
Tools for Enforcing and Inferring Reference Immutability i n Java

Telmo Luis Correa Jr. Jaime Quinonez Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

telmo@csail.mit.edu jaimeq@csail.mit.edu mernst@csail.mit.edu

Abstract
Accidental mutation is a major source of difficult-to-detect
errors in object-oriented programs. We have built tools that
detect and prevent such errors. The tools include a javac
plug-in that enforces the Javari type system, and a type
inference tool. The system is fully compatible with existing
Java programs.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—data types;
F.3.1 [Logics and Meaning of Programs]: Specifying and
Reasoning and Verifying about Programs; D.1.5 [Program-
ming Techniques]: Object-oriented Programming
Keywords assignable, immutability, Java, Javari, mutable,
readonly, side effects, type system, verification

1. Introduction
Accidental mutation errors are difficult to detect, since the
unintended mutation itself is not different from other muta-
tions that happen throughout the program, and a mutation
error is not immediately detected at run time. We present a
type-system based solution to the accidental mutation prob-
lem.

Javari [6] is an extension of the Java language that per-
mits the specification and compile-time verification of im-
mutability constraints. Programmers can state the mutability
and assignability of references using a small set of type an-
notations. The extension is implemented through Java anno-
tations, keeping the code backwards compatible.

We have built two related tools: the Javarifier, an imple-
mentation of a type inference algorithm for Javari, and the
Javari type checker, a plug-in for the javac compiler that en-
forces the annotations related to immutability.

The Javarifier can be used to automatically annotate ex-
isting code, enabling Javari to be more easily adopted and
preventing accidental mutability errors in future code that
uses the annotated code. The Javari checker is a javac plug-

Copyright is held by the author/owner(s).

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-786-5/07/0010.

in that enforces the Javari annotations, detecting incorrect
mutations in a program.

The Javari language toolset can be downloaded from
http:/pag.csail.mit.edu/javari.

2. Short overview of Javari
The Javari language [5, 6] was designed to fulfill the follow-
ing goals:

Non-conversible:a readonly reference cannot be assigned
to a mutable reference (after which it might be modified).
Transitive: the provided immutability is deep through fields,
allowing reasoning about an object’s abstract state.
Flexible: parts of an object’s concrete state can be excluded
from an object’s abstract state.
Compatible: the language is backwards compatible with
existent Java code.
Usable:the language should be intuitive to programmers.

Javari’s type system has a number of differences from
previous immutability proposals. Instead of object immutabil-
ity, it offers reference immutability, which is more flexible:
the same object may be referenced by read-only and muta-
ble references, and can still provide guarantees about code
that manipulates the readonly references. This permits, for
example, returning a readonly reference to an existing ob-
ject, instead of making a copy to preserve its original state.
Javari’s guarantee is transitive: no state may be modified
when accessed through an immutable reference’s fields. This
permits a programmer to reason about objects and their ab-
stract state.

Each reference in Javari has a mutability ofreadonly or
mutable. Mutability determines whether a variable’s value
can be side-effected. By default, the fields of areadonly ref-
erence are treated asreadonly andfinal. A mutable refer-
ence cannot be assigned to areadonly reference. Each ref-
erence also has an assignability; Java’sfinal keyword makes
a variable unassignable, and Javari’sassignablekeyword
makes an otherwisefinal variableassignable.

The default values for mutability and assignability (this-
mutableandthis-assignable) are chosen for backward com-
patibility with existing code, inheriting the meaning from
its enclosing elements. The keyword? readonly provides



a wildcard for mutability, while the keywordromaybe pro-
vides a behavior akin to mutability overloading or templates.

3. Implementation
ConstJava is an implementation of a previous reference im-
mutability proposal that later evolved to the Javari2004 lan-
guage [1]. Unlike ConstJava, our Javari implementation uses
Java 1.5 generics and Java’s standard syntax for casts, in-
stead of explicit keywords for immutability polymorphism
and downcasts.

Our implementation is the first for the current Javari lan-
guage [6], and incorporates several improvements to the lan-
guage design [5].

This implementation of Javari is based upon the annota-
tion system proposed in JSR 308 [3, 4]. The implementation
of the keywords as annotations (which may be enclosed in
comments) ensures that the code is backwards compatible,
while not affecting the runtime behavior of the program.

3.1 Experience

The Javarifier type inference has processed tens of thousands
of Java code, rewriting it into type-correct Javari code by
inserting annotations.

After one month of work, the Javari type checker was al-
ready able to check a hand-annotated version of the JOlden
benchmarks [2]. JOlden is a Java version of a suite of
pointer-intensive C programs. We have since continued to
improve the toolset, which is ready for use by Java program-
mers.

4. Examples
The following examples [6] illustrate how Javari can be used
to prevent errors in Java programs.

Consider the following routine in a voting system:

ElectionResults tabulate(Ballots votes) { ... }

It is necessary to ensure that the input votes is not mod-
ified. Using Javari, the specification for this method could
declare that the input is read-only.

ElectionResults tabulate(@ReadOnly Ballots votes) {

... // cannot tamper with votes

}

Accessor methods often return part of an object’s in-
ternal representation. For example, in the JDK 1.1.1, the
Class.getSignersmethod has an implementation similar to
the following:

class Class {

private Object[] signers;

Object[] getSigners() { return signers; }

}

This represents a security hole, since a malicious client
could callgetSignersand then modify the array. Javari per-
mits the following fix:

class Class {

private Object[] signers;

@ReadOnly Object[] getSigners() { return signers; }

}

The @ReadOnly annotation ensures that the array re-
turned by the method cannot be modified through the re-
turned reference, in the caller or at any place that reference is
passed to. Another possible solution, actually implemented
in later versions of the JDK, is to return a copy of an object’s
internal state. Making a copy, however, can be a computa-
tionally expensive process. For example, a file system could
grant a client read-only access to its clients:

class FileSystem {

private List<Inode> inodes;

List<Inode> getInodes() {

... // Unrealistic to copy

}

}

Javari allows the programmer to avoid the cost of making
a copy by declaring the return type of the method as:

@ReadOnly List<readonly Inode> getInodes()

As a last example, reference immutability can be used to
ensure object immutability, if all references to an object are
immutable. For example, there is only one reference to an
object when it is first constructed. As another example, some
objects may need to be treated as mutable only while being
initialized, but should be immutable thereafter. Javari can be
used to specify those constraints:

Graph g1 = new Graph();

... construct cyclic graph g1 ...

// Suppose no aliases to g1 exist.

readonly Graph g = g1;

g1 = null;

References
[1] A. Birka and M. D. Ernst. A practical type system and language

for reference immutability. InOOPSLA, pages 35–49, Oct.
2004.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. InPACT, pages 280–
291, Sept. 2001.

[3] M. D. Ernst and D. Coward. JSR 308: Annotations on Java
types. http://pag.csail.mit.edu/jsr308/, Oct. 17,
2006.

[4] M. M. Papi and M. D. Ernst. Compile-time type-checking for
custom type qualifiers in Java. InOOPSLA Companion, Oct.
2007.

[5] M. S. Tschantz. Javari: Adding reference immutability to Java.
Master’s thesis, MIT Dept. of EECS, Aug. 2006.

[6] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. InOOPSLA, pages 211–230, Oct. 2005.


