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Abstract. Formal techniques for guaranteeing software correctness have
made tremendous progress in recent decades. However, applying these
techniques to real-world safety-critical systems remains challenging in
practice. Inspired by goals set out in prior work, we report on a large-
scale case study that applies modern verification techniques to check
safety properties of a radiotherapy system in current clinical use. Because
of the diversity and complexity of the system’s components (software,
hardware, and physical), no single tool was suitable for both checking
critical component properties and ensuring that their composition implies
critical system properties. This paper describes how we used state-of-the-
art approaches to develop specialized tools for verifying safety properties
of individual components, as well as an extensible tool for composing
those properties to check the safety of the system as a whole. We describe
the key design decisions that diverged from previous approaches and that
enabled us to practically apply our approach to provide machine-checked
guarantees. Our case study uncovered subtle safety-critical flaws in a pre-
release of the latest version of the radiotherapy system’s control software.

Keywords: case study, safety-critical systems, SMT-based verification,
lightweight formal methods

1 Introduction

Formal techniques for guaranteeing software correctness have made tremendous
progress in recent decades. However, applying these techniques to real-world safety-
critical systems remains challenging for three reasons. First, using general-purpose
tools to formally prove deep properties of a system component (e.g., functional
correctness of a cryptographic primitive [6]) requires substantial expertise and
manual effort. Second, many real systems contain components for which effective
formal analysis is still an active research topic (e.g., formally guaranteeing liveness
for a consensus protocol within a distributed system [22]), and thus in practice,
these components can only be analyzed by weaker techniques such as testing or



expert review. Third, even when deep properties can be established for individual
system components, their composition may not add up to overall system safety,
leading to catastrophic failures [25].

This paper reports on a large-scale case study in applying modern verification
techniques to check the safety of a radiotherapy system in current clinical use:
the Clinical Neutron Therapy System (CNTS) at the University of Washington
Medical Center. We describe how to practically address the above challenges with
a combination of techniques that reason at the system and component levels, and
that provide guarantees of varying strength, from automatic proof to manual
review. To check system-level properties (such as “the beam shuts off if physical
settings of the machine do not match the prescription”), we developed and
analyzed a formal model of CNTS in Alloy [1, 26]. Using this model, we obtained
partial specifications of critical component-level properties (such as “the therapy
control software sends a shut-down message if it receives an out-of-tolerance sensor
reading”). To check the resulting component properties, we built a suite of custom
tools, ranging from an SMT-based verifier for properties of the control software
to a manual review processor for properties of the physical components. These
custom tools plug into our safety case checker (SCC), which combines the system
model with the results of the component checks into a mechanized argument—a
form of a safety case [28, 48]—that CNTS satisfies its critical safety properties.

To the best of our knowledge, this case study presents the first formal, machine-
checked safety case for a real system. A typical safety case takes the form of a
structured argument, expressed in natural language or graphical notation [14, 37],
that a system satisfies a desired critical property. This argument decomposes the
system property into a set of component properties, each of which is justified with
concrete evidence (e.g., the results of verification, manual review, or testing). As
massive informal artifacts, however, typical safety arguments suffer from logical
fallacies [21] and are difficult to audit for the presence and sufficiency of evidence.
For these reasons, prior work [42, 43] has called for mechanization of safety case
checking. Our work shows, for the first time, that such mechanization is not only
possible, but that it is both practical and useful. Building on existing verification
frameworks [1, 46], our safety case (including the system model and the component
checkers) consists of just 2700 lines of code, yet its checks uncovered safety-critical
flaws in pre-release versions of the CNTS control software.

Our work differs from prior efforts [10] at safety case mechanization in that
the safety argument is embedded into a formal model of the system. In prior work,
properties of system components are abstracted by uninterpreted predicates, and
a mechanized tool ensures that the logical structure of the argument is sound.
With this approach, missing properties or assumptions about the environment
are discovered through manual auditing. We take a different approach, which
enables us to both check the logical soundness of the argument and mechanically
discover (some kinds of) missing properties. In particular, our safety argument
takes the form S ⇒ P , where S is a model of the system and P is the desired
safety property. The model S specifies the behavior of the system in terms of
the properties s1, . . . , sn of individual components and their interactions. When
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expressed in Alloy, such a model enables both bounded simulation and checking
of abstract executions of the system. Bounded simulation helps ensure that the
model S includes all desirable treatment scenarios (thus guarding against vacuous
fulfillment of the safety argument S ⇒ P ). The checking, on the other hand,
helps detect missing component properties (e.g., “the Ethernet network does not
drop messages”) that are necessary to establish the safety property P .

A component property si serves as a (partial) specification for the implemen-
tation of the component ci in the underlying system. Ideally, each component
ci would be mechanically verified to satisfy si, but such verification is currently
infeasible for many properties (e.g., the reliability of an Ethernet network). Our
safety case therefore employs a pragmatic approach that allows weaker evidence
to be used for these properties. In particular, each property si is guarded by an
uninterpreted predicate, written as evidence(tool, args)⇒ si, which states that
the given external tool establishes the property si for the component ci. When
checking a safety case, SCC invokes the specified external tools to determine
the truth of these predicates, but it does not reason about the strength of the
evidence provided by the tool: the sufficiency of evidence is subject to manual
auditing. Our safety case aids this manual part of the process by making explicit,
and precise, all links from a safety argument to evidence.

The rest of this paper is organized as follows. Section 2 provides an overview
of the CNTS system. Section 3 describes our machine-checked safety case for
CNTS. Section 4 presents SCC and other tools we built as part of the case study.
Section 5 discusses the flaws that these tools helped us find and correct. Section 6
surveys related work, and Section 7 concludes the paper.

2 Overview of CNTS

The Clinical Neutron Therapy System (CNTS) is a radiotherapy machine that
uses neutron radiation to treat tumors resistant to conventional radiotherapy.
Due to the high installation and maintenance costs of neutron-based systems,
CNTS has been in service for over 30 years, and it is one of only three systems
of this kind in the United States. As such, it depends heavily on custom software
developed by CNTS engineers, who have achieved a remarkable safety record,
with no serious misadministrations due to machine or control system problems.

CNTS engineers have re-implemented its therapy control software twice since
1984 [30, 35]. The latest controller [31] is implemented in a subset of the EPICS
(Experimental Physics and Industrial Control System) dataflow language [17],
which is widely used for controlling scientific instruments. This development effort
aims to support new therapies, integrate new software and hardware, and adapt to
changes in the hospital’s systems—with continued safety as the foremost concern.

CNTS as a whole is designed [34] to enforce a number of critical safety
properties, including prescription safety, which is the focus of our work:

Prescription Safety Property (Prx). During treatment, the beam
will turn off if any physical machine setting moves outside the tolerances

3



specified by the prescription and the operator has not issued the manual
override command.1

This property is enforced by a control subsystem, consisting of hardware and
software components, that monitors and drives the system’s physical components.
Our safety case for Prx (Section 3) spans the control subsystem of CNTS, as well
as the physical components involved in a treatment prescription.

Physical Components. The key physical components of CNTS include the
cyclotron, the leaf collimator, the gantry, and the treatment couch. The cyclotron
generates a broad beam of particles, which passes through the leaf collimator in
the gantry head on its way to the patient. The collimator consists of forty steel
leaves that control the shape of the beam. The gantry head also contains a set of
wedges and filters that can be inserted to further adjust the beam’s shape and
intensity. The gantry rotates 360 degrees around the treatment couch so that
the beam can enter the patient from any angle. The couch itself has five degrees
of motion freedom. A treatment prescription specifies settings for all of these
components, and the CNTS control subsystem ensures that each setting remains
within prescribed tolerances during treatment.

Control Subsystem. The CNTS control subsystem is a collection of hardware
and software components, which communicate by exchanging messages through
a private Ethernet network. The components relevant to our safety case include:

Embedded Single-Board Computers interface with motors and sensors for
controlling the physical components of the system. For example, the Treatment
Motion Controller (TMC) monitors the orientation of the couch and the gantry.
Separate computers exist for shaping the neutron beam and for monitoring the
patient’s radiation exposure. These embedded computers were installed by the
original system vendor and are treated as black boxes by CNTS engineers.
Therapy Control (TC) Software displays the user interface on the operator
console, accepts commands from the operator, coordinates the activity of the em-
bedded computers, and helps enforce CNTS safety properties (such as Prx). The
TC, now re-implemented in EPICS, runs on a general-purpose Linux computer.
Programmable Logic Controller (PLC) serves as an interface between the
networked components and the cyclotron control hardware. The PLC is electrically
connected to the Hardwired Safety Interlock System (HSIS), which consists of
a series of mechanical relays. These relays carry power to the radio frequency
amplifiers that accelerate particles in the cyclotron. If any relay is opened, the
cyclotron stops receiving power and the neutron beam shuts off. For example,
if a machine setting moves out of the prescribed tolerances, the TC sends a
signal to the PLC to open an HSIS relay, thus shutting off the beam. The PLC
functionality is implemented using ladder logic [36], and the CNTS staff modifies
and maintains this implementation in addition to the TC.

1 The manual override exists to enable treatment to continue if a sensor for a machine
setting generates a false alarm.
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3 Building a Case for Prescription Safety

This section describes our approach to building a formal, machine-checkable safety
case for a key property of CNTS—prescription safety (Prx). The presentation
focuses on the aspects of case design that enabled us to practically and effectively
check a deep property of a complex system. The tools we developed, and the
results we obtained, are discussed in the following sections. All artifacts comprising
the case can be found on the project’s web page [3].

3.1 Structuring the Case: A System Model with Pluggable Checkers

Our safety case for Prx consists of two parts: (1) a system model S that specifies
partial properties of the components spanned by Prx (Section 2), and (2) a set of
custom tools for checking if those components satisfy the specified properties. The
tools indicate either success or failure, depending on whether a given property
can be established (through some means) for a given component. Our safety case
checker (SCC) connects the model and the tools through uninterpreted predicates
of the form evidence(tool, args), which guard component properties specified by
S (see, e.g., Figure 2). These predicates tell SCC which tools to invoke, and how,
to establish a given property. The SCC collects pass/fail results of running the
tools and uses an off-the-shelf counterexample finder [1] to check that, assuming
the obtained results, S ⇒ Prx. A safety case constructed in this way provides a
high-level safety argument (i.e., the system model S, the system property Prx,
and the predicates describing how the evidence is obtained), which aids manual
auditing, as well as a formal artifact, which enables automatic checking for (some
classes of) safety-critical regressions as the system evolves.

3.2 Making the Case: Diagrams, Models, and Tools

We developed the safety case for Prx in three steps. First, we worked with CNTS
engineers to identify the system components and interactions that are relevant
to Prx, producing an informal, diagrammatic model of the system. This step was
crucial for determining the level of detail at which to model the system, and
to understand the engineers’ concerns—specifically, which properties mattered
most and where to focus our analysis effort. Next, we formalized and refined the
system model in Alloy [1, 26], a widely-used specification language that extends
first-order logic with transitive closure and relational algebra. Throughout the
formalization process, we relied heavily on Alloy’s counterexample finder to detect
errors in logical reasoning, as well as component properties that were missing from
our informal diagrams. Finally, we used the resulting Alloy model—and feedback
from CNTS engineers—to determine where and how to focus our tool-building
effort. We describe each of these steps in more detail below.

Drafting an informal case. To build a safety case for Prx, we first drafted
an informal safety argument, expressed as a property-part diagram [27]. This
kind of diagram shows how components—or parts—of the system relate to each
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Fig. 1. A fragment of the property-part diagram for a part of the Prx property. Boxes
represent system components, and rounded boxes represent properties. Edges originating
from a property indicate that the property depends on the target components or
properties for its fulfillment. Edges originating from a component indicate interaction
via messages. Components within the dashed box are connected via Ethernet.

other and how their individual properties collectively satisfy the desired system
property. Figure 1 shows a fragment of the property-part diagram for Prx that
covers the rotation angle of the treatment couch. The diagram shows how the
top-level property and its sub-properties are established by a combination of other
properties and components. For example, the Programmable Logic Controller
(PLC) and the Hardwired Safety Interlock System (HSIS) jointly ensure that
the beam is turned off when the Therapy Sum relay is opened (disabled). The
informal case for Prx includes similar diagrams for other machine parameters
that are specified by a treatment prescription.

Formalizing the case. To formalize the Prx case, we developed an Alloy model
of the major components of CNTS. These include the therapy control (TC)
software, the Treatment Motion Controller (TMC), the Programmable Logic
Controller (PLC), the Hardwired Safety Interlock System (HSIS), the beam, and
the machine settings involved in a prescription. Our model specifies the internal
states of the components (e.g., whether a given HSIS relay is open or closed)
and their external interactions (e.g., the messages exchanged between the TC
and the embedded computers) in sufficient detail to capture the key behaviors
of the system, such as the beam shutting off when a machine setting enters an
out-of-tolerance state, or the beam staying on due to manual override. The lead
CNTS engineer audited the model to ensure that it accurately describes the
partial properties of the system relevant to the argument.

Figure 2 shows a snippet of our formalization. Lines 7–13 specify a property
of the PLC that is relevant to the case. We model the changes in the state of the
PLC relays and coils as events ordered by the next relation. Relays can be either
open or closed, and coils can be either energized or de-energized. Relay 2754 of the
PLC corresponds to the Therapy Sum Interlock relay in Figure 1. Whenever this
relay is in the open state (line 7), PLC coil 1623 enters a de-energized state, which,
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in turn, electrically signals an HSIS relay to open and cause the beam to shut off
(lines 8–13). Other parts of the system are modeled at a similar level of detail.

1 evidence [ PLC_Analysis ,
2 "--mode" -> "all -paths -to -coil -contain - relay " +
3 "--network -file" -> "plc -code/ cyclotron /mod1.stu" +
4 "--coil" -> "% M1623 " +
5 "--relay " -> "% M2754 ",
6 Proof ] =>
7 all relayOpen : Relay2754 . state & RelayOpen |
8 some coilState : Coil1623 . state & CoilDeenergized ,
9 coilChangeSignal : PLC. sentMsgs & CoilChange |

10 coilState in relayOpen .next and
11 coilChangeSignal in coilState .next and
12 coilChangeSignal .coil = Coil1623 and
13 coilChangeSignal . state = coilState

Fig. 2. A property of the PLC, guarded by an evidence predicate. The property states
that PLC coil 1623 is de-energized when relay 2754 is open. Coil 1623 controls the
neutron beam and relay 2754 is written to by the Therapy Controller (TC)—this is the
mechanism by which the TC shuts off the beam when a machine setting is out of its
prescribed tolerance. The property (lines 7–13) is a formula in the Alloy language [1, 26].
The evidence predicate (lines 1–6) states that the external PLC_Analysis tool (Section 4)
must be called to establish that the PLC satisfies this property.

1 check PrescriptionSafetyCase {
2 all ms: MachineState |
3 ( properties and
4 some badSetting [ms] and
5 not badSettingOverriden [ms ]) =>
6 some off: Beam. state & BeamOff |
7 happensBefore [ms , off]
8 }
9 for 3 but 10 Event , 2 int

Fig. 3. The Alloy formulation of the Prx property. For all machine states, if all
component properties (e.g., Figure 2) hold, a machine setting is out of prescribed
tolerances in that state, and the manual override has not been enabled for that machine
setting, then a “beam off” event must occur after the given state.

While formalizing the case, we relied heavily on the Alloy Analyzer [1] to
discover soundness and vacuity errors in our argument. Checking that the model
is sound (permits no behavior that violates Prx) let us detect missing component
properties (e.g., the Ethernet network does not drop messages), and checking
that the model is not vacuous (permits some behaviors that satisfy Prx) let us
detect accidental contradictions in the formalization. To check for soundness
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errors, we asked the Analyzer to verify that our model of CNTS implies Prx for
all event sequences of length up to ten, as shown in Figure 3. The bound of ten
encompasses all known treatment scenarios and is thus large enough to prevent
Prx from being vacuously fulfilled. To check this, we asked the Analyzer to verify
that a bound of ten events is sufficient to simulate treatment scenarios in which
(1) the beam remains on because the machine settings remain within tolerance;
(2) a setting goes out of tolerance, but the beam shut off is manually overridden;
and (3) the beam shuts off due to an out-of-tolerance setting and the absence of
manual override. All of these checks explore massive potential state spaces (on
the order of 22800 states), and all pass in seconds.

Building Tools. Having formalized the case, we used it to decide what tools to
build in order to establish the specified component properties. In particular, we
determined the tool interfaces by going through the model and systematically
annotating all component properties with evidence predicates, as shown in
Figure 2. An evidence predicate evaluates to true if and only if the specified tool
indicates success when invoked with the given arguments. For example, lines 1–6
in Figure 2 state that the evidence (a proof) for the PLC property is produced
by the PLC analysis tool (Section 4), invoked with the specified parameters. We
determined what kind of evidence was practically sufficient for each component
(e.g., a proof, passing tests, or manual review) based on the feedback from CNTS
engineers. This process of connecting properties with evidence was crucial in
focusing our analysis effort (Section 5): building a tool that proves a narrow class
of properties is much easier than building a general-purpose verifier. Our safety
case both articulated these properties and helped guide the construction of tools
for checking them.

4 Tools and Analyses

This section surveys the tools that we built to produce and check evidence
for the Prx safety case described in Section 3. We focused the analysis effort
on the components that are directly modified by the CNTS engineers: the
Therapy Control (TC) software and the Programmable Logic Controller (PLC).
In particular, we built a linter and an SMT-based verifier for the subset of EPICS
in which TC is written, a static analyzer for (a narrow class of) properties of PLC
ladder logic code, and a static analyzer for the EPICS-PLC interface code. We
relied on expert approval and manual review of documentation to establish the
relevant properties of the embedded computers, the Hardwired Safety Interlock
System (HSIS), the Ethernet network, and the physical components. The presence
of this expert evidence was checked using a simple text-processing tool. We also
built a safety case checker (SCC) to connect our formal model of CNTS (Section 3)
with the results produced by the tools. We describe each of these tools in more
detail below, highlighting how the safety case guided our choice of analyses, their
construction, and their application.
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Safety Case Checker (SCC). Our safety case checker (SCC) automates the
integration of external evidence-generating tools into a formal safety argument,
expressed with respect to a model of the system. We chose the Alloy language and
the Alloy Analyzer as our toolset for system-level reasoning. However, a similar
checker could also be created for other formal frameworks (e.g., [9, 40, 41]).

1 procedure SCCCheck (S, P, universe_size ):
2 I[ evidence ] ← {} // partial interpretation
3 for evidence [tool , args , kind] in FindEvidencePredicates (S):
4 result ← InvokePluggableChecker (tool , args)
5 if result = true:
6 I[ evidence ] ← I[ evidence ] ∪ {〈 tool , args , kind 〉}
7 return AlloyCheckSAT (S ∧ ¬ P, I, universe_size )

Fig. 4. Overview of the algorithm used by our safety case checker.

The SCC consists of two parts: (1) an extension to the Alloy language, and
(2) a checker for this language extension that is based on the Alloy Analyzer.
The language is extended with a small library that provides the uninterpreted
evidence predicate. In particular, the formula evidence[tool, args, kind] represents
the presence (or absence) of the given kind of evidence, produced by invoking
the specified tool on the provided arguments. The checker, as shown in Figure 4,
provides an interpretation for each evidence predicate in a safety case by performing
the specified tool invocation and recording the result in Alloy. This invocation
is performed through a simple plug-in interface, designed for easy addition of
new tools to the checker. The resulting interpretation I gives meaning only to
the evidence predicates, and, as such, it is a partial interpretation [44, 47] for the
safety case S ⇒ P , which includes additional relations (e.g., the next relation in
Figure 2). The checker passes I and S ∧ ¬P to the Alloy Analyzer, which checks
that I cannot be extended into a finite counterexample to the safety case—i.e.,
an interpretation I ′ ⊇ I that satisfies S ∧ ¬P in a finite universe of discourse.
The results of SCC verification are sound up to the bound on the universe size,
modulo any bugs in the implementation of SCC and the pluggable checkers.

EPICS Verifier We focused our most advanced analysis, a fully automated
verifier for a subset of the EPICS language, on the newest component of the
system, the Therapy Control (TC) software. This tool uses an SMT solver to
verify safety properties of programs written in a subset of EPICS that includes
all code from CNTS. Because the Therapy Control software is finite-state, with
bounded execution length and memory consumption, our EPICS verifier is both
sound (it does not miss defects) and complete (it does not report false positives)
for CNTS. The Prx case uses the verifier to prove that the therapy control
software initiates beam shut-off whenever it receives an out-of-tolerance reading
from a sensor (see, e.g., Figure 5).

The verifier builds on Rosette [45], a language for constructing verification
and synthesis tools based on SMT solvers. It takes as input an EPICS dataflow
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program and a safety property, symbolically interprets the program on an arbitrary
state and input event, and then invokes the Z3 solver [11] to check that the
property holds in the resulting state. The output is either a guarantee that the
property holds, or a concrete state and input event (a counterexample) that
causes the program to violate the property.

An EPICS dataflow program is a graph consisting of edges, called links, and
nodes, called records, along with configuration settings and initial values for
each record. At run time, the EPICS interpreter behaves as a reactive system,
responding to events (such as arrival of input from external devices or expiration
of a timer) by updating the state of the graph and possibly sending output to
external devices. In contrast to traditional dataflow systems, which automatically
update all dependent values when an input value changes, the EPICS language
gives the programmer explicit control over all data flow and control flow in the
program. Moreover, EPICS code can modify the structure of the dataflow graph
at run time, adding or removing edges, as well as modifying record configurations,
such as the expression evaluated in a record. These dynamic features make it
challenging to verify general EPICS code.

Unlike general EPICS programs, however, CNTS code is amenable to verifica-
tion because it does not use the dynamic features of EPICS. Since EPICS forbids
dynamic memory allocation and guarantees termination of event handlers, all
EPICS programs with no dynamic features are finite-state, and their executions
have bounded length. As a result, our verifier can automatically prove deep
properties of CNTS code, without requiring loop invariants or imposing artificial
bounds on heap size and execution length. Our verifier uncovered a safety-critical
bug in a production version of the CNTS therapy control software, in addition
to a subtle dependence of a pre-release version of the software on a bug in the
EPICS runtime, as described in Section 5.1.

1 ( define (couch -wrong -implies -beam -off)
2 ( process_IsoGantryCouchTurntableActual )
3 ( assert (=>
4 (and
5 (> (abs (- prescribed actual )) tolerance )
6 (= couch - override 0)
7 (= mode 0))
8 (= beam - interlock 0))))

Fig. 5. A property of the CNTS therapy control software verified with the EPICS
verifier. It states that, after a couch turntable angle reading is processed (line 2), the
beam interlock is triggered (“beam off”) if the couch turntable’s actual rotation differs
from the prescription by more than the tolerance, the manual override is disabled, and
the machine is in therapy mode.

EPICS Linter The EPICS linter establishes a basic well-formedness property
assumed by our verifier: all record links (i.e., dataflow edges) in a program refer
to valid records. EPICS does not otherwise report broken links, instead assuming
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that missing records will be provided by other EPICS instances on the same local
network. Ensuring that all links are valid implies that a given EPICS program
contains all code relevant to the analysis. Our linter uncovered several issues in
the therapy control code, described in Section 5.1.

EPICS-PLC Interface Checker The EPICS-PLC interface checker ensures that
a given EPICS record is connected to a particular PLC relay. This requires
analyzing both the EPICS program and a separate startup script that initializes
communication with the PLC. The Prx safety case, for example, uses the interface
checker to ensure that the EPICS Therapy Sum Interlock record is properly
connected to the PLC Therapy Sum Interlock relay.

PLC Checker The PLC checker analyzes the graph of connections between coils,
relays, and the power source in a ladder logic program. This checker provides two
analyses that are useful for the Prx case. First, it can check that a named relay’s
state is not updated by any other element within the PLC. Second, it can check
that all paths from the power source to a named coil pass through a named relay,
thus guaranteeing that the coil is energized only when the relay is closed. In
the Prx safety case, these checks establish that the Therapy Sum Interlock relay
in the PLC is modified only as a result of messages from the therapy control
software, and that opening the Therapy Sum Interlock relay must de-energize
the PLC coil connected to the Hardwired Safety Interlock System (HSIS).

Expert Evidence The expert evidence tool allows an expert to assert that a
component property holds based on manual inspection of some part of the system.
After examining the property in question, the expert creates a text document
explaining in prose the nature of the inspection and the evidence that supports
the property, along with the expert’s name and the current date to support
future auditing. For example, the configuration of the CNTS HSIS is defined by
a non-machine-readable circuit diagram, so the Prx safety case relies on expert
inspection to establish properties of the HSIS. In general, our case relies on expert
evidence only for claims that would be impractical to support otherwise.

5 Results and Discussion

This section presents the results of developing a mechanically-checkable safety
case for Prx, and the lessons learned from our experience. Developing the case
uncovered several issues in the new therapy control software for CNTS, including
two safety-critical defects. We also found that structuring the case as a system
model with pluggable checkers focused our analysis effort, enabling us to perform
deep checks of a complex system, while writing only 2700 lines of code.

5.1 Issues Uncovered

Through the construction of the Prx case, we found several previously unknown
issues in a pre-release version of the CNTS therapy control software, and we
rediscovered an issue that the CNTS engineers found during a production test
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run. We discuss these issues first, and conclude by briefly describing a problem
that we found in the system model itself.

Array Semantics While developing the part of the case related to the setting of
the couch rotation angle, we discovered a serious issue in the therapy control code
and in a major component of the EPICS runtime. The issue concerns array calcula-
tions, which are performed using EPICS records of type acalcout. An acalcout record
performs calculations over arrays of a statically specified length. All intermediate
values in the computation are truncated or padded with zeros to match this length.

The affected calculation in the therapy control software uses an “in-place slice”
operator that retains elements between two given indices and zeroes the rest. In
the documentation [16], the bounds on this operator are both inclusive, but in
the version of acalcout used in CNTS, the upper bound is erroneously treated as
exclusive. The therapy control software behaves correctly under the exclusive
semantics, but upgrading to a version of acalcout that correctly implements the
inclusive semantics would introduce subtle errors into several calculations in the
therapy control software. Our EPICS verifier, initially implemented using the
inclusive semantics, detected one such error in the computation of a flag sent to the
PLC to control the neutron beam, for which sending the wrong value may cause
the beam to fail to turn off when a sensor reading is out of prescribed tolerances.
Due to this issue, the CNTS engineers cannot safely upgrade this essential
library—correct behavior of the software depends upon the library bug. The
CNTS engineers were unaware of this problem until our EPICS verifier revealed it.

Gantry Rotation Early in the first production run of the new therapy control
software, the CNTS engineers identified a safety-critical flaw in the checking of
the gantry rotation angle. The gantry angle measurement ranges from −0.5◦ to
+360.5◦, and the intent when developing the gantry rotation checks was to treat
pairs of angles separated by 360◦ as equivalent, so that a rotation measurement
of 360◦ would satisfy a prescription for 0◦. However, an error in the arithmetic
used in the check caused the system to treat as equivalent any pair of angles
equally distant from 180◦; for example, a measurement of 200◦ would satisfy a
prescription for 160◦. This error could have allowed the beam to turn on and
remain on with the gantry rotation set to an incorrect angle.

Before we had completed the relevant portion of the Prx case, the CNTS
engineers notified us that the code contained a bug involving the gantry rotation
angle, but provided no other details. When we completed the case, SCC detected
an error: the EPICS verifier, when asked to prove that the therapy control
software triggered the Therapy Sum Interlock upon receiving an out-of-tolerance
gantry rotation measurement, instead produced a counterexample containing a
rotation measurement and prescription value that erroneously failed to trigger the
interlock. We investigated the relevant EPICS code to identify the root cause of
the bug and confirmed the details with the EPICS engineers. After applying their
fix to the CNTS EPICS code, SCC processed the Prx safety case without errors.

Broken Links Our EPICS linter uncovered a total of 59 references to nonexis-
tent records in the therapy control software. Three of these represented serious
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problems: they were caused by a misspelled record name, which would prevent the
operator from being informed of certain error conditions. The CNTS engineers
fixed these issues promptly. Another three turned out to be harmless remnants
from an earlier code removal. The remaining 53 links refer to records that should
have been annotated as nonlocal, since they exist in a separate EPICS installation
that is accessed transparently over the network at runtime. The CNTS engineers
are investigating how to annotate these nonlocal links.
Case Error Our initial formalization of the Prx case contained an error, arising
from a misunderstanding about the design of the system: the case claimed that
an invalid couch rotation would cause the therapy control software to open
the PLC’s Gantry/Couch Subsystem Interlock relay, and the PLC would then
internally open its Therapy Sum Interlock relay. But while trying to formulate the
corresponding evidence invocation, we were unable to find the PLC relay number
for the Gantry/Couch Subsystem Interlock. In fact, no such relay exists. The
therapy software, not the PLC, combines Gantry/Couch Subsystem and other
interlocks to compute the Therapy Sum, and it sends the combined Therapy
Sum Interlock state to the PLC. Our strategy of connecting every component
property to concrete evidence directly led to our discovery of this modeling error.

5.2 Performance

Analysis Time (s)

EPICS verifier 3183.9
EPICS linter 0.9
EPICS-PLC interface checker 0.4
PLC ladder logic checker 0.4
Alloy Analyzer 4.1

Total (including overhead) 3190.0

Codebase Size

PLC 5222 nodes, 10870 edges
TC 5448 lines

Prx case 645 lines
SCC library 85 lines
EPICS tools 1666 lines
PLC checker 298 lines

Fig. 6. Total analysis time for the Prx case (left), sizes of the CNTS software
components analyzed as part of the case (right, above the line), and sizes of the system
model and tools that make up the case (right, below the line). The performance data
was collected on a Debian 8 laptop with an Intel Core i7-4900MQ CPU running at
2.80GHz with 16GB RAM.

As shown in Figure 6, end-to-end checking of our safety case takes less than an
hour. The figure also shows the sizes of the codebases processed by our analysis
tools. The PLC software is developed in a non-textual representation, so we
report its size in terms of nodes (relays, coils, and other logic elements) and
edges (wires) in the ladder logic graph. The size of the therapy control codebase
includes both the EPICS dataflow graph definitions and the startup script used
to load the graph and initialize communication between the therapy software
and external hardware. The system model for the Prx case is specified in Alloy,
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extended with the SCC evidence library. The EPICS tools (the linter, verifier, and
connection checker) share a common codebase, so they are reported together.
Most of the common codebase is related to parsing; only 57 lines are specific
to the linter, 441 are specific to the EPICS verifier, and 61 are specific to the
EPICS-PLC interface checker. The case, in total, consists of 2700 lines of code.

5.3 Lessons Learned

Developing our safety case for CNTS led to three primary insights.

1. System Model as Safety Case Our decision to base the case on a detailed
system model rather than a propositional formula (with component properties
represented by uninterpreted predicates) enabled us to detect errors in the case
with minimal auditing effort. A missing property in an Alloy model results in
a concrete counterexample (an execution of the system that violates the safety
property), whereas a missing premise in a propositional argument can be detected
only through manual auditing. For example, our safety case for Prx initially
failed to specify that the ethernet network does not drop any packets. The Alloy
Analyzer produced a counterexample, showing a scenario in which a dropped
packet led to a violation of Prx. Using a detailed Alloy model helped us not only
ensure that relevant component properties are stated, but also that our argument
is not vacuous (because the system model has no executions).

2. Simple Safety Case Checking The decision to implement our safety case
checker (SCC) on top of Alloy significantly eased the development burden while
providing us with ready-made automated analysis and visualization facilities.
Initially, we had planned to implement SCC using a custom language to handle
reasoning about the model and external evidence, as proposed in previous work [10,
12, 18, 19]. However, as part of the development of SCC, we chose to first prototype
it directly in Alloy. From this prototype, the general design pattern for evidence
predicates emerged, allowing us to easily connect additional external checkers to
SCC, leading to a suite of lightweight but effective tools for the Prx case.

3. Deep and Narrow Custom Tools We found case-guided tool development
to be highly effective since it focused our efforts on the important properties of
each component. With only 1964 lines of code, we built four custom tools for
CNTS that check a narrow class of properties each, as specified by our system
model. The integration of these tools into SCC was eased by its simple plug-in
architecture. To add a new tool, the tool developer simply registers a plugin,
consisting of a small Python script that can invoke the tool and interpret its
output to determine success or failure. In particular, the need for the EPICS-PLC
connectivity checker became apparent only late in the development of the Prx
case, but because we had already implemented the plug-in architecture for SCC,
we were able to both develop and integrate this checker in less than a day.
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6 Related Work

There is a large body of literature on ensuring safety of critical systems (see,
e.g., [28, 38] for a survey). This section surveys the most closely related work,
focusing on previous safety efforts at CNTS, methodologies for ensuring safety of
complex systems, languages for expressing safety cases, and symbolic techniques
for checking properties of software components.

CNTS Safety The CNTS engineering staff has, over the years, produced a large
collection of heterogeneous evidence [29] in support of CNTS safety properties,
including Prx. This includes a 200-page document detailing system requirements,
developed in consultation with physicists and clinicians; a 2,100 line Z specifica-
tion [30] of the Therapy Control software; a 16,000 LOC reference implementation
of the Z specification in C (in use until July 2015); a 240-page reference man-
ual [33]; a 43-page therapist guide [32]; and an extensive set of end-to-end testing
protocols that are executed on a daily, weekly, monthly, and yearly basis. How-
ever, none of these prior efforts produced an explicit, mechanically checked safety
argument. Our Prx safety case is the first such argument to be created for CNTS,
and its creation has already led to improvements in the new CNTS software.

Approaches to Safety Traditional approaches to system safety are process-based.
Systems like CNTS or the Mars rover [24] are developed according to strict best
practices, by highly skilled engineers. At the system level, these practices involve
detailed requirements, documentation, hazard analysis, and formalization of key
parts of the system design. At the code level, they include adherence to stringent
coding conventions (see, e.g., [23]), manual code reviews, use of static analysis,
and extensive testing. Process-based approaches are highly effective at producing
low-defect code. However, they provide no explicit argument that the system as
a whole satisfies critical properties.

Our work builds on case-based approaches to safety (e.g., [25, 28, 37, 39]).
These approaches aim to produce an explicit argument [25] that links claims about
component behavior to concrete evidence in the form of tests, proofs, manual
reviews, etc. Our approach to developing the Prx case is most closely related to
that of Near et al. [39]. We also used property-part diagrams [27] to first develop
an informal case, which we then formalized in Alloy [1, 26]. But Near et al. do not
connect their system-level argument to evidence; instead they use an interactive
analysis to produce evidence obligations only for the software component of their
target system. Our approach, in contrast, uses SCC to connect the system model
to evidence generated by a variety of tools, including a fully automatic code
verifier. To our knowledge, our case study is also the first to analyze low-level
Programmable Logic Controllers as well as the system’s software.

Languages for Expressing Safety Cases Existing languages and tools for de-
veloping dependability cases (e.g., [13, 37]) focus on managing the structure
of a case. In these languages, a safety case takes the form of a semi-formal
argument expressed in a graphical notation [37], with safety claims linked to
evidence from heterogeneous sources. SCC, in contrast, focuses on expressing the
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safety argument with respect to a detailed formal model of the system, linked to
tool-generated evidence. This approach enables automated reasoning about the
logical correctness and non-vacuity of the safety argument.

In terms of automation, SCC is most closely related to the Evidential Tool
Bus (ETB) [10]. The ETB is a general-purpose framework for tool integration,
for scripting distributed workflows, and for connecting claims with supporting
evidence. Its input language is a variant of Datalog. SCC shares with the ETB
the idea of a semantics-neutral connection between claims and evidence, using
uninterpreted predicates. In contrast to the ETB, however, SCC provides a more
expressive formal language (with quantifiers and transitive closure), suitable for
system modeling. SCC also provides, via Alloy, automatic soundness and vacuity
checking, as well as facilities for counterexample visualization. We made heavy
use of these features while developing the Prx safety case.

Software Verification There is a wide variety of verification tools (e.g., [2, 4, 5, 7,
8, 15, 20, 49]) for general-purpose programming languages. These tools are hard
to build, requiring significant effort and expertise. As a result, they are rarely
created for more specialized languages, such as EPICS. Our EPICS verifier is, to
our knowledge, the first of its kind. Its implementation leverages Rosette [45, 46],
a language designed for easy creation of domain-specific verification and synthesis
tools based on SMT. Our verifier scales to real EPICS programs and is capable
of finding subtle flaws that cannot be found without symbolic reasoning.

7 Conclusion

This paper reported on a case study in applying modern verification techniques to
construct the first mechanically-checked safety case for a real safety-critical system,
the Clinical Neutron Therapy System (CNTS). Our safety case includes a detailed
formal model of CNTS and a set of tools for establishing component properties
specified by the model. Leveraging existing formal tools, Alloy and Rosette, we
built the entire case by writing just 2700 lines of code. The construction of
the case revealed serious flaws in the CNTS therapy control software and in
the implementation of the EPICS language, which we reported to the CNTS
staff. Our results demonstrate that formal, checkable safety cases can provide
significant practical benefits by focusing analysis effort on deep properties of
system components that matter for the safety of the system as a whole.
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