutability (that is, areadonly type qualifier),
along with experiments regarding its accuracy. Reference
immutability [26] is different than our definition of param-
eter mutability (which is shared with previous work), and
neither one subsumes the other. Tschantz’s type-based anal-
ysis forces all objects referenced by a variable to have the
same type (even if the variable is reassigned). However, it

9



permits (and his tool infers)assignable andmutable an-
notations indicating when a field is not part of the abstract
state of an object. This permits code that uses caches to be
properly annotated as free of side effects.

8 Conclusion

We have described a staged mutability analysis frame-
work for Java, along with a set of component analyses that
can be plugged into the analysis. The framework permits
combinations of mutability analyses, including static and
dynamic techniques. The framework explicitly represents
analysis imprecision, and this makes it possible to compute
both immutable and mutable parameters. Our component
analyses take advantage of this feature of the framework.

Our dynamic analysis is novel, to the best of our knowl-
edge; at run time, it marks parameters as mutable based
on mutations of objects. We presented a series of heuris-
tics, optimizations, and enhancements that make it prac-
tical. For example, iterative random test input generation
appears competitive with user-supplied sample executions.
Our static analysis is primitive, and permits us to investigate
tradeoffs regarding analysis complexity and precision. To
our surprise, it performs at a par with much more heavy-
weight and sophisticated static analyses. Combining the
lightweight static and dynamic analyses yields a combined
analysis with many of the positive features of both, includ-
ing both scalability and accuracy.

Our evaluation includes many different combinations of
staged analysis, in both sound and unsound varieties. This
evaluation sheds insight into both the complexity of the
problem and the sorts of analyses that can be effectively
applied to it. We also show how the analysis results can
improve models created by a client analysis.

References

[1] S. Artzi, M. D. Ernst, A. Kiėzun, C. Pacheco, and J. H.
Perkins. Finding the needles in the haystack: Generating
legal test inputs for object-oriented programs. Technical Re-
port MIT-CSAIL-TR-2006-056, MIT CSAIL, Sept. 5, 2006.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. InOOPSLA, pages 324–341, Oct.
1996.

[3] A. Birka and M. D. Ernst. A practical type system and lan-
guage for reference immutability. InOOPSLA, pages 35–49,
Oct. 2004.

[4] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications.STTT, 7(3):212–232, June 2005.

[5] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. InPOPL, pages 232–245, Jan. 1993.

[6] L. R. Clausen. A Java bytecode optimizer using side-
effect analysis. Concurrency: Practice and Experience,
9(11):1031–1045, 1997.

[7] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining object behavior with ADABU. InWODA, pages 17–
24, May 2006.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In
ECOOP, pages 77–101, Aug. 1995.

[9] A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and ef-
fective analysis of statically-typed object-oriented programs.
In OOPSLA, pages 292–305, Oct. 1996.

[10] J. J. Dolado, M. Harman, M. C. Otero, and L. Hu. An empir-
ical investigation of the influence of a type of side effects on
program comprehension.IEEE TSE, 29(7):665–670, 2003.

[11] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support
program evolution.IEEE TSE, 27(2):99–123, Feb. 2001.

[12] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 2000.

[13] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? InPASTE, pages 54–61, June 2001.

[14] L. Mariani and M. Pezz̀e. Behavior capture and test: Auto-
mated analysis of component integration. InICECCS, pages
292–301, 2005.

[15] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. InISSTA, pages 1–11, July 2002.

[16] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical
study of static call graph extractors. InICSE, pages 90–99,
Mar. 1996.

[17] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-
directed random test generation. Technical Report MSR-TR-
2006-125, Microsoft Research, Sept. 2006.

[18] A. Rountev. Precise identification of side-effect-free meth-
ods in Java. InICSM, pages 82–91, Sept. 2004.

[19] A. Rountev and B. G. Ryder. Points-to and side-effect anal-
yses for programs built with precompiled libraries. InCC,
pages 20–36, Apr. 2001.

[20] E. Ruf. Context-insensitive alias analysis reconsidered. In
PLDI, pages 13–22, June 1995.

[21] A. Sălcianu.Pointer analysis for Java programs: Novel tech-
niques and applications. PhD thesis, MIT Dept. of EECS,
Sept. 2006.

[22] A. Sălcianu and M. C. Rinard. Purity and side-effect analysis
for Java programs. InVMCAI, pages 199–215, Jan. 2005.

[23] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. InOOPSLA, pages 281–293, Oct.
2000.

[24] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis
for modular program model checking. InESEC/FSE, pages
188–197, Sept. 2003.

[25] M. S. Tschantz. Javari: Adding reference immutability to
Java. Master’s thesis, MIT Dept. of EECS, Aug. 2006.

[26] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. InOOPSLA, pages 211–230, Oct.
2005.

[27] T. Xie. Augmenting automatically generated unit-test suites
with regression oracle checking. InECOOP, pages 380–403,
July 2006.

10


