
Combined Static and Dynamic
Automated Test Generation

Sai Zhang

University of Washington

Joint work with:

David Saff, Yingyi Bu, Michael D. Ernst

1

Unit Testing for Object-oriented Programs

 Unit test = sequence of method calls + testing oracle

 Automated test generation is challenging:

 Legal sequences for constrained interfaces
 Behaviorally-diverse sequences for good coverage
 Testing oracles (assertions) to detect errors

2

Unit Testing a Database Program

public void testConnection() {

 Driver driver = new Driver();

 Connection connection =

 driver.connect("jdbc:tinysql");

 Statement s = connection.createStmt();

 s.execute("create table test (name char(25))");

 s.close();

 connection.close();

}

Constraint 1:

Method-call orders

Constraint 2:

Argument values

It is hard to create tests automatically!

3

1

2

3

Palus: Combining Dynamic and
Static Analyses

 Dynamically infer an object behavior model

from a sample (correct) execution trace

 Capture method-call order and argument constraints

 Statically identify related methods

 Expand the (incomplete) dynamic model

 Model-Guided random test generation

 Fuzz along a specific legal path

4

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

5

Overview of the Palus approach

Program

Under Test

A Sample

Trace

JUnit Theories

(Optional)

Dynamic

Model Inference

Static Method

Analysis

Guided Random

Test Generation

JUnit Tests

Inputs:

Outputs:

Dynamic Model

 Method

Dependence

Testing Oracles

6

(1) Dynamic Model Inference

 Infer a call sequence model for each tested class

 Capture possible ways to create legal sequences

 A call sequence model

 A rooted, acyclic graph

 Node: object state

 Edge: method-call

 One model per class

7

An Example Trace for Model Inference

Driver d = new Driver()

Connection con = driver.connection(“jdbc:dbname”);

Statement stmt1 = new Statement(con);

stmt1.executeQuery(“select * from table_name”);

stmt1.close();

Statement stmt2 = new Statement(con);

stmt2.executeUpdate(“drop table table_name”);

stmt2.close();

con.close();

8

Model Inference for class Driver

Driver d = new Driver();

9

A

B

Driver class

<init>()

Model Inference for class Connection

Connection con = driver.connect(“jdbc:dbname”);

Nested calls are omitted for brevity 10

C

D

Driver.connect(“jdbc:dbname”)

Connection class

A

B

Driver class

<init>()

Connection con = driver.connect(“jdbc:dbname”);

con.close();

Nested calls are omitted for brevity

Model Inference for class Connection

11

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Connection class

A

B

Driver class

<init>()

Model Inference for class Statement

Statement stmt1 = new Statement(con);

stmt1.executeQuery(“select * from table_name”);

stmt1.close();

A

B

Driver class

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Construct a call sequence model for each observed object

F

Statement stmt1

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

Connection class

<init>()

12

Model Inference for class Statement

Statement stmt2 = new Statement(con);

stmt2.executeUpdate(“drop table table_name”);

stmt2.close();

A

B

Driver class

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

I

K

close()

J

L

executeUpdate(“drop * ..”);

<init>(Connection)

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Construct a call sequence model for each observed object

<init>()

13

Connection class Statement stmt1 Statement stmt2

Merge Models of the Same class

Merge

Merge models for all objects to form one model per class

A

B

Driver class Connection class

I

K

close()

J

L

executeUpdate(“drop * ..”);

<init>(Connection)

Statement stmt2

C

D

E

close()

Driver.connect(“jdbc:dbname”) <init>()

14

F

Statement stmt1

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

Call Sequence Model after Merging

15

A

B

Driver class

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Connection class

<init>()

F

Statement class

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

executeUpdate(“drop * ..”);

Enhance Call Sequence Models with
Argument Constraints

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

executeUpdate (“drop * ..”);

Invoking the constructor requires
a Connection object

But, how to choose a desirable
Connection object ?

16

Statement class

Argument Constraints

 Argument dependence constraint
 Record where the argument object values come from

 Add dependence edges in the call sequence models

 Abstract object profile constraint
 Record what the argument value “is”

 Map each object field into an abstract domain

 as a coarse-grained measurement of “value similarity”

17

Argument Dependence Constraint

 Represent by a directed edge (below)

 Means: transition F G has data dependence on node D, it uses

the result object at the node D

 Guide a test generator to follow the edge to select argument

A

B

<init>

Driver class

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)
C

D

E

close()

Driver.connect(“jdbc:dbname”)

executeUpdate(“drop * ..”);

18 Connection class Statement class

Abstract Object Profile Constraint

 For each field in an observed object

 Map the concrete value an abstract state

 Numeric value > 0, = 0, < 0

 Object = null, != null

 Array empty, null, not_empty

 Bool /enum values not abstracted

 Annotate model edges with abstract object profiles of

the observed argument values from dynamic analysis

 Guide test generator to choose arguments similar to what was

seen at runtime

19

Annotate Model Edges with Abstract
Object Profiles

 Class Connection contains 3 fields
 Driver driver; String url; String usr;

 All observed valid Connection objects have a profile like:
{driver != null, url != null, usr != null}

 Annotate the method-call edge: <init>(Connection)

Argument Connection’s profile:
{driver != null, url != null, usr !=null}

Palus prefers to pick an argument with the same profile,

when invoking : <init>(Connection)

20

(2) Static Method Analysis

 Dynamic analysis is accurate, but incomplete

 May fail to cover some methods or method invocation orders

 Palus uses static analysis to expand the dynamically-

inferred model

 Identify related methods, and test them together

 Test methods not covered by the sample trace

21

Statically Identify Related Methods

Two methods that access the same fields may be related

(conservative)

 Two relations:

 Write-read: method A reads a field that method B writes

 Read-read: methods A and B reference the same field

22

Statically Recommends Related Methods
for Testing

 Reach more program states

 Call setX() before calling getX()

 Make the sequence more behaviorally-diverse

 A correct execution observed by dynamic analysis will never

contain:
 Statement.close();

 Statement.executeQuery(“…”)

 But static analysis may suggest to call close() before
executeQuery(“…”)

23

Weighting Pair-wise Method Dependence

 tf-idf weighting scheme [Jones, 1972]

 Palus uses it to measure the importance of a field to a method

 Dependence weight between two methods:

24

(3) Model-Guided Random Test Generation:
 A 2-Phase algorithm

• Phase1:
 Loop:

 1. Follow the dynamically-inferred model to select
methods to invoke

 2. For each selected method
 2.1 Choose arguments using:
 - Argument dependent edge
 - Captured abstract object profiles
 - Random selection
 2.2 Use static method dependence information to
 invoke related methods

• Phase 2:
 Randomly generate sequences for model-uncovered methods
 - Use feedback-directed random test generation [ICSE’07]

25

Specify Testing Oracles in JUnit Theory

 A project-specific testing oracle in JUnit theory

 @Theory
 public void checkIterNoException(Iterator it) {

 assumeNotNull(it);

 try {

 it.hasNext();

 } catch (Exception e) {

 fail(“hasNext() should never throw exception!”);

 }

 }

Palus checks that, for every Iterator object, calling hasNext()

should never throw exception!

26

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

27

Research Questions

 Can tests generated by Palus achieve higher

structural coverage

 Can Palus find (more) real-world bugs?

 Compare with three existing approaches:

28

Approaches Dynamic Static Random

Randoop [ICSE’07] ●

Palulu [M-TOOS’06] ● ●

RecGen [ASE’ 10] ● ●

Palus (Our approach) ● ● ●

Subjects in Evaluating Test Coverage

 6 open-source projects

Program Lines of Code

tinySQL 7,672

SAT4J 9,565

JSAP 4,890

Rhino 43,584

BCEL 24,465

Apache Commons 55,400

Many

Constraints

Few

Constraints

29

Experimental Procedure

 Obtain a sample execution trace by running a simple

example from user manual, or its regression test suite

 Run each tool for until test coverage becomes saturated,

using the same trace

 Compare the line/branch coverage of generated tests

30

Test Coverage Results

Palus increases test coverage

 Dynamic analysis helps to create legal tests

 Static analysis / random testing helps to create behaviorally-

diverse tests

 Palus falls back to pure random approach for programs

with few constraints (Apache Commons)
 31

Approaches Dynamic Static Random Avg Coverage

Randoop [ICSE’07] ● 39%

Palulu [M-TOOS’06] ● ● 41%

RecGen [ASE’ 10] ● ● 30%

Palus (Our approach) ● ● ● 53%

Evaluating Bug-finding Ability

 Subjects:

 The same 6 open-source projects

 4 large-scale Google products

 Procedure:

 Check 5 default Java contracts for all subjects

 Write 5 simple theories as additional testing

oracles for Apache Commons, which has partial spec

32

Finding Bugs in 6 open-source Projects
 Checking default Java language contracts:

 E.g., for a non-null object o: o.equals(o) returns true

 Finds the same number of bugs as Randoop

 Writing additional theories as testing oracle

 Palus finds one new bug in Apache Commons

 FilterListIterator.hasNext() throws exception

 Confirmed by Apache Commons developers 33

Dynamic Static Random Bugs

Randoop [ICSE’07] ● 80

Palulu [M-TOOS’06] ● ● 76

RecGen [ASE’ 10] ● ● 42

Palus (Our approach) ● ● ● 80

Finding Bugs in 4 Google Products

 4 large-scale Google products

 Each has a regression test suite with 60%+ coverage

 Go through a rigorous peer-review process

Google Product Number of tested classes

Product A 238

Product B 600

Product C 1,269

Product D 1,455

34

Palus Finds More Bugs

 Palus finds 22 real, previously-unknown bugs

 3 more than existing approaches

 Primary reasons:

 Fuzz a long specific legal path

 Create a legal test, diversify it, and reach program states

that have not been reached before 35

Dynamic Static Random Bugs

Randoop [ICSE’07] ● 19

Palulu [M-TOOS’06] ● ● 18

RecGen [ASE’ 10] ● ● --

Palus (Our approach) ● ● ● 22

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

36

Related Work
 Automated Test Generation

 Random approaches: Randoop [ICSE’07], Palulu [M-Toos’06],

RecGen[ASE’10]

 Challenge in creating legal / behaviorally-diverse tests

 Systematic approaches: Korat [ISSTA’02], Symbolic-execution-

based approaches (e.g., JPF, CUTE, DART, KLEE…)

 Scalability issues; create test inputs, not object-oriented

method sequences

 Capture-replay -based approaches: OCAT [ISSTA’10], Test

Factoring [ASE’05] and Carving [FSE’05]

 Save object states in memory, not create method sequences

 Software Behavior Model Inference

 Daikon [ICSE’99], ADABU [WODA’06], GK-Tail [ICSE’08] …

 For program understanding, not for test generation 37

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

38

Future Work

 Investigate alternative ways to use program analysis

techniques for test generation

 How to better combine static/dynamic analysis?

 What is a good abstraction for automated test

generation tools?

 We use an enhanced call sequence model in Palus, what

about other models?

 Explain why a test fails

 Automated Documentation Inference [ASE’11 to appear]

 Semantic test simplification

39

Contributions

 A hybrid automated test generation technique

 Dynamic analysis: infer model to create legal tests

 Static analysis: expand dynamically-inferred model

 Random testing: create behaviorally-diverse tests

 A publicly-available tool

 http://code.google.com/p/tpalus/

 An empirical evaluation to show its effectiveness

 Increases test coverage

 Finds more bugs

40

Backup slides

Sensitivity to the Inputs

 Investigate on two subjects: tinySQL and SAT4J

 This approach is not very sensitive to the inputs

 Not too many constraints in subjects?

Subject Input Size Coverage

tinySQL 10 SQL Statements 59%

ALL Statements from Manual 61%

SAT4J A 5-clause formula 65%

A 188-clause formula 66%

A 800-clause formula 66%

Breakdown of Contributions in
Coverage Increase

