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Abstract. It is very hard to fix a software failure without being able to reproduce
it. However, reproducing a failure is often difficult and time-consuming. This pa-
per proposes a novel technique, ReCrash, that generates multiple unit tests that
reproduce a given program failure. During every execution of the target program,
ReCrash stores partial copies of method arguments in memory. If the program
fails (e.g., crashes), ReCrash uses the saved information to create unit tests repro-
ducing the failure.
We present ReCrashJ, an implementation of ReCrash for Java. ReCrashJ repro-
duced real crashes from Javac, SVNKit, Eclipsec, and BST. ReCrashJ is efficient,
incurring 13%–64% performance overhead. If this overhead is unacceptable, then
ReCrashJ has another mode that has negligible overhead until a crash occurs and
0%–1.7% overhead until the crash occurs for a second time, at which point the
test cases are generated.

Key words: Fault, bug, crash, failure, object, reproducing, capture, replay, test
generation

1 Introduction

It is difficult to find and fix a software problem, and to verify the solution, without
the ability to reproduce it. As an example, consider bug #30280 from the Eclipse bug
database (Figure 1). A user found a crash and supplied a back-trace, but neither the
developer nor the user could reproduce the problem. Two days after the bug report, the
developer finally reproduced the problem; four minutes after reproducing the problem,
the developer fixed it.

Our work aims to reduce the amount of time it takes a developer to reproduce a
problem. Suppose that the user had been using a ReCrash-enabled version of Eclipse.
As soon as the Eclipse crash occurred, ReCrash would have generated a set of unit
tests (Figure 2), each of which reproduces the problem. The user could have sent these
test cases with the initial bug report, eliminating the two-day delay for the developer to
reproduce the problem.

Upon receiving the test cases, the developer could run them under a debugger to ex-
amine fields, step through execution, or otherwise investigate the cause of failure. (The
readability of the test case is secondary to reproducibility; a test need not be readable,
nor end-to-end, to be useful.) The developer can use the same test to verify the bug fix.
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2003-01-27 08:01 U: I found crash (here is the back-trace)
2003-01-27 08:26 D: Which build are you using?

Do you have a test-case to reproduce?
2003-01-27 08:39 D: Which JDK are you using?
2003-01-28 13:06 U: I’m running eclipse 2.1, . . .

I was not able to reproduce the crash
2003-01-29 04:28 D: Thanks for clarification . . .
2003-01-29 04:33 D: Reproduced.
2003-01-29 04:37 D: Fixed.

Fig. 1. An excerpt of comments (https://bugs.eclipse.org/bugs/show_bug.cgi?id=30280) be-
tween the user (U) who reported Eclipse bug #30280 and the developer (D) who fixed it.

Reproducing failures (in Java, these often result from un-handled exceptions) can
be difficult for the following reasons.

Nondeterminism A problem that depends on timing (e.g., context switching), memory
layout (e.g., hash codes), or random number generators will manifest itself only
rarely. Reproducing the problem requires replacing the sources of nondeterminism
with specific choices that reproduce previous behavior. As an example, consider the
(somewhat contrived) RandomCrash program [30] of Figure 5.

Remote detection A problem that is discovered by someone other than the developer
who can fix it may depend on local information such as user GUI actions, environ-
ment variables, the state of the file system, operating system behavior, and other
explicit or implicit program inputs. Not all dependences may be apparent to the
developer or the user; many users are not sophisticated enough to gather this infor-
mation; some of the information may be confidential; and the effort of collecting
it may be too burdensome for the user, the developer (during interactions with the
user), or both.

Test case complexity Even if a problem can be reproduced deterministically, the ex-
posing execution might be complex, and the buggy method might be called multiple
times before the bug is triggered. A simpler test case, such as a unit test, is often
faster and easier to run and understand than the execution that triggered the failure.

We propose a technique, ReCrash, that addresses these problems in many cases.
ReCrash automatically converts a failing program execution into a set of deterministic
and self-contained unit tests. Each of the unit tests reproduces the problem that caused
the program to fail. ReCrash has two phases: monitoring and test case generation.

monitoring During an execution of the target program, ReCrash maintains a shadow
stack with an n-deep copy of the receiver and arguments to each method. From
depth n on, these objects refer to the original objects on the heap (see Section 2.2.1).
Thus, ReCrash exploits the object-oriented nature of the program by using objects
as the unit of granularity for including or excluding values from the stored shadow
stack. When the program fails (i.e., crashes), ReCrash serializes the shadow stack
contents, including all heap objects referred to from the shadow stack. Heap data
that was not copied to the shadow stack might have been side-effected between the
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1 // Generated by reCrash

2 // Eclipse 2.1M4/JDK 1.4

3 //-- The original crash stack back trace for java.lang.NullPointerException:

4 // org...QualifiedAllocationExpression.resolveType

5 // org...Expression.resolve

6 // ...

7 public class EclipseTest extends TestCase {

8 protected void setUp() throws Exception {

9 ShadowStackReader.readTrace("eclipse.trace");

10 }

11

12 public void test_resolveType() throws Throwable {
13 ShadowStackReader.setMethodStackItem(0);

14

15 // load receiver

16 // rec = i.new Y()

17 QualifiedAllocationExpression rec =

18 (QualifiedAllocationExpression)ShadowStackReader.readReceiver(0);

19

20 // load arguments

21 // arg_1 = Scope-locals: java.lang.String;

22 BlockScope arg_1 = (BlockScope)ShadowStackReader.readArgument(1);

23

24 // Method invocation

25 rec.resolveType(arg_1);

26 }

27

28 public void test_resolve() throws Throwable {
29 ShadowStackReader.setMethodStackItem(1);

30

31 // load receiver

32 // rec = i.new Y()

33 Expression rec = (Expression)ShadowStackReader.readReceiver(0);

34

35 // load arguments

36 // arg_1 = Scope-locals: java.lang.String;

37 BlockScope arg_1 = (BlockScope)ShadowStackReader.readArgument(1);

38

39 // Method invocation

40 rec.resolve(arg_1);

41 }

42 }

Fig. 2. Two test cases (out of eight) generated by ReCrash to reproduce Eclipse bug #30280. Each
test case comes with a serialized representation of method arguments in file eclipse.trace
(line 9). Lines 16, 21, 32, 36 show the toString representation of the object being read from the
serialized trace.

point of the call and the point of the failure; this is a cause of imprecision for the
ReCrash technique.

test generation ReCrash generates candidate tests by calling each method that was
on the shadow call stack with the de-serialized receiver and arguments from the
shadow stack. ReCrash outputs all candidate tests that reproduce the original fail-
ure. ReCrash outputs multiple tests because a test that calls only the method at top
of the call stack may not provide enough context to find the error. A test calling a
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method closer to the bottom of the stack provides more context, but is less likely to
reproduce the original failure.

ReCrash is effective, despite recording only partial information about the program
state in-memory. For many failures, it is possible to reproduce them with only some of
the information available on entry to the methods on the stack at the time of the failure.
This may be due to the following characteristics of object-oriented programs.

– Many bugs are dependent on small parts of the heap (also the premise of unit test-
ing).

– Good object-oriented style encapsulates important state nearby.
– Good object-oriented style avoids excessive use of globals. Furthermore, ReCrash

has access to and will store any parts of the global state or environment that are
passed as method arguments.

ReCrash’s monitoring phase can be made efficient by reducing the amount of moni-
toring. For example, objects that are not changed by the code need not be monitored. As
another example, ReCrash has an optimization mode called second chance in which the
monitoring phase initially records only stack back-traces when the program fails. On
subsequent runs, ReCrash monitors only the methods that were in the stack back-trace
of failures. If the same problem reappears, it will be captured and might be reproduced.
Second chance allows a vendor to use ReCrash in a similar way to an anti-virus program
which frequently updates the virus profile data. When one client discovers a failure and
sends the produced back-trace to the vendor, the vendor will send an update containing
a list of additional methods to monitor, to all other clients. When ReCrash is used re-
motely (not by the developer who is debugging a failure), the test generation phase may
be performed either remotely or by the developer.

ReCrashJ is an implementation of the ReCrash technique for Java. In a case study
of real applications, ReCrashJ reproduced failures from Javac-jsr308, SVNKit, Eclipse
Java Compiler, and BST with little performance overhead.

This paper makes the following contributions:

– The ReCrash technique efficiently captures and reproduces failures using in-memory
storage of method arguments.

– Optimizations give the ReCrash technique low enough overhead to enable routine
use, by monitoring only relevant parts of a program.

– The second chance mode operates with almost no overhead.
– ReCrashJ is a practical implementation of ReCrash for Java.
– Case studies show that ReCrashJ effectively and efficiently reproduces failures for

several real applications.

The remainder of this paper is organized as follows. Section 2 describes the ReCrash
technique. Section 3 presents the ReCrashJ implementation. Section 4 describes our
experimental evaluation. Section 5 discusses some of ReCrash’s limitations. Section 6
surveys related work, and Section 7 concludes.
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2 ReCrash Technique

The ReCrash technique has two parts. Monitoring is done during program execution
(Section 2.1), and test generation is done after the program fails (Section 2.3). Sec-
tion 2.2 discusses several optimizations to the monitoring phase.

2.1 Monitoring phase

In the monitoring phase, ReCrash maintains in memory a shadow version of the call
stack with copies of the receiver and arguments to each method. Figure 3 presents
pseudo-code for the monitoring phase.

On entry to method m with arguments args, ReCrash generates a unique id id for the
invocation of m, then pushes 〈id,m, reccopy, argscopy〉 onto the ReCrash shadow stack,
where reccopy contains copies of the method’s receiver and argscopy contains a copy of
the method’s arguments.

ReCrash can use different copy strategies. It can make a deep copy of each argu-
ment, store only a reference, or use hybrid strategies (see Section 2.2.1). If m exits
normally, ReCrash removes the method call data 〈id,m, reccopy, argscopy〉 from the top
of its shadow stack.

If an un-handled exception is thrown out of main, ReCrash outputs the un-handled
exception and a deep copy of the current ReCrash shadow stack. The methods that
ReCrash stores include at least the methods on the virtual machine call stack at the time
of the failure. In cases where a method catches an exception and then throws a different
uncaught exception, the ReCrash shadow stack contains additional methods (those that
were on the shadow stack when the original exception was thrown). This additional
information can improve the reproducibility of failures.

2.2 Optimizations to the monitoring phase

ReCrash’s time and space overhead is dominated by the cost of copying the method
arguments at method entry. We have considered two orthogonal ways to reduce over-
head: reducing the depth of copied state for the method’s arguments, and monitoring
fewer methods. Recording less information might reduce the chances of reproducing a
failure. Section 4 discusses tradeoffs between the performance overhead and the ability
to reproduce failures.

2.2.1 Depth of copying arguments In order to recreate the state of the method’s
arguments at the time of the failure, ReCrash copies the arguments to the shadow stack
on the method entry. However, a deep copy of the shadow stack is only stored when an
exception is not caught by the program. Thus, any part of an argument’s state that is not
copied into the shadow stack may change between the method entry and the time of the
failure. This change might prevent ReCrash from reproducing the failure.

This section considers different strategies for copying arguments (including the re-
ceiver) at the method entry. In each strategy a different amount of the argument state
is copied to the shadow stack and the rest of the argument state uses references to the
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Input: copy - a function that copies arguments (see Section 2.2.1)
Output: file - containing deep copy of the shadow stack

s : shadow stack of the current method on the call stack and their arguments

On program start:
begin

s← new empty stack
end

On entry to method m in the call rec.m(args):
begin

reccopy ← copy(rec)
argscopy ← copy(args)
id← generate unique id for current execution of m
push tuple 〈id,m, reccopy, argscopy〉 into s

end

On non-exceptional exit from method m:
begin

id← lookup id for current execution of m
pop from s until 〈id, , , 〉 is popped

end

On top-level (main) uncaught exception e:
begin

file← new output file
store e to file
foreach 〈id,m, reccopy, argscopy〉 in s do

store 〈id, m, deepCopy(reccopy), deepCopy(argscopy)〉 to file
end

end

Fig. 3. Pseudo-code for the ReCrash technique. If an exception is uncaught by the program
(main), ReCrash stores the exception and a deep copy of the current shadow stack to the out-
put file. The technique uses two auxiliary functions: deepCopy which copies all the reachable
state of an object, and copy which is a parameter to this technique. The exact semantics of copy
depends on the chosen copy strategy (see Section 2.2).

original objects (that might get side-effected). The different copying strategies, in order
of increasing overhead, are:

reference (depth-0) Copying only the reference to the argument.
shallow (depth-1) Copying the argument itself. Each of the fields in the copy contains

whatever the original argument did, a primitive or a reference. Shallow copying is
more resilient to direct side effects on the top-level primitive fields of the arguments.

depth-i Copying an argument to a specified depth: all the state reachable with i or
fewer dereferences.

deep copy Copy the entire state. This strategy gives ReCrash the best chance of repro-
ducing the same method execution, since it preserves the object state at the time of
the method entry.
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ReCrash has an additional copying option, used-fields, applicable to all copying
strategies except reference. When the used-fields option is selected, ReCrash performs
deeper copying on fields that are used (read or written) in the method. For example,
suppose that ReCrash is using shallow (depth-1) copying with used-fields, x is an argu-
ment to a method m, and x.a is used in m. Then ReCrash will perform shadow copying
on x and x.a. The used fields are the fields that the method is likely to depend on, and
therefore copying them increases the chance of reproducing the failure.

It is possible to use different strategies for different arguments. For instance, shallow
copying the receiver and reference copying of all other arguments. ReCrash always uses
the reference strategy for immutable parameters. A method’s parameter p is immutable
if the method never changes the state reachable from p. Therefore, an object passed to
an immutable parameter will have the same state at the method entry and at the time of
the failure.

2.2.2 Monitoring fewer methods ReCrash need not monitor methods that are un-
likely to expose or reveal problems, or cannot be used in the generated tests. Those
include empty methods, non-public methods, and simple methods such as getters and
setters.

second-chance mode It would be most efficient to monitor only methods that will fail.
However, it is impossible to compute this set of methods in advance. One way of ap-
proximating this set is to create a set of methods that already failed, updating the set
each time a new method fails.

This is the underlying idea behind second chance, a mode of operating ReCrash that
only monitors methods that have failed at least once. In second chance mode, ReCrash
initially monitors no method calls. Each time a failure occurs, ReCrash enables method
argument monitoring for all methods found on the (real) stack back-trace at the time of
the failure.

This mode is efficient, but requires a failure to be repeated twice (possibly with
other failures in between) before ReCrash can reproduce it. Second chance mode has
no impact on the reproducibility of a failure (the second time the failure appears).

2.2.3 Which optimizations to use When using ReCrash, a developer needs to decide
which optimizations to use. Which copying strategy should ReCrash use for the argu-
ments? Should ReCrash use the used-fields option on the arguments? Should ReCrash
use the second-chance mode?

The answers depend on the developer’s needs and the subject program. For example,
if the developer doesn’t mind missing the first time a failure happens, and the failure
occurs relatively often, the second chance mode is a good fit. If one wants ReCrash
to reproduce all possible failures and can suffer the performance hit, then deep copy
might be the right mode. We found that using the copying strategy shallow copying
(depth-1) with used-fields enabled ReCrash to reproduce most failures with acceptable
performance overhead.
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Input: inFile- containing deep copy of the shadow stack
Output: outFile- containing tests reproducing the failure
begin

e : exception, the original exception resulting in the failure
testSuite : Collection of test sources, each test reproducing the original failure
outFile : output file for the generated tests
testSuite← empty test suite
e← load exception from inFile
len← get length of shadow stack from inFile

for i =1 to len do
t : test source
t← generateTest(inFile, i)
if execution of t ends with e then

add t to testSuite
end

end
store testSuite into outFile

end

generateTest(File file, int i)
begin
〈id,m, reccopy, argscopy〉 ← pop ith tuple from file
output(“test m.id”)
output(“rec = load ith receiver from file”)
output(“args = load ith arguments from file”)
output(“rec.m(args)”);

end

Fig. 4. Pseudo-code for ReCrash test generation. ReCrash generates a test for every method on
the original stack at the time of the failure, using the saved copy of the arguments. ReCrash
outputs each test whose executions results in the same exception. The generateTest subroutine
creates the source for a test. Each test loads the appropriate receiver and arguments from the file
containing the shadow stack, and then calls the method on the receiver with the arguments.

2.3 Test generation phase

The test generation phase of ReCrash attempts to generate a unit test for each method
invocation 〈id,m, reccopy, argscopy〉 in the ReCrash shadow stack. The pseudo-code for
the test generation phase is presented in Figure 4.

ReCrash generates a test for each of the method frames in the shadow stack (s).
ReCrash restores the state of the arguments (modulo the shadow stack) that were passed
to m in execution id, and then invokes m the same way it was invoked in the original
execution. Only tests that end with the same exception as the original failure are saved.
Storing more than one test that ends with the same failure is useful because it is possible
that some tests reproduce a failure, but would not help the developer understand, fix, or
check her solution. See Section 3.2 for an example of such a case.
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1 class RandomCrash {
2 public String hexAbs ( int x ) {
3 String result = null ;
4 if ( x > 0)
5 result = Integer . toHexString ( x ) ;
6 else if ( x < 0)
7 result = Integer . toHexString (−x ) ;
8 return toUpperCase ( result ) ;
9 }

10

11 public String toUpperCase ( String s ) {
12 return s . toUpperCase ( ) ;
13 }

14

15 public static void main ( String args [ ] ) {

16 RandomCrash rCrash = new RandomCrash ( ) ;
17 rCrash . hexAbs (random.nextInt() ) ;
18 }

19 }

Fig. 5. This program, taken from [30], will crash with a null pointer exception in the
toUpperCase method, when the argument x to the method hexAbs is 0. Since the value of x
is randomly chosen (line 17), this crash is not deterministically repeatable. Figure 6 presents the
instrumented version of the program.

3 Implementation

We have implemented the ReCrash technique for Java. This section describes the imple-
mentation, ReCrashJ, using as an example the program in Figure 5. ReCrashJ has two
phases: monitoring (Section 3.1) and test generation (Section 3.2). Section 3.3 discusses
implementation details of the optimizations of Section 2.2.

3.1 Implementation of the monitoring phase

ReCrashJ instruments an existing program (in Java class file format, using the ASM
instrumentation tool [23]) to perform the monitoring phase of the ReCrash technique
(Section 2.1). The instrumented program can be deployed in the field instead of the
original program. Figure 6 shows the instrumented version of the program in Figure 5.

The instrumentation has four parts, one for each of the tasks in Figure 3.

on program start The shadow stack is implemented using static fields in the Shadow-
Stack class. When the program starts, the requested copy strategies for the receiver
and the arguments is set (lines 33 and 34). The different copy strategy classes im-
plement the strategies of Section 2.2.1.

on entry to method m The receiver and the arguments to the method are stored on the
shadow stack at the beginning of each method. In addition, ReCrashJ generates an
id for the invocation of m. The id is stored as a local variable (id) in the method.
This is demonstrated by lines 3–5 and 18–20 of Figure 6. The specific behavior
of the methods addReceiver and addArgument is determined by the type of the
ShadowStack (see Section 3.3 for more details).

on non-exceptional exit from method m If the method successfully returns without
a crash, ReCrashJ removes all the data (arguments and receiver) about the method
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1 class RandomCrash {
2 public String hexAbs ( int x ) {
3 int id = ShadowStack.push("hexAbs");
4 ShadowStack.addReceiver(this);
5 ShadowStack.addArgument(x);
6 String result = null ;
7 if ( x > 0)
8 result = Integer . toHexString ( x ) ;
9 else if ( x < 0)

10 result = Integer . toHexString (−x ) ;
11

12 String ret = toUpperCase ( result ) ;
13 ShadowStack.popUntil( id);
14 return ret ;
15 }

16

17 public String toUpperCase ( String s ) {
18 int id = ShadowStack.push("toUpperCase");
19 ShadowStack.addReceiver(this);
20 ShadowStack.addArgument(s);
21

22 String ret = s . toUpperCase ( ) ;
23 ShadowStack.popUntil( id);
24 return ret ;
25 }

26

27 public static void original main (String args[]) {
28 RandomCrash rCrash = new RandomCrash ( ) ;
29 rCrash . hexAbs ( random . nextInt ( ) ) ;
30 }

31

32 public static void main ( String args [ ] ) {

33 ShadowStack.setReceiverCopyingStrategy(new ShallowCopy());
34 ShadowStack.setArgumentsCopyingStrategy(new ReferenceCopy());
35 try original main (args);
36 catch (Throwable e) StackDataWriter.writeStackData(e);
37 }

38 }

Fig. 6. The instrumented program of Figure 5. Instrumentation code is bold.

execution from the shadow stack. ReCrashJ uses the unique identifier id to perform
this cleanup (lines 13, 23).

on top-level uncaught exception In order to react to a thrown exception that is not
caught by main, ReCrashJ replaces the original main by a new main as shown in
lines 27–37 in Figure 6. The new main invokes the original main in a try-catch
block and handles exceptions. When an exception is caught by the new try-catch
block (line 36), ReCrashJ serializes the information on the shadow stack, and stores
it to the output file (line 36).

3.1.1 Serialization To serialize objects and store the serialized objects into a file,
ReCrashJ uses the XStream framework [6] rather than Java serialization. Java serial-
ization is limited to classes implementing the java.io.Serializable interface, and
in which all fields must be of Serializable types. XStream does not have this limi-
tation. ReCrash should be similarly applicable to any language with a library for mar-
shalling/unmarshalling data. It may be an advantage of Java that Java has libraries that
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1 public void processList ( List inputList ) {
2 List minimizedList = minimizeList ( inputList ) ;
3

4 / / minimizedList should not be null
5 if ( minimizedList == null ) {
6 StackDataWriter . writeStackData ( ) ; / / record this state
7 minimizedList = inputList ;
8 }

9

10 . . .
11 }

Fig. 7. A manually written ReCrash annotation helps record a program state and reproduce errors
that do not results in uncaught exceptions.

represent external resources, such as files, as Java objects. It may be that a language like
Eiffel that uses opaque pointers would be at a relative disadvantage.

3.1.2 Alternatives to the shadow stack The instrumented program is deployable.
No other program or configuration is needed in order to run it. Both the Java Plat-
form Debugger Architecture (JPDA) [2] and the Java Virtual Machine Tool Interface
(JVMTI) [3] provide features to access Java objects in the stack with low overhead.
However, in order to use these tools, we would have to deploy a separate program (in
addition to the instrumented program) to communicate with either JPDA or JVMTI.

3.1.3 Reproducing non-crashing failures A developer may wish to reproduce fail-
ures other than crashes, for example exceptions that are caught by an exception handler
or errors that do not result in an exception. In this case, the vendor can add calls to
writeStackData wherever the program becomes aware of a failure—for example, in
a catch-all handler or where an invariant is found to be false in an invariant validation
routine.

As an example, consider the method processList in Figure 7. This method pro-
cesses large lists. It first tries to minimize the input list by removing duplicates before
processing it (call in line 2). However, if due to a bug, the minimization method fails
and returns null, it is possible to process the entire list without minimization. Thus,
the processing method is able to recover from the bug in the minimization method and
continue. However, the developer will probably be interested in debugging the problem
in the minimization method. In this case, the developer can signal to ReCrash (using
the annotation in Line 6) that it should reproduce the state of the method in this case.

3.2 Implementation of the test generation phase

ReCrashJ uses the stored shadow stack to generate a JUnit testSuite. Figure 8 shows
the tests that ReCrashJ generated for the crash in Figure 5. Figure 2 shows two of the
tests generated for the Eclipse compiler crash reported in Figure 1. Each test in the suite
loads the receiver and the method arguments for one method from the serialized shadow
stack, and then calls that method, which results in the same exception as the original
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1 public void test_toUpperCase ( ) {
2 ShadowStackReader . setMethodStackItem ( 2 ) ;
3

4 / / load receiver
5 RandomCrash rec = ( RandomCrash ) ShadowStackReader . readReceiver ( 0 ) ;
6

7 / / Method invocation
8 rec . toUpperCase (null ) ;
9 }

10

11 public void test_hexAbs ( ) {
12 ShadowStackReader . setMethodStackItem ( 1 ) ;
13

14 / / load receiver
15 RandomCrash rec = ( RandomCrash ) ShadowStackReader . readReceiver ( 0 ) ;
16

17 / / Method invocation
18 rec . hexAbs (0 ) ;
19 }

Fig. 8. Tests generated by ReCrash for the program of Figure 5.

crash. To facilitate debugging, for each argument (including receiver) that has a custom
toString method, ReCrashJ writes the argument’s string representation as a comment
(lines 16, 21, 32, 36 of Figure 2).

Not every object is dynamically read from the stored shadow stack when a test is
executed. ReCrashJ writes the values of primitives, strings, and null objects directly
into the tests. For example, see lines 8 and 18 of Figure 8.

3.2.1 Generating multiple tests for each crash The tests in Figure 8 demonstrate
a reason to create multiple tests that reproduce the crash, one for each method on the
stack. The first test in Figure 8 is useless in detecting and solving the problem, because
the developer is unable to understand the source of the null argument. This test would
also continue to fail even when the problem is solved. On the other hand, the second
test captures a value that is not handled correctly by the hexAbs method. This test is
useful in determining and verifying a solution for the problem.

3.2.2 Extra information When instrumenting a subject program, developers can em-
bed an identifier, such as a version number, in the subject program. This identifier will
appear in the generated test cases, as shown in line 2 of Figure 2. This identifier can
help the developers to identify which version of their program failed.

3.3 Optimizations

In order to implement the different copying strategies of Section 2.2.1, ReCrashJ uses
the Java Cloneable interface. ReCrashJ automatically adds the clone method to all
classes that do not already implement it. The added clone method copies primitive
fields and the references of non-primitive fields. The parameter immutability classifica-
tion can be found statically [27] or by a combination of static and dynamic analysis [8].
ReCrashJ currently uses [8].
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program crash exception type # of # of serialized
name candidate reproducible tests shadow

tests reference used-fields copy stack size
Javac-jsr308 j1 null pointer 17 5 5 5 374

j2 illegal argument 23 11 11 11 448
j3 null pointer 8 1 1 1 435
j4 index out of bounds 28 11 11 11 431

SVNKit s1 index out of bounds 3 3 3 3 36
s2 null pointer 2 2 2 2 34
s3 null pointer 2 2 2 2 33

Eclipsec e1 null pointer 13 0 1 8 62
BST b1 class cast 3 3 3 3 5

b2 class cast 3 3 3 3 5
b3 unsupported encoding 3 3 3 3 25

Fig. 9. Subject programs and crashes used in our experimental study. For each crash, ReCrashJ
generates multiple test cases that aim to reproduce the original crash. In the used-fields column
ReCrashJ used the shallow (depth-1) copying strategy with the used-fields option. The serialized
shadow stack size is in gzipped KB.

ReCrashJ approximates simple methods (i.e., getters and setters) as methods with
no more than six opcodes. We use six opcodes as the bound since the standard getter
(getX() {return x}) has 4 opcodes and the standard setter (setX(int x) {this.x=x})
has 6 opcodes without debug information.

4 Experimental Study

We evaluated ReCrashJ by performing experiments with crashes of real applications.
We designed the experiments around the following research questions:

Q1 How reliably can ReCrashJ reproduce crashes?
Q2 What is the size of the stored deep copy of the shadow stack?
Q3 Are the tests generated by ReCrashJ useful for debugging?
Q4 What is the overhead (time and memory) of running ReCrashJ?

Our results indicate that ReCrashJ can reproduce many crashes, that it generates
useful tests, that it incurs low overhead, and that the size of the stored data (serialized
shadow stack) is small. We present the analysis of two real crashes in detail and show
that the tests generated by ReCrashJ help to locate the source of the problem. In ad-
dition, the developers of one subject program found the generated test cases helpful.
Overall, the experimental results indicate ReCrashJ is effective, scalable, and useful.

4.1 Subject systems and methodology

We use the following subject programs in our experiments:
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– Javac-jsr3081 is the OpenJDK Java compiler, extended with the implementation
of JSR308 (“Annotations on Java Types”) [17]. We used four crashes that were
provided to us by the developers. Javac-jsr308 version 0.1.0 has 5,017 methods in
86 kLOC.

– SVNKit2 is a subversion3 client. We used three crash examples for SVNKit bug
reports #87 and #188. SVNKit version 0.8 has 2,819 methods in 22 kLOC.
Eclipsec4 is a Java compiler included in the Eclipse JDT. We used the crash from
bug #30280 found in the Eclipse bug database. In version 2.1 of Eclipse, Eclipsec
has 4,700 methods in 83 kLOC.

– BST5 is a toy subject program used by Csallner in evaluating CnC [11, 12]. We
used three BST crashes found by CnC. BST has 10 methods in 0.2 kLOC.

We used the following experimental procedure. We ran the ReCrashJ-instrumented
versions of the subject programs on inputs that made the subject programs crash. We
counted how many test cases reproduced each crash. We repeated this process for the
different argument copying strategies introduced in Section 2.2.1, and with and with-
out the second chance mode of Section 2.2.2. For the required parameter immutability
classification (see Section 2.2.2) ReCrashJ runs PIDASA [8] one time for each subject
program. It took less than half an hour to calculate the parameter immutability classifi-
cation for each of the subject programs.

4.2 Reproducibility

Q1 How reliably can ReCrashJ reproduce crashes?

ReCrashJ was able to reproduce the crash in all cases (Figure 9). For some crashes
(b1, b2, b3, s1, s2, and s3), every candidate test case reproduces the crash. For other
crashes (e1, j1, j2, j3, and j4), only a subset of the generated test cases reproduces the
crash.

In most cases, simply copying references is enough to reproduce crashes (‘ref-
erence’ column). However, in some cases an argument is side-effected, between the
method entry and the point of the failure in the method, in such a way that will prevent
the crash if the modified argument had been supplied on the method entry. In those cases
(e.g., e1), using at least the shallow copying strategy with used-fields (Section 2.2.1)
was necessary to reproduce the crash.

4.3 Stored deep copy of the shadow stack size

Q2 What is the size of the stored deep copy of the shadow stack?

1 http://groups.csail.mit.edu/pag/jsr308/
2 http://svnkit.com/
3 http://subversion.tigris.org
4 http://www.eclipse.org
5 http://www.cc.gatech.edu/cnc/index.html
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1 public Void visitMethodInvocation ( MethodInvocationTree node , Void p ) {
2 List<AnnotatedClassType> parameters = method . getAnnotatedParameterTypes ( ) ;
3

4 List<AnnotatedClassType> arguments = new LinkedList<AnnotatedClassType > ( ) ;
5 for ( ExpressionTree arg : node . getArguments ( ) )
6 arguments . add ( factory . getClass ( arg ) ) ;
7

8 for ( int i = 0 ; i < arguments . size ( ) ; i++) {
9 if ( ! checker . isSubtype ( arguments . get ( i ) , parameters . get ( i ) ) )

10 . . .
11 }

12 }

Fig. 10. A code snippet that illustrates a Javac-jsr308 crash (j4). The crash (in line 9) happens
when the parameters list is shorter then the arguments list.

If ReCrashJ is deployed in the field, and a crash happens, the user will need to send
the serialized deep copy of the shadow stack to the program developers. For each crash,
the last column of Figure 9 presents the size of the serialized deep copy of the shadow
stack for each of the inspected crashes. The size can be further reduced if the tests are
generated and evaluated locally. In this case ReCrash could trim the data from frames
whose candidate test cases were discarded, or perform other minimization of the test
cases.

4.4 Usability study

Q3 Are the tests generated by ReCrashJ useful for debugging?

To learn whether ReCrashJ’s test cases help developers to find errors, we analyzed the
generated test cases for each crash. We present a detailed analysis of two crashes, e1
and j4. We also present developers’ comments about the utility of the generated tests
for j1-4.

Eclipsec bug (e1): Figure 12 presents the bug resulting in crash e1. Eclipsec crashes
in method canBeInstantiated (line 19) because an earlier if statement in lines 9–11
failed to set the hasError to true. Using the generated tests (Figure 2) the developer
would have been led to the buggy code. The developer would fix this problem by adding
hasError=true on line 11. Notice that the test case for method canBeInstantiated
(not shown in the figure) will reproduce the crash, but is not helpful in understanding
it as the state of the parameter is already corrupted. Also, note that just looking at the
backtrace does make the problem obvious: stepping through will be more useful (the
error is far removed from the crash, but is in a method on the stack). This is an example
of why it is important to generate tests for multiple methods on the stack.

Javac-jsr308 bug (j4): Using Javac-jsr308 to compile source code containing an
annotation with too many arguments results in an index-out-of-bounds exception. Fig-
ure 10 shows the erroneous source code. The compiler assumes that the parameters
and arguments lists are of the same size (line 9), but they may not be.

ReCrashJ generates multiple test cases that reproduce the crash; one test is shown
in Figure 11.
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1 public void test_visitMethodInvocation ( ) throws Throwable {
2 / / load receiver
3 / / rec = . . .
4 SubtypeVisitor rec = ( SubtypeVisitor ) ShadowStackReader . readReceiver ( 0 ) ;
5

6 / / load arguments
7 / / arg_1 = test ( ” foo ” , ”bar ” , ”baz ” ) ;
8 MethodInvocationTree arg_1 = ( MethodInvocationTree )
9 ShadowStackReader . readArgument ( 1 ) ;

10

11 / / Method invocation
12 rec . visitMethodInvocation ( arg_1 , null ) ;
13 }

Fig. 11. Test case generated for a Javac-jsr308 crash (j4).

Note that the generated test does not require the whole source code and encodes
only the necessary minimum to reproduce the crash. This makes ReCrashJ especially
useful in scenarios where the compiler crash happens in the field, and the user cannot
provide the entire, possibly proprietary, source code for debugging.

Developer testimonials We gave the tests for j1-4 to two Javac-jsr308 developers
and asked for comments about the tests’ usefulness. We received positive responses
from both developers.

Developer 1: “I often have to climb back up through a stack trace when debugging.
ReCrash seems to generate a test method for multiple levels of the stack, which would
make it useful.” “I find the fact that you wouldn’t have to wait for the crash to occur
again useful.”

Developer 2: “One of the challenging things for me in debugging is that when I set a
break point, the break point maybe be executed multiple times before the actual instance
where the error is cased, [...] Using ReCrash, I was able to jump (almost directly) to the
necessary breakpoint.”

4.5 Performance overhead

Q4 What is the runtime overhead (time and memory) of ReCrashJ?

We compared the time and memory usage of the original and instrumented versions
of the subject programs, while performing the following tasks (the three Java classes
were taken from the /samples/nio/server directory in JDK 1.7):

SVNKit checkout: Checking out a project6, 880 files, 44Mb
SVNKit update: Updating a project, 880 files, 44Mb
Eclipsec Content: Compiling Content.java (48 LOC)
Eclipsec String: Compiling StringContent.java (99 LOC)
Eclipsec Channel: Compiling ChannelIOSecure.java (642 LOC)
Eclipsec JLex: Compiling JLex version 1.2.4 (7,841 LOC)7

6 http://amock.googlecode.com/svn/trunk
7 http://www.cs.princeton.edu/˜appel/modern/java/JLex/
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1 public class QualifiedAllocationExpression {
2 public TypeBinding resolveType ( BlockScope scope ) {
3 TypeBinding receiverType = null ;
4 boolean hasError = false ;
5 if ( anonymousType == null ) {
6 if ( ( enclosingInstanceType =
7 enclosingInstance . resolveType ( scope ) ) == null ) {
8 hasError = true ;
9 } else if ( enclosingInstanceType . isArrayType ( ) ) {

10 . . .
11 //hasError = true; Missing and causing the error
12 } else if ( ( this . resolvedType =
13 receiverType = . . . ) ) == null ) {
14 hasError = true ;
15 }

16 . . .
17 / / limit of fault−tolerance
18 if ( hasError ) return receiverType ;
19 if ( ! receiverType . canBeInstantiated ( ) ) . . .
20 . . .
21 }

22 }

Fig. 12. Buggy source code from Eclipsec (Eclipse Java compiler) causing bug #30280. The
program crashes with a NullPointerException in the canBeInstantiatedmethod (line 19).
This case happens when the positive path of the if in line 9 is taken, in which case hasError is
not set to false (line 11).

task execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.62 (38%) 1.75 (50%) 1657 (142,000%)
SVNKit update 0.56 0.62 (11%) 0.63 (13%) 657 (118,000%)
Eclipsec Content 0.95 1.08 (13%) 1.12 (15%) 114 (12,000%)
Eclipsec String 1.07 1.36 (27%) 1.39 (31%) 1656 (155,000%)
Eclipsec Channel 1.27 1.72 (34%) 1.74 (37%) 8101 (638,000%)
Eclipsec JLex 3.45 4.93 (42%) 5.51 (60%) > 2 days

task second-chance execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.17 (0.0%) 1.18 (0.8%) 1.42 (21%)
SVNKit update 0.56 0.56 (0.0%) 0.56 (0.3%) 0.56 (0.8%)
Eclipsec Content 0.95 0.97 (1.5%) 0.96 (0.9%) 3.98 (317%)
Eclipsec String 1.07 1.09 (1.7%) 1.08 (0.8%) 8.99 (742%)
Eclipsec Channel 1.27 1.27 (0.1%) 1.27 (0.0%) 16.6 (1,210%)
Eclipsec JLex 3.45 3.47 (0.7%) 3.48 (1.1%) 1637 (47,000%)

Fig. 13. Execution times of the original and instrumented programs in seconds. Slowdowns from
the baseline appear in parentheses. The columns are described in Section 2.2.1.

Figure 13 compares the execution time of the original subject programs and the
instrumented ones, measured using the UNIX time command. Because of variability in
network, disk, and CPU usage, there is some noise in the measurements, but the trend is
clear. The deep copy version is completely unusable, except possibly in second chance
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task maximum memory usage (MB)
original shallow w/used-fields overhead%

SVNKit checkout 8.7 9.3 6.9
SVNKit update 7.6 7.8 2.6
Eclipsec Content 4.8 8.4 75.0
Eclipsec String 5.3 9.5 79.2
Eclipsec Channel 5.2 9.9 90.3
Eclipsec JLex 9.1 11.1 21.9

Fig. 14. Memory use overhead of the instrumented programs, as measured by JProfiler.

mode, where it might be usable for in-house testing. A more optimized implementation
could be more efficient, but will probably still be impractical.

Even copying only the references can be expensive, 11%–42% run-time overhead.
The shallow copying strategy with used-fields has a very similar overhead, 13%–60%
overhead. These values are probably usable for in-house testing.

Second chance mode, however, is where our system shines. It reduces the overhead
to a barely noticeable 0%–1.7% — and that is after a crash has already been observed,
before which the overhead is negligible (essentially 0%). Second chance mode obtains
these benefits by monitoring only a very small subset of all the methods in the program.
This simple idea is sufficient, effective, and efficient.

For the memory usage comparison, we used JProfiler8 to measure the maximum
memory used in performing each task. Figure 14 shows the memory usage — in our
experiments, ReCrashJ adds 0.2M–4.7M memory overhead for the effective shallow
copying strategy with the used-fields option. The memory overhead for the same copy-
ing strategy in the second-chance mode was negligible.

5 Discussion

This section discusses limitations of our technique and threats to the validity of our
experiments.

5.1 Limitation in reproducing failures

ReCrash cannot necessarily reproduce all failures. The following list contains some
cases that might prevent ReCrash from reproducing a failure:

failures dependent on timing This category of failures includes concurrency-related
failures such as failures resulting from a race condition in a multi-threaded appli-
cation. Monitoring concurrency timing dependent failures and reproducing them is
future work.

failures dependent explicitly on external resources ReCrash may be unable to repro-
duce a failure that depends on external resources such as file system, network, hard-
ware devices, etc. For example, a failure might depend on loading a file that no

8 http://www.ej-technologies.com/products/jprofiler/overview.html
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longer exists. ReCrash could be combined with tracing tools for calls that access
external resources. This would be less expensive than performing full tracing.

failures dependent implicitly on external resources Failures may depend implicitly
on external resources. For instance, an argument such as a socket or GUI object,
cannot be serialized.

failures dependent on global state, or side-effected argument state Failures may de-
pend on global state that is not serialized. Or a failure might depend on a part of the
argument state that is not stored to the shadow stack (due to the copy strategy) and
is side-effected between the method entrance and the time of the failure.
We believe that not storing global state is not a great limitation for Java, as noted in
Section 1 and validated by our experiments. Evaluating the effect of storing global
state on reproducibility is future work.

ReCrash might still be able to reproduce a failure that depends on one of these cases.
This may occur if the method call that ReCrash cannot reproduce results in a legal state
that triggers a failure later in the execution. In this case the developer might be able to
find, understand, and fix the failure even without understanding the exact condition that
led to the state exposing it.

5.2 Buggy methods not in the stack at time of the failure

It is possible that a failure is caused by a method that is not on the call stack at the
time of the failure. For example, consider the code in Figure 15. This figure contains
the source of crash s1 (SVNKit bug #87). An index-out-of-bounds exception is thrown
if the user omits the URL from the check out command. When no URL is supplied, the
method init should set a default URL or throw an exception about a missing URL, but
it does neither.

The program in Figure 15 will crash on Line 5, and at the time of the crash the
call stack will contain the method getURL but will not contain the method init. The
test case ReCrash creates for method getURL calls the method getURL with 0 as a
parameter, and the exception is thrown. This test does not help the developer to find
the reason for the illegal state of myURLs. However, ReCrash generates test cases for
each frame in the call stack. Thus, ReCrash will generate a test for the run method (not
shown), which calls init. Debugging using the test for the runmethod will expose the
real bug.

5.3 Reusing ReCrash-generated tests

The ReCrash-generated tests are not intended to be added as is to the program test
suite. The reason is that the tests de-serialize objects. If the structure of a class changes,
the de-serialization will stop working. However, the generated test cases provide the
skeleton of tests, and developers can replace the de-serialization with normal code.

Developers are not intended to examine the JUnit code of the generated tests to find
a bug. Rather, a developer can use a debugger to examine the test’s execution, revealing
the cause of the failure.
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1 public class SVNCommandLine {
2 private list myURLs ;
3

4 public String getURL ( int index ) {
5 return ( String ) myURLs . get ( index ) ;
6 }

7

8 protected void init ( String [ ] arguments ) throws SVNException {
9 myURLs = new ArrayList ( ) ;

10 for ( int i = 0 ; i < arguments . length ; i++) {
11 . . .
12 }

13 }

14 }

Fig. 15. A code snippet from SVNKit illustrating crash s1. The method causing the crash (init)
will not be on the stack at the time of the crash.

5.4 Privacy

One of the problems with debugging deployed applications is that users may be reluc-
tant to send data to the developers for fear of exposing proprietary data. For instance, a
user who discovers a bug in Eclipse might be unable to send proprietary source files to
the developer.

While we have not solved this problem, using ReCrash might be seen as an inter-
mediate solution. Sending only the parts of the shadow stack that are used in selected
tests is less likely to contain proprietary data. In addition, it should be possible for a
client to prevent ReCrash from storing sensitive data by marking it (i.e., via program
annotations). Another possible solution is to provide a shadow stack reader to the client,
so that the client can review the encoded data and decide which parts of it (or which
tests) are safe to send to the developers.

5.5 Threats to validity

We identify the following key threats to validity.

Systems and crashes examined might not be representative. We might have a sys-
tem or crash selection bias. Our experiments use every crash we considered. How-
ever, we examined only 11 crashes from 4 subject systems. It is time-consuming
to find a real bug (by studying bug reports), download an older version of the soft-
ware, compile it, and reproduce the bug. We may have accidentally chosen systems
or crashes that have better (or worse) than average ReCrash reproducibility.

All failures are runtime exceptions. Our experiments use failures that manifest as run-
time exceptions, such as null pointer or index out of bounds exceptions. How-
ever, ReCrashJ can monitor user-annotated exceptions or errors as discussed in
Section 3.1.3. Evaluating the usefulness of the ReCrash annotation requires a user
study. Future experiments and user studies should consider other types of failures
including user-annotated non-exception points.
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6 Related Work

6.1 Record and replay

Many existing record and replay techniques for postmortem analysis and debugging
[10, 14, 19, 9, 21, 18, 31, 15] are based on three components: checkpoints, logging, and
replay. The checkpoint provides a snapshot of the full state of the program at specific
times, while the log records events between snapshots. The replay component uses the
log to replay the events between checkpoints. By contrast, ReCrash performs a check-
point at each method entry and has no log of events, only an in-memory record of stack
elements. ReCrash does not replay the entire execution, instead ReCrash allows the
developer to observe the system in several states before the failure, then run the orig-
inal program until the failure is reproduced. ReCrash’s logging simplicity allows it to
be deployed remotely with relatively low overhead. Most of the previous techniques
are designed for in-house testing or debugging, and have unreasonable overhead for
deployed applications.

BugNet [21], ReVirt [15], and FlashBack [28] require changes to the host operating
system while FDR [31] uses a proprietary hardware recorder. ReCrash, on the other
hand, can be deployed in any environment, and can be used to reproduce a recorded
failure in different environments.

Choi et al. [9], Instant Replay [19], BugNet [22], and many others emphasize the
ability to deterministically replay an execution of a non-deterministic program. They
are able to reproduce race conditions and other non-deterministic failures. In order to
achieve this goal, these techniques either impose a large space and time overhead [9,
19], or they only allow replaying a narrow window of time [22]. Similar to BugNet [22],
ReCrash only allows replaying a part of the execution before the failure. ReCrash is only
able to deterministically reproduce a non-deterministic failure if one of the generated
tests captures the state after the non-determinism. ReCrash could be combined with
other monitoring tools (storing only some of the environment dependencies) to create
an efficient technique that can reproduce non-deterministic failures.

jRapture [29], test factoring [26], test carving [16], and ADDA [10] capture the
interactions between the program and the environment to create smaller test cases or
enable reproducing failures. These techniques capture a trace, and then run the subject
code in a special harness, such as a mock object representing all interactions with the
rest of the system, that reads values out of the trace whenever the subject code would
have interacted with its environment. Test factoring does this at the level of method
calls; ADDA does it at the level of file operations and C standard library functions. By
contrast, our approach does not record a trace; it sets up the system in a particular start
state, and then the system runs unassisted. However, ReCrash can be viewed as writing
mock objects in the method call data. The objects recorded are a faithful representation
of the actual objects down to a given depth. At lower depths their fields contain values
that are possibly incorrect, but that in practice are effective in reproducing program
behavior.
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6.2 Test generation

Contract Driven Development [20] generates test cases using contracts (pre- and post-
conditions) written by developers. If a contract is violated during the execution of an
application in debug mode, CDD captures the transitive state of the arguments to one
method (often the failing method). CDD then attempts to use the captured state to gen-
erate a test case that reproduces the violation. Since the arguments’ state is captured
after the violation, it is equal to ReCrash’s reference copying strategy. ReCrash might
generate more useful tests and reproduce more failures because ReCrash can store ar-
guments’ state before a violation occurs, and because ReCrash generates multiple tests,
one for each method on the shadow stack at the time of the failure. CDD is designed
to be used in the development process, whereas ReCrash can be used either in-house
or in-field. ReCrash monitors the stack and generates a test case without the need for
special IDE support.

CnC [12], JCrasher [11], Eclat [24], Randoop [25], and DSDCrasher [13] use ran-
dom inputs to find program crash points. Their generated tests may not be representative
of actual use, whereas ReCrash generates tests that reproduce real crashes. Palulu’s [7]
model-based test generation similarly attempt to generates tests based on values ob-
served during an actual program execution.

6.3 Remote data collection

Crash reporting systems such as Dr. Watson [4], Apple’s Crash Reporter [1], and Talk-
back [5] send a stack back-trace or program core-dump to the vendor. The vendor uses
the stack back-trace to correlate the report to known problems. If several reports share
similar characteristics, the vendor may try to reproduce the original failure. However,
reproducing the original failure requires non-trivial human effort. The core-dump pro-
vides one snapshot of the program state at the end of time (after the crash). ReCrash
provides several partial snapshots and enables execution of each of them, using a test.
ReCrash stored data is smaller than a core-dump and thus is easier to send to the vendor.

7 Conclusion

We have introduced the ReCrash technique for generating unit tests that reproduce a
software failure. The tests utilize partial snapshots of the program state that ReCrash
captures on each method execution and records in the case of a failure. ReCrash is sim-
ple to implement, it is scalable, and it generates simple, helpful test cases that effectively
reproduce failures. Our ReCrashJ tool implements the technique for Java.

We have evaluated ReCrashJ with real crashes from Javac-jsr308, SVNKit, Eclipsec,
and BST. ReCrashJ created tests that reproduced every crash we have inspected, and de-
velopers found the generated tests useful for debugging. The performance overhead of
programs instrumented by ReCrashJ was 13%–64% for the shallow copying strategy
with used-fields and 0%–1.7% for all copying strategies in the second-chance mode. In
our experiments, ReCrashJ increases memory usage when using the effective shallow
copying strategy with used-fields, by 0.2M–4.7M. The size of the stored snapshots, the
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serialized shadow stack, is manageable: 0.5k—448k. ReCrashJ is usable in real soft-
ware deployment.

The ReCrashJ tool described in this paper is publicly available for download from
http://pag.csail.mit.edu/ReCrash.
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