
Serializing Parallel Programs

by Removing Redundant Computation

Michael D. Ernst

August 31, 1992

Revised August 21, 1994

Abstract

Programs often exhibit more parallelism than is actually available in the target architecture. This

thesis introduces and evaluates three methods|loop unrolling, loop common expression elimination,

and loop di�erencing|for automatically transforming a parallel algorithm into a less parallel one

that takes advantage of only the parallelism available at run time. The resulting program performs

less computation to produce its results; the running time is not just improved via second-order

e�ects such as improving use of the memory hierarchy or reducing overhead (such optimizations can

further improve performance). The asymptotic complexity is not usually reduced, but the constant

factors can be lowered signi�cantly, often by a factor of 4 or more. The basis for these methods

is the detection of loop common expressions, or common subexpressions in di�erent iterations of

a parallel loop. The loop di�erencing method also permits computation of just the change in an

expression from iteration to iteration.

We de�ne the class of generalized stencil computations, in which loop common expressions can

be easily found; each result combines w operands, so a naive implementation requires w operand

evaluations and w � 1 combining operations per result. Unrolling and application of the two-

phase common subexpression elimination algorithm, which we introduce and which signi�cantly

outperforms other common subexpression elimination algorithms, can reduce its cost to less than 2

operand evaluations and 3 combining operations per result. Loop common expression elimination

decreases these costs to 1 and logw, respectively; when combined with unrolling they drop to 1

operand evaluation and 4 combining operations per result. Loop di�erencing reduces the per-result

costs to 2 operand evaluations and 2 combining operations. We discuss the tradeo�s among these

techniques and when each should be applied.

We can achieve such speedups because, while the maximally parallel implementation of an

algorithm achieves the greatest speedup on a parallel machine with su�ciently many processors, it

may be ine�cient when run on a machine with too few processors. Serial implementations, on the

other hand, run faster on single-processor computers but often contain dependences which prevent

parallelization. Our methods combine the e�ciency of good serial algorithms with the ease of

writing, reading, debugging, and detecting parallelism in high-level programs.

Our three methods are primarily applicable to MIMD and SIMD implementations of data-

parallel languages when the data set size is larger than the number of processors (including unipro-

cessor implementations), but they can also improve the performance of parallel programs without

serializing them. The methods may be applied as an optimization of a parallelizing compiler after

a serial program's parallelism has been exposed, and they are also applicable to some purely serial

programs which manipulate arrays or other structured data.

The techniques have been implemented, and preliminary timing results are reported. Real-world

computations are used as examples throughout, and an appendix lists more potential applications.

This technical report is a revision (clarifying and expanding some sections) of the author's

M.S. thesis [48], supervised by Charles Leiserson. This work was supported by a National Defense

and Science Graduate Fellowship, by Defense Advanced Research Project Agency contract N00014-

91-J-1698, and by Microsoft Corporation.

Contents

1 Introduction and Motivation 3

1.1 Serializing parallel programs : 4

1.2 Three techniques for serialization : 5

1.3 The problem domain : 8

1.4 Categorizing loop common expressions : 11

1.5 Serialization is e�ective : 13

1.6 Outline : 14

2 Unrolling with Common Subexpression Elimination 17

2.1 Common subexpression elimination : 17

2.2 Loop unrolling : 19

2.3 Common subexpression exposure : 19

2.3.1 Scaling operations : 20

2.3.2 Base values : 21

2.3.3 Combining operations : 22

2.4 Loop common expression exposure and rerolling : 30

2.4.1 Massive unrolling : 32

2.4.2 Edge linking : 33

3 Loop Common Expression Elimination 35

3.1 Finding patterns : 36

3.2 Scaling operations : 37

3.2.1 Unrolling to scalarize arrays : 38

3.3 Base values : 40

3.3.1 Adjusting the sizes of temporary arrays : 40

3.4 Combining operations : 43

3.4.1 Combining operation costs : 43

3.4.2 Space requirements : 45

4 Loop Di�erencing 47

4.1 Inverting the combining operator : 48

4.2 Di�erencing : 49

4.2.1 Aperiodic stencils : 49

4.3 Numerical stability : 52

1

2 CONTENTS

5 Implementation Issues 55

5.1 Details of the implementation : 55

5.1.1 Connections with other optimizations : 56

5.1.2 Wide base elements : 56

5.1.3 Loop initialization : 57

5.1.4 Reassociation : 57

5.2 Alternative implementations : 60

5.2.1 Factoring scaling operations : 60

5.2.2 Scans : 60

6 Timing results 63

6.1 Aperiodic stencils : 63

6.2 Periodic stencils : 64

7 Extensions 67

7.1 Scheduling jobs onto processors : 67

7.2 Two-dimensional stencils : 68

7.3 Loop common expressions in serial algorithms : 69

7.4 Other complications : 71

8 Perspective 73

8.1 Reducing overhead : 73

8.2 Vectorization : 74

8.3 Iterator inversion : 75

8.4 Reversing parallelization : 75

8.5 Stencil computations : 76

8.6 Parallel intermediate representations : 76

8.7 Contributions : 77

A Optimality of (w + 1)-unrolling 79

B Applications 83

B.1 Convolutions : 83

B.1.1 Why not use FFT? : 83

B.1.2 Applications : 84

B.2 Vision and digital signal processing : 85

B.3 Partial di�erential equations : 86

B.4 Other applications : 87

Bibliography 89

Chapter 1

Introduction and Motivation

Programmers would like to write a single program for e�cient execution on parallel computers of

di�erent con�gurations and sizes, including the degenerate case of a single processor. This problem

has received quite a bit of attention, but historically, the focus has been on parallelizing serial code.

This report argues that the reverse|serializing parallel code|is both more natural and more

e�ective. We show how to transform data-parallel programs (speci�cally, those which can be cast

as generalized stencil computations|see page 8 for a de�nition) into programs that are partially

parallel and partially serial. Such hybrid programs can take advantage of exactly the parallelism

available at run time, resulting in running times that are competitive with implementations targeted

for any speci�c number of processors.

E�ciently executing a single program on both parallel and serial computers is challenging be-

cause parallel and serial programs are written with di�erent goals. Fast parallel programs permit

processors to operate independently by eliminating dependences between computations on di�erent

processors. E�cient serial programs, on the other hand, have heavily optimized loops, and depen-

dences often exist between iterations due to sharing of variables or results. In a parallel program,

the critical path in any particular processor is made as short as possible without regard to whether

a computation is also performed by another processor: while sharing results can pay, typically

communication is much more expensive than computation. Serial implementations, on the other

hand, aim to reduce the total amount of work done; communication through variables is cheap. As

a result, when a serial program is naively run on a parallel machine, or a parallel program naively

run on a serial computer, the performance is disappointing. We must transform the program in

order to make it more amenable to fast execution by the target architecture.

The traditional approach toward execution of a single program on both parallel and serial

architectures is to perform concurrentization or vectorization (collectively, parallelization) [143],

transforming a serial program into one which can be sped up by being run on several processors

or on a vector processor. Dependence analysis is the key to parallelization: each loop in the

serial program is analyzed to determine whether its iterations may be run simultaneously. Data

dependences prevent loop iterations from being run in parallel because of multiple uses of a variable.

For instance, when a variable is set by one loop iteration and read by another, then reordering the

loop iterations could change the program's result, so the loop cannot be parallelized.

While much progress has been made in parallelization, the �eld is far from mature. Most

parallelizers just replace certain paradigms with a parallel version of the operation; since they

operate by pattern-matching, a small change to the input program can a�ect its performance by

orders of magnitude. Understanding the system's behavior requires detailed knowledge of the

3

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

compiler, and the quest for good performance may force the user to write in a style easy for

the compiler, but hard for people, to understand. Even the best dependence analysis is only

approximate, erring on the conservative side for safety, and as a result parallelizers are often unable

to take advantage of loops which have no real inter-iteration dependences. It is only fair to mention

that the serial code programmers write in the quest for e�ciency can be extremely complicated,

with many arti�cial dependences added in order to permit reuse of variables and of results; the task

of parallelization is inherently di�cult. We avoid the di�culties of parallelization by transforming

programs from parallel to serial form instead.

In the remainder of this chapter we �rst explain how serialization can speed up a program's

execution, even on a parallel computer, by eliminating repeated computations. We present and

give examples of three methods for doing so. Next we describe the problem domain and give a

taxonomy of the types of repeated computation we can eliminate. We argue that serialization is an

e�ective approach to the problem of running a single program on both serial and parallel computers.

Finally, we outline the rest of the report.

1.1 Serializing parallel programs

This report takes the opposite approach from parallelization by starting with an explicitly parallel

program and removing some of its parallelism. The resulting program can be run e�ciently on

either a serial computer or a parallel computer which does not have enough processors to exploit

all of the parallelism inherent in the original problem.

Any parallel program can be run on a serial computer if the serial computer simulates each of the

processors of a parallel machine; the simulated processors are called virtual processors. Similarly,

any serial program can be run on a parallel machine by simply loading it onto one of the processors.

Neither of these methods makes good use of the available resources, however. The execution time

of the serial program naively run on a parallel computer is not decreased, even though additional

processing power is available. The total work performed by the parallel program naively run on a

serial computer is not decreased, even though the same computations may occur in di�erent virtual

processors being simulated by a particular physical processor.

The reason that a program can do less work when executed by a serial machine than by a parallel

one is that when a value is computed on di�erent processors of a parallel machine, there is no

opportunity for elimination of redundant computation without incurring communication, which is

even more expensive. When several virtual processors are simulated by a single physical processor,

then redundant computations that were immune to elimination by virtue of being on di�erent

processors are suddenly being computed on a single physical processor; the virtual processors can

share work at the cost of storing and retrieving a value|or even at no extra cost.

Virtual processors are simulated by a virtual processor emulation loop which executes in turn the

instructions that would have been executed by each of the virtual processors. Therefore, in order

to detect values used by more than one virtual processor, and to eliminate excess computations of

those values, we only need to detect expressions computed during more than one execution of a

loop body. When the program calls for multiple evaluations of an expression, then we can store the

result after it is �rst computed; whenever it is needed thereafter, the result can be inexpensively

retrieved from its storage location.

This method, applied to expressions for which only one value is considered at a time|for in-

stance, in straight-line code or in a loop iteration considered independently of other iterations|is

known as common subexpression elimination. No previously known common subexpression elimina-

1.2. THREE TECHNIQUES FOR SERIALIZATION 5

for i = 1 to 500

y[i] = f(i-1) * g(f(i+2))

Figure 1: A simple example of a loop common expression: f(j) is computed on both the (j � 2)nd and

(j + 1)st loop iterations.

for i = 2 to 97

newx[i] = (x[i-2] + x[i-1] + x[i] + x[i+1] + x[i+2]) / 5

Figure 2: Another loop common expression example. Each pair of loop iterations repeats 4 array references

and 3 array element additions.

tion method works across loop boundaries, in which case a value is computed by lexically distinct

expressions on di�erent loop iterations. We provide methods for detecting and eliminating this

important class of common subexpressions, which we call loop common expressions.

Figure 1 gives a simple example of a loop containing a loop common expression: f(22) is com-

puted by both the 20th and 23rd iterations (those two appearances of the loop common expression

are called its instantiations). No ordinary common subexpression elimination algorithm discovers

this repeated computation: not only are the two expressions lexically distinct, but they also occur

in di�erent loop iterations. Another example with even more opportunity for optimization appears

in �gure 2. Not only can the computation of many summands (array references) be shared from one

loop iteration to the next, but additions also appear multiple times: for example, x[42] + x[43]

appears in the expressions for the 41st through 44th results, and the 92nd and 93rd results share

x[91] + x[92] + x[93] + x[94].

The examples throughout this report are written in pseudocode in the style of �gures 1 and 2.

Our implementation of the optimizations produces C [84], but the syntax and semantics of that

language are somewhat obscure|particularly its for construct. For clarity, we have also renamed

compiler-generated variables and occasionally performed simple restructuring. In all cases the result

is true to the output generated by the compiler; no manual optimizations have been performed.

1.2 Three techniques for serialization

This report gives three techniques|unrolling, loop common expression analysis, and loop differ-

encing|for optimizing data-parallel programs. These techniques eliminate repeated computation,

but they also partially serialize the programs by adding data dependences. This is not a drawback,

since we can exploit exactly the parallelism available at run time. The three methods are all program

transformations that convert a straightforward data-parallel algorithm into a more complicated

but more e�cient serial one. This section briey describes and demonstrates (on the examples of

�gures 1 and 2) the methods. Each of these optimization methods is discussed in greater detail in

a chapter of its own.

The �rst method, unrolling, transforms loop common expressions into ordinary common subex-

pressions. In the unrolled loop, the texts of several iterations of the original loop lie side-by-side, so

a common subexpression elimination algorithm can eliminate the repeated computation. Figure 3

shows the code of �gure 1 after unrolling; the amortized number of function calls of f per result

has been reduced from 2 to 1.6 (8 function calls for 5 results). In �gure 4, the code of �gure 2

has been unrolled, resulting in a reduction in the per-result number of array references from 4 to

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

for i = 1 to 496 step 5

y[i] = f(i-1) * g(f(i+2))

y[i+1] = f(i) * g(f(i+3))

y[i+2] = f(i+1) * g(f(i+4))

y[i+3] = f(i+2) * g(f(i+5))

y[i+4] = f(i+3) * g(f(i+6))

Figure 3: The loop of �gure 1 after unrolling to compute 5 results per loop iteration. Ordinary common

subexpression algorithms can now arrange that f(i+2) and f(i+3) are each computed only once, reducing

the number of calls to f from 2 per result to 8 per 5 results.

for i = 2 to 94 step 4

newx[i] = (x[i-2] + x[i-1] + x[i] + x[i+1] + x[i+2]) / 5

newx[i+1] = (x[i-1] + x[i] + x[i+1] + x[i+2] + x[i+3]) / 5

newx[i+2] = (x[i] + x[i+1] + x[i+2] + x[i+3] + x[i+4]) / 5

newx[i+3] = (x[i+1] + x[i+2] + x[i+3] + x[i+4] + x[i+5]) / 5

Figure 4: The loop of �gure 2, unrolled to compute 4 results per iteration. Eliminating the maximal number

of intra-loop common subexpressions cuts the per-result number of additions by half and array references,

by more than half. The two-phase common subexpression elimination introduced in this report �nds all

possible common subexpressions, but other algorithms fail to do so.

1.75 and additions from 8 to 4. This method is always applicable, it uses simple, familiar building

blocks, and the results can be quite good. However, we may have to unroll many times in order to

expose common subexpressions, and some loop common expressions will always remain. Deciding

how much to unroll can be tricky: if the latter example were unrolled to compute 6 results per loop

iteration, it would require 3.5 additions per result, but if unrolled to compute 7 results, more than

3.7 additions per result would be required. This is surprising because usually more unrolling leads

to better performance. Standard common subexpression elimination algorithms fail to �nd much

of the repeated computation in �gure 2. The two-phase algorithm, introduced in section 2.3.3.2 on

page 25, does far better in practice, but the problem of �nding optimal common subexpressions is

NP-complete [5, 23].

The second method, loop common expression analysis, takes direct advantage of expressions

that can be used by more than one loop iteration, or loop common expressions. Each iteration

computes (and leaves in a temporary storage location such as a register) expressions that will be

useful to subsequent loop iterations. In other words, iteration i arranges its computations so as to

help iteration i+1, possibly resulting in slightly increased costs for iteration i, relative to ordering

its computations in the greediest way. Any extra cost is more than o�set by the fact that iteration

i � 1 has done the same thing, relieving iteration i of some work it would otherwise have to do.

Unrolling can often reduce costs added by loop common expression analysis, further improving the

overall gain. Figure 5 shows the code of �gure 1 after elimination of multiple evaluations of loop

common expressions; only 1 function call of f is required per result, though we have introduced a

new temporary array and some extra operations to access it. Unrolling just twice eliminates the

need for the array. Figure 6 shows that the number of additions and array references in �gure 2 can

be halved by unrolling to produce 2 results per iteration. Further unrolling to produce 4 results

per iteration reduces the number of array references to 1 per result and the number of additions

to 3 per result; it also eliminates the register-to-register move of �gure 6. Like the method of

1.2. THREE TECHNIQUES FOR SERIALIZATION 7

integer array t[0..3]

t[1] = f(0)

t[2] = f(1)

t[0] = f(2)

for i = 1 to 500

s = f(i+2)

y[i] = t[i mod 3] + g(s)

t[i mod 3] = s

Figure 5: The method of loop common expression elimination applied to the code of �gure 1. Only 1

application of f occurs per result computed, but accessing array t can be costly. Unrolling can eliminate the

modulus and array indexing operations, though 3 temporary locations are still needed to hold old values of

f(i).

t2 = x[1] + x[2]

for i = 2 to 98 step 2

t1 = t2

t2 = x[i] + x[i+1]

t1 = t1 + t2

newx[i] = (x[i-2] + t1) / 5

newx[i+1] = (t1 + x[i+3]) / 5

Figure 6: Loop common expression elimination applied to the code of �gure 2. Each loop iteration computes

two results while performing the same number of array references and additions as the loop of �gure 2 (and

one more division and register-to-register move). The reader is invited to determine how to reduce the

per-result number of array references to just 1, without increasing the addition cost, by unrolling the loop

to compute 4 results per iteration and taking advantage of additional loop common expressions.

unrolling and applying common subexpression elimination, loop common expression elimination is

always applicable and is quite easy to implement. It usually outperforms simple unrolling in terms

of operations performed, temporaries used, and code size.

The third method, loop di�erencing, computes a new result not from subexpressions of a pre-

vious result, but from the previous result itself, by adding it to the di�erence between the values

computed by two loop iterations. This has some similarities with strength reduction optimizations.

Figure 7 shows the result of applying loop di�erencing to the code of �gure 2: array references

are reduced to 2 per iteration and additions, to 4 per iteration. The loop di�erencing method is

not always applicable|it cannot be used to speed the execution of the code of �gure 1|but it

often produces excellent speedups with no unrolling required at all. Its chief disadvantage is the

use of the inverse of the original combining operator. Even if this inverse exists, if it is not exact,

then overow, underow, or value drift may be a problem. The technique is numerically stable

when the dynamic range of the numbers being operated on is not excessive|that is, their values

are all approximately equal.

1

Despite its problems, this method is much better than the others for

operations that combine many values into each result.

1

Ordinarily, operating on two values that are nearly equal can signi�cantly increase the relative error even while

leaving the error's magnitude unchanged. Our restriction is that no value is nearly equal to and a sum containing

that value, which happens only if the value is much larger than the other summands.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

runningsum = x[0] + x[1] + x[2] + x[3]

for i = 2 to 98

runningsum = runningsum + x[i+2]

newx[i] = runningsum / 5

runningsum = runningsum - x[i-2]

Figure 7: Loop di�erencing applied to the code of �gure 2. Rather than computing each result from scratch,

the di�erence between two adjacent results is added to one result to compute the next.

S

0

S

1

S

2

S

3

S

4

S

5

R

1

R

2

R

3

R

4

� � � �

�2 �2 �2 �2

 base expressions

 scaling operations

 combining operations

Figure 8: Relationship between the three components of the stencil R

i

= S

i�1

+ 2S

i

+ 2S

i+1

. The base

expressions are the uses of S, the scaling operations are multiplications by 2, and the combining operations

are additions.

1.3 The problem domain

Elimination of loop common expressions|those which appear in at least two loop iterations|often

provides signi�cant speedups, but unrolling, loop common expression analysis, and loop di�erencing

are not applicable to every parallel program. This section describes the kinds of computation which

produce loop common expressions and lists assumptions about the parallel program to be serialized.

Appendix B presents a sampling of real-world problems to which our methods are applicable.

The most important stipulation is that we must be able to determine ahead of time where

the repeated computation will occur: every result must be computed from the loop index in the

same way. We cannot arrange to share computations from one loop iteration to the next if we

don't even know ahead of time which computations will be performed.

2

For instance, a pointer

jumping [35] loop contains no loop common expressions. Although many virtual processors|even

many being simulated by the same physical processor|may follow a particular pointer, which ones

do is data-dependent.

Each result of a stencil computation (or simply stencil [22]) depends on a small set of values

with a particular structural relationship to one another. For instance, a result array is computed

from one or more similarly-shaped source arrays; each result array element depends on source array

elements at particular relative o�sets from it. Figure 2 is a stencil computation. We extend the

class of stencil computations to those using the loop index arbitrarily in the result expression, as

in �gure 1. A stencil is comprised of three types of computation, as illustrated in �gure 8.

� The base expression of a stencil appears in all of its subexpressions; a base value is the value

of a base expression. In �gure 1, f(�) is the base expression, and in �gure 2, x[�] is.

2

Memoization [1, 109] may be pro�table in such cases. A memoized function stores all the results it has computed,

along with the arguments that produced those results. When the function is called, it �rst does a table lookup with

its actual parameters and possibly just returns a previously-computed result; otherwise the result is computed in the

ordinary way, saved for future reference, and returned. Memoization can eliminate redundant computation that no

static analysis could, but its run-time costs are high.

1.3. THE PROBLEM DOMAIN 9

� A scaling operation is any computation performed on some but not all of the base values;

application of the function g in �gure 1 is a scaling operation, and there is no scaling operation

in �gure 2.

� The stencil's combining operation produces a result from the scaled base values; this is mul-

tiplication in �gure 1 and addition in �gure 2.

The discussion is simpli�ed by addressing loops which compute just one stencil; the generaliza-

tion to multiple stencils per loop is straightforward. For pedagogical simplicity, most of examples

are weighted-sum stencils in which the base expression is an array reference, the scaling operations

are multiplications by �xed coe�cients, and the combining operation is addition. A convenient

shorthand for such stencils is a list of scaling coe�cients; for instance, the stencil of �gure 2 would

be rendered h1; 1; 1; 1; 1i. (The relative o�set of the result is ignored, because it has no e�ect on

any of the optimizations, so h1; 0; 0; 1i represents both x

i

= y

i�1

+ y

i+2

and x

i

= y

i+1

+ y

i+4

.)

The techniques of this report apply to the much larger class of generalized stencil computations,

however, not just to weighted sums.

We make the following further assumptions about the computation being optimized.

explicitly parallel program The iterations of the input loops may be safely run in parallel. Pre-

vious stages of the compiler may have transformed parallel constructs into such loops, or may

have marked some sequential loops as free of data dependences. We ignore loops contain-

ing data dependences that could change the value of a potential loop common expression

between uses. These transformations may require introduction of temporaries; for instance,

independent execution of the iterations of

doall i, 1 < i < 100

a[i] = (a[i-1] + a[i+1]) / 2

requires the use of a temporary array [143]. We use loops because they are more familiar than

parallel constructs (each of which has its own semantics) and to emphasize the applicability

of our techniques to serial as well as parallel programs.

evenly distributed work The programming style described above|explicitly parallel, with many

virtual processors performing exactly the same computations|is known as data-parallel. We

add one more assumption common among data-parallel and scienti�c programs: each loop

iteration completes in about the same amount of time. The assumption is satis�ed if the

amount of computation in the loop body is not heavily data-dependent and the processors

of the physical machine are equally powerful and equally heavily loaded. Small irregularities

in the cost per iteration, which are lost in the noise when enough iterations are considered

together, present no problem if the target machine is MIMD (multiple-instruction, multiple-

data); data-parallel programs targeted for such machines are often referred to as SPMD (same

program, multiple data) [40, 129].

This assumption reduces scheduling to evenly distributing loop iterations among processors,

which can be done at compile time even if the run-time number of iterations and processors

is not yet determined. If such a scheduling policy could assign some processors much more

work than others, then the more lightly-loaded processors will �nish earlier and then sit idle

while waiting for the others to �nish; this could easily wipe out the optimization gains or even

the speedups that accrue from parallelization. Supporting a future [59] command, arbitrary

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

message-passing, or process migration greatly increases the complexity and overhead of a

programming system.

e�cient implementation Since we care about performance on machines with any number of

processors from 1 to as many as the problem's inherent parallelism, we demand that the

input program run fast on a machine with in�nitely many processors. It is not di�cult to

write poor parallel programs that can be transformed to produce good serial implementations,

but our goal is to permit a single program to run well on a serial machine, an in�nitely parallel

one, and anything in between.

While many algorithms are amenable to such transformations, not all are. For instance, a

good smoothing operation in digital signal processing is to determine the median element

of every window of width w in a vector of size v [69, p. 86; 108, p. 516]. On a computer

with v processors, the best way to compute this is to use an algorithm with O(w) worst-case

running time on each processor [19]. On a serial computer, that would require O(vw) time;

it is better to use an order statistic tree [35, p. 281] which can be constructed in O(w logw)

time and updated in O(logw) time, for a total cost of O((v + w) logw). It is not obvious

how to transform the parallel algorithm into the sequential one (or vice-versa) except by

pattern-matching.

Similarly, we cannot hope to convert bubble sort into AKS sort [7] or to convert a convolution

into a Fast Fourier Transform (FFT; see [108] for references), an elementwise multiply, and

another FFT. (Section 7.3 does show how loop common expression elimination enables bubble

sort to be transformed into insertion sort. Section B.1 discusses tradeo�s between computing

convolutions via stencils and FFTs|the former is sometimes preferable.) The optimizations

presented in this paper result in a new implementation of an algorithm but not in an entirely

new algorithm: the transformed program computes all the results that the original one did,

though it performs fewer operations in order to do so. Typically this reduces the constant

factors in the cost of execution rather than improving its asymptotic running time.

non-speculative computation When excess resources are available, processors that would oth-

erwise be idle can perform speculative computations whose results might never be needed.

This does not slow the computation down, and it may speed it up. On a machine without

extra processors, on the other hand, speculative computation never improves performance

and often degrades it. Since the serialized program computes all the results computed by the

original implementation, a speculative program cannot be e�cient when serialized.

high virtual processor ratio If there are few virtual processors per physical processor, then the

virtual processor emulation loops are not run many times. Their execution doesn't consume

a signi�cant amount of the machine's resources, so it is not worthwhile to spend a lot of e�ort

optimizing them. Additionally, when the virtual processor ratio is very low, there may be

fewer optimization opportunities since little serialization is acceptable.

associative operations For some of our optimizations, the stencil combining operation must be

associative, because a key part of those methods is reordering computations so that they are

not all done left-to-right. The method of loop di�erencing also requires that the operator be

commutative and have an inverse.

repeated computation Obviously, we cannot speed up a program by removing repeated com-

putation unless some computations are repeated. The input program must contain a stencil

1.4. CATEGORIZING LOOP COMMON EXPRESSIONS 11

v[i] = 2 * w[i-3] + 2 * w[i-1] + 2 * w[i+1] + 2 * w[i+3]

Figure 9: A periodic stencil computation with base expression 2 * w[�]; addition is the combining operation.

bode

i

=

14

45

f(i� 2) +

64

45

f(i� 1) +

24

45

f(i) +

64

45

f(i+ 1) +

14

45

f(i+ 2)

Figure 10: An aperiodic stencil computing Bode's rule for numerical integration [108], which is exact for

polynomials up to and including degree 5. The area under the curve f(i) between i � 1=2 and i + 1=2 is

better approximated by bode

i

than by f(i), by Simpson's rule, or by the trapezoidal rule. The base values

are applications of f and the scaling operations are h

14

45

;

64

45

;

24

45

;

64

45

;

14

45

i.

computation in which a base expression appears at least twice. For instance, a loop with

the body r[i] = a[i] + b[i+1] + c[i+2] would not be worth optimizing by eliminating

redundant loop common expressions, because only the loop index additions could be sped up.

The optimizations discussed in this report are orthogonal to the second-order ones which some

researchers call serialization of parallel computations. Those improvements, which typically depend

on better use of the memory hierarchy or reduced overhead for simulating processors, can be applied

to a program after our transformations in order to speed it up even more. Section 8.1 discusses

those e�orts.

1.4 Categorizing loop common expressions

This section describes periodic and aperiodic stencils, explicates the loop common expressions

appearing in them, and shows how to transform complicated stencils into simpler ones that are

easier to process.

Recall from in section 1.3 (page 8) that there are three types of loop common expression: base

expressions, scaled expressions, and applications of combining operators. A stencil is called peri-

odic if the operands of its combining operations form a pattern which repeats at least 3 times; that

entire pattern is considered the base expression, and there is no scaling operation. Computations of

periodic stencils can bene�t from sharing computation of base values and applications of combin-

ing operations. Aperiodic stencils permit computations of base values and applications of scaling

operations to be shared among loop iterations.

Figures 9 and 10 give examples of periodic and aperiodic stencil computations, respectively.

The opportunities for avoiding repeated computation are as follows:

base values In �gure 9, 2 * w[14] appears in the expressions for the 11th, 13th, 15th, and 17th

results. In �gure 10, f(3) is computed for 5 results.

scaled values In �gure 10,

14

45

f(91) is needed twice, for bode

89

and bode

93

. Periodic stencils, such

as that of �gure 10, have no scaling operation.

combining operations In �gure 9, 2 * w[51] + 2 * w[53] appears in the expressions for v[50],

v[52], and v[54].

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

For each of the three methods for reducing redundant computation in stencils, we give concrete

numbers for its performance on base values, on scaling operations, and on combining operations

(when the scaling operations are identical), and describe how the method treats the cases di�erently.

In many cases the treatment of base values is a special case of that for scaling operations and

succumbs to the same methods.

How e�ectively a stencil's loop common expressions can be exploited depends on the stencil's

base expression and and scaling and combining operations. Those elements can be chosen in

multiple ways (selecting a larger base expression leads to fewer scaling and combining operations),

and a stencil can sometimes be split into simpler stencils which can be handled individually. Here

we give an overview of how these choices are made; section 5.1.2 on page 56 provides more details.

Elimination of loop common expressions can be simpli�ed by splitting a stencil into pieces which

are optimized separately; the optimized pieces are then recombined into a single computation. For

instance, the aperiodic stencil h2; 3; 2; 1; 2; 3; 2i can split into h2; 0; 2; 0; 2; 0; 2i and h3; 0; 1; 0; 3i; the

former is periodic, so it can be e�ciently processed by the method of loop di�erencing. Since it

is convenient for all non-zero scaling factors to be the same even in aperiodic stencils, the latter

could be further split into h3; 0; 0; 0; 3i and h1i. This divide-and-conquer approach greatly simpli�es

the code for processing stencils, because only simple patterns need be explicitly addressed. Scaling

and combining operations are optimized using these simpli�ed forms; base values are optimized

after the recombining step, so it is easy to guarantee that the result is as good as it would have

been, were the more complicated form directly processed|no common computation is hidden by

appearing in two separately processed stencils.

Another way to split a stencil into simpler ones is to selecting base expressions which use the

index expression i multiple times. For the computation

x

i

= 2y

i�2

+ 3y

i�1

+ 2y

i

+ 2y

i+1

+ 3y

i+2

+ 2y

i+3

;

the obvious base element is a y value, the scaling operations are multiplications by 2 and 3, and the

combining operation is addition; h2; 3; 2; 2; 3; 2i represents this view of the computation. Another

decomposition of this computation uses base expression 2y

i�1

+ 3y

i

+ 2y

i+1

, the identity scaling

operation, and a combining operation which adds two scaled values from three loop iterations

apart; h1; 0; 0; 1i is the shorthand for this presentation of the computation, which abstracts away

the fact that the base elements are themselves stencils which can be represented h2; 3; 2i. Any

stencil which can be represented h1; 0; 0; 1i should be optimized in the same way. (As another

example, h3; 14; 3; 14; 3; 14; 3; 14i is optimized exactly like h2; 0; 2; 0; 2; 0; 2i of �gure 9, except that

the base expressions are di�erent. Base elements which are stencils can be optimized by a recursive

application of these techniques.

For a given stencil, the base expression should be chosen as small as possible such that the entire

computation can be expressed in terms of (non-trivial) scaling and combining that expression. For

instance, h1; 2; 1; 2; 2; 4; 1; 2i would be recast as h1; 0; 1; 0; 2; 0; 1i with base expression h1; 2i. After

choosing the smallest possible base expression, if the resulting stencil can be reduced further, it

should be. The only real problem with splitting stencils or using large base expressions is one

of terminology: a stencil may have several di�erent sets of base values, one for each recursive

application of loop common expression elimination. The one in question should be clear from

context; we will sometimes speak of x

i

= 3y

i�1

+ 3y

i+2

as h3; 0; 0; 3i (in which case the base

expression is y

i

) and sometimes as h1; 0; 0; 1i (with base values three times as great).

1.5. SERIALIZATION IS EFFECTIVE 13

1.5 Serialization is e�ective

In order to achieve e�cient execution on all computers, with numbers of processors ranging from

1 to in�nity, we can either maintain multiple versions of a program, each tuned for use on a

speci�c number of processors, or we can maintain one e�cient canonical version of the program

and generate from it versions appropriate for any speci�c number of processors. Maintaining

multiple programs, either explicitly or by way of conditional statements in a single source, is easily

dismissed, because the versions must be independently written, debugged, and maintained. Thus,

the only realistic possibilities are serialization of a parallel program and parallelization of a serial

program. Sequentialization is a better strategy because it guarantees good parallel performance,

because sequentialization is easier than parallelization, and because data-parallel programs tend to

be clearer and simpler than their serial counterparts. (Parallelization has the advantage of being

applicable to dusty-deck codes as well as to new ones, which accounts for the interest in it.)

When parallel performance is important, it is better to write data-parallel than sequential

algorithms. When we start with an e�cient parallel algorithm, we are guaranteed good performance

on parallel hardware, time on which is usually much more valuable than time on a serial machine.

If serialization fails, the results are not as dire as if parallelization fails, and each is certain to fail

some of the time.

Sequentialization also has the advantage of being easier than parallelization. The task of a

parallelizer is to remove data dependences, while a serializer may add them wherever convenient.

It hard to �nd accurate approximations to data dependence and to remove them without changing

the value computed. The di�culty is compounded by the fact that good serial algorithms tend to

be complicated and hard for a parallelizer to manipulate because of data dependences that are not

strictly necessary to achieve the correct result but which were introduced incidentally in the process

of hand-optimizing the code. While progress has been made on parallelization, it has resisted the

e�orts of many talented researchers. Many parallelizers do little more than pattern-match against

the input program, which makes them unreliable and their behavior hard to understand. Serializa-

tion, on the other hand, is an easier task which avoids these problems inherent in parallelization.

This report gives three simple methods|unrolling, loop common expression elimination, and loop

di�erencing|for serializing parallel programs by eliminating redundant computation. Two of them

are optimal when it is possible to unroll su�ciently, and all three perform well even when the un-

rolling amount is limited. This stands in sharp contrast to the failures of parallelizers even on loops

that, to humans, obviously have no data dependences [143, p. 96].

Another reason to prefer serialization to parallelization is that data-parallel programs tend to

be much simpler than their serial counterparts, in large part due to the local view of the computa-

tion that the data-parallel model permits. The programmer can concentrate on the data and the

computations, and spend less time manipulating control structures and thinking about program

ow and dependences. Built-in data structures such as the vector or array, and uniform methods

for manipulating them, make large-scale programming signi�cantly easier and less error-prone. As

a result, data-parallel programs are easier to write, read, maintain, and manipulate than serial

programs solving the same problem.

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

To illustrate the comparative complexity of the two types of programming, consider two imple-

mentations of convolution with a two-dimensional binomial �lter; this is an important preprocessing

step in the Canny edge detector [25] and other vision applications. The kernel of the data-parallel

version [27] is 4 lines of *Lisp [92, 135, 136], each containing 2 arithmetic operations. The kernel

of the sequential version [85] is 24 lines of C [84], containing 174 arithmetic operations in all. The

comment at the beginning of the procedure reads,

/* do the 2D convolution as two 1D convolutions */

/* this code is VERY hairy. see wjr's */

/* for an example of what it's really doing */

The folk theorem that parallel programs are harder to write than serial ones may be true for some

models of MIMD programming, but it is not the case for data-parallel programming.

While not every program can be e�ciently written in this style, the data-parallel model has

come to be widely accepted in the parallel processing and scienti�c computation communities,

even for programming serial machines. There are data-parallel versions of the most popular serial

languages|C (C* [110, 133], Dataparallel C [60]), Fortran (Fortran 90 [13], CM Fortran [134, 115],

Fortran D [55], and others), and Lisp (CM Lisp [126], Paralation Lisp [113, 114], *Lisp [92, 135,

136])|as well as data-parallel languages designed from �rst principles (NESL [17], VCODE [18])

and sequential languages that were already partly data-parallel (APL [76] and its dialects [73,

77, 80, 142], SETL [41, 116], etc.). This list is far from exhaustive. Data parallelism is not a

radical departure from existing programming practice|it is primarily a matter of using some new

abstractions.

1.6 Outline

This section outlines the report and highlights its original contributions.

The introduction has explained the goal of permitting a single program to run e�ciently on

both parallel and serial computers. Our method is to eliminate recomputation of loop common

expressions, which appear in two or more loop iterations; loop iterations correspond to virtual

processors in a parallel program. We introduced three techniques for removing redundant compu-

tation (unrolling, loop common expression elimination, and loop di�erencing) and de�ned stencil

computations and their constituent parts (base expressions, scaling operations, and combining op-

erations). Next we argued that serialization of parallel programs can be even more e�ective and

natural than parallelization of serial ones. This report recognizes the important opportunity for

optimization represented by loop common expressions and introduces methods for optimizing mul-

tiple iterations of a loop while examining only one copy of the loop body's text. Even if performing

extra work appears to increase the cost of a single loop iteration, it can decrease overall running

time.

The next three chapters each address one of our techniques for eliminating redundant computa-

tion. The �rst is unrolling with common subexpression elimination; the unrolling step converts loop

common expressions into ordinary common subexpressions, while the common subexpression elim-

ination step prevents their reevaluation. We give formulas for the costs (extra operations and extra

temporary variables) and bene�ts (operations eliminated) of unrolling. After evaluating a number

of common subexpression elimination strategies, we introduce the two-phase common subexpression

elimination algorithm, which separates the subproblems of determining which computations may

be shared and deciding which ones will actually be computed, and give algorithms for implementing

1.6. OUTLINE 15

it. This method far outperforms traditional common subexpression analysis, which combines the

two stages in a greedy or even arbitrary manner. Unrolling can sometimes degrade rather than

improve performance; we show how to choose a good unrolling. We prove upper and lower bounds

on the minimum number of operations required to compute unrolled stencil computations. Finally,

we examine the use of unrolling and ordinary common subexpression elimination to uncover loop

common expressions in the original, non-unrolled loop.

Chapter 3 presents a direct method for �nding and eliminating loop common expressions; it

hinges on discovering patterns in the structure of the computation performed by each iteration. We

give simple methods for removing all recomputation of loop common expressions and prove bounds

on the cost of computations after loop common expression elimination has been run. We also show

how all array reference and index manipulation overhead can be eliminated by unrolling loops to

scalarize arrays and how to adjust the sizes of temporary arrays when they cannot be scalarized.

The third method for eliminating redundant computation is loop di�erencing, which symboli-

cally computes the di�erence between the results computed by consecutive loop iterations. Given

the result computed by a particular iteration, subsequent ones can be computed more e�ciently

by subtracting the di�erence than by computing them from scratch (or even from subexpressions

computed by the previous iteration). This optimization uses operators' inverses to undo some work,

creating subexpressions that were never used in computing the previous result. The method results

in very good code for evaluating periodic stencils. We also show how to generate extremely e�-

cient code for certain aperiodic stencils, then discuss the method's primary problem, its potential

numerical instability, and how to avoid it.

In chapter 5 we discuss implementation topics, including relatively minor algorithmic details

glossed over in previous sections, the integration of our techniques with other compiler optimiza-

tions, design decisions in our implementation, and other methods for optimizing stencil compu-

tations. Timing results obtained by running the compiler output and comparing the di�erent

methods with one another and with the original code are presented in the next chapter. Chapter

7 deals with extensions to our methods, including scheduling of jobs onto processors, extensions to

two-dimensional stencils, optimization of purely serial algorithms, and other topics.

Finally, we discuss previous research related to the serialization of parallel programs, which has

focused on the reduction of system overhead, not on the computations being performed. Other work

of interest includes iterator inversion, parallelization, and direct attacks on stencil computations.

The two appendices present auxiliary material. The �rst contains an outline of the proof that

unrolling to compute w + 1 results per loop iteration, where w is a stencil's width, optimizes the

number of combining operations required to compute the results. Appendix B lists numerous real

applications to which our optimizations are applicable and discusses when stencil implementations

are preferable to other implementations.

16 CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2

Unrolling with Common

Subexpression Elimination

Common subexpression elimination is the traditional method for removing redundant computation

from computer programs, but it cannot �nd loop common expressions, because it considers only one

representative loop iteration. Loop unrolling can transform loop common expressions into ordinary

common subexpressions. Even after this transformation, most common subexpression elimination

algorithms �nd only part of the redundant computation. We show how to augment these algorithms

to enable them to perform well on computations with this structure. The resulting method is fairly

straightforward and uses readily available technology.

This chapter �rst briey reviews common subexpression elimination and loop unrolling, then

gives two ways to couple these methods to prevent recomputation of loop common expressions. The

�rst is to execute the unrolled and optimized code, which outperforms the original version, though it

may have to be unrolled quite a bit to improve the results signi�cantly. Furthermore, the traditional

methods for common subexpression elimination do not �nd all its common subexpressions. We

introduce a new two-phase method for common subexpression elimination which separates the

conceptually distinct stages of identifying which expressions appear multiple times and deciding

which of those redundant computations to eliminate. We show how to achieve theoretically optimal

results by unrolling the proper number of times and using a good common subexpression elimination

algorithm. Unrolling and common subexpression elimination are well-known, but their application

to elimination of loop common expressions and the analyses of their e�cacy are original. The

second way to use unrolling and common subexpression elimination is to �nd, in the common

subexpressions detected in an unrolled loop, a pattern of results which can be used as loop common

expressions. These methods are ad hoc and computationally expensive; chapter 3 shows a more

direct way to �nd loop common expressions.

2.1 Common subexpression elimination

The traditional method for removing redundant computation in computer programs is common

subexpression elimination, which uses textual analysis to detect when an expression occurs multi-

ple times in the source program. The computation is performed only once and the expression's value

is saved; thereafter, when the value is needed, the stored value is retrieved, which is cheaper than

reevaluating the expression. There are two classes of algorithm for common subexpression elimina-

tion: partial redundancy elimination and value numbering. Because each method has advantages

17

18 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

for i = 1 to 400

sm[i] = .25 * r[i-1] + .5 * r[i] + .25 * r[i+1]

Figure 11: Smoothing a signal by convolving it with a small binomial �lter.

and drawbacks, many compilers use both.

Partial redundancy elimination [42, 43, 82, 83, 101, 123, 139] identi�es lexically identical ex-

pressions appearing anywhere in the program text. To prevent lexically identical but semantically

di�erent expressions from being considered equivalent, partial redundancy elimination is used in

conjunction with an algorithm which identi�es which expressions are generated, transmitted, and

killed by each basic block. For instance, there are no common subexpressions in

x = a + b

...

b = c

...

y = a + b

and a+b must be recomputed because the intervening rede�nition of b might change its value.

Value numbering [5, 6, 23, 30, 57, 58, 79, 122] assigns a unique identi�er to each value computed

(not to the identi�er that names the value). When an operator is reapplied to a set of operands,

the previous result can be used instead. For instance, in

x = a + b

...

c = b

...

y = a + c

value numbering would recognize that (in the absence of other assignments to a, b, or c) the

expressions a+b and a+c stand for the same value. Value numbering is restricted to extended

basic blocks (sequences of instructions with only one entry point), but a start toward extensions to

whole-program optimization has been made [10, 111].

Neither method can �nd loop common expressions|whose values are multiply computed by a

loop even though no particular iteration contains redundant work|because both methods consider

only one loop iteration; partial redundancy elimination has the further weakess of only identifying

lexically identical expressions. As an example of a loop common expression which they cannot

detect, consider smoothing a digital signal by convolving it with a binomial �lter, which is the

discrete approximation to a Gaussian �lter. The code in �gure 11 implements this operation; the

�lter has been kept small for simplicity. The expression .25 * r[22] is computed at both the 21st

and 23rd iterations; we would like to avoid repeating this multiplication.

3

3

We ignore for the time being that we can eliminate a multiplication by transforming the loop body into sm[i] =

.25 * (r[i-1] + 2 * r[i] + r[i+1]) (but see section 5.2.1 on page 60 for a discussion of this optimization). The

multiplications stand for arbitrary operations which may not distribute over addition; for instance, this could have

been sm[i] = f(r[i-1]) + g(r[i]) + f(r[i+1]).

2.2. LOOP UNROLLING 19

for i = 1 to 397 step 4

sm[i] = .25 * r[i-1] + .5 * r[i] + .25 * r[i+1]

sm[i+1] = .25 * r[i] + .5 * r[i+1] + .25 * r[i+2]

sm[i+2] = .25 * r[i+1] + .5 * r[i+2] + .25 * r[i+3]

sm[i+3] = .25 * r[i+2] + .5 * r[i+3] + .25 * r[i+4]

Figure 12: A 4-unrolled version of the code of �gure 11.

2.2 Loop unrolling

The obvious way to permit common subexpression elimination algorithms to consider several loop

iterations at once is by unrolling: producing a new loop each of whose iterations does the work

of several iterations of the original loop. Figure 12 shows the result of unrolling the smoothing

operation of �gure 11; if the old loop was performed 400 times, the new loop only needs to be

performed 100 times. More to the point, expressions computing the same value which used to be

in di�erent loops (and thus hidden from ordinary common subexpression elimination algorithms)

now occur together in straight-line code.

The original loop iterations (the iterations of the non-unrolled loop) are called logical iterations,

while the loop iterations of the unrolled loop are called physical iterations. In �gure 12, each of

the physical iterations contains 4 logical iterations. The number u of logical iterations per physical

iteration is called the loop unrolling amount or just the loop unrolling; we say that the loop has been

u-unrolled. The loop in �gure 12 has been 4-unrolled, while that in �gure 11 is 1-unrolled|that

is, it isn't unrolled at all.

The bene�ts of loop unrolling go far beyond transformation of loop common expressions into

ordinary common subexpressions. Loop unrolling plays an important role in all of the optimizations

described in this paper. Loop unrolling is also commonly used to achieve second-order improvements

by reducing loop iteration overhead, improving use of the memory, etc. Unrolling can also have

negative second-order consequences such as overowing the instruction cache; all of these second-

order e�ects are ignored.

Unrolling and common subexpression analysis can be used in two ways to eliminate redundant

computation of loop common expressions. The initial step of either method is unrolling, which

transforms some loop common expressions into ordinary common subexpressions. The �rst method

leaves the loop unrolled and takes advantage of the savings gained from common subexpression

elimination. The second method infers a pattern of loop common expressions from the common

subexpressions in the unrolled loop, then attempts to reroll the optimized unrolled loop into one

which reuses values from iteration to iteration. We discuss these two methods in the following

sections.

2.3 Common subexpression exposure

Our �rst method for using unrolling to reduce the recomputation of loop common expressions is to

unroll the loop, changing loop common expressions into ordinary common subexpressions, and then

to apply standard techniquest to avoid redundant computation. (We introduce a new method for

common subexpression elimination because those appearing in the literature perform poorly in this

problem domain.) Following the taxonomy of loop common expressions introduced in section 1.4,

we discuss in turn the impact of this optimization on scaling operations, on base values, and on

20 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

combining operations.

2.3.1 Scaling operations

Suppose that a stencil contains (only) 2 occurrences of a scaling expression. (This discussion ignores

loop common expressions besides scaling expressions.) In �gure 11, d = 2, and the scaling expression

is multiplication by .25. If we ignore the .5 * r[i] term, then when the loop is 1-unrolled, as in

�gure 11, it requires two scaling operations per result and (by de�nition) no additional temporary

locations. When the loop is 4-unrolled, as in �gure 12, two extra temporary locations are required,

to store the values of .25 * r[i+1] and .25 * r[i+2], and this reduces the number of scaling

operations to 6 for 4 results, or 1.5 per result.

If d loop iterations intervene between reapplications of the scaling operation and the unrolling

amount is u, then the numbers of scaling operations required and saved per unrolled loop, and the

total number of additional temporary variables required, are given by the following table.

Unrolling Scaling operations Extra

vs. width Required Saved temps

u � d 2u 0 0

d � u � 2d u+ d u� d u� d

u � 2d u+ d u� d d

We can justify the values in this table in the following way.

� If u � d, then the unrolling has not converted any loop common expressions into common

subexpressions. If the �rst logical iteration scales base values i and i+d, then the uth logical

iteration scales base values i+ u� 1 and i+ d+ u� 1; since i+ u� 1 > i+ d, the base values

operated upon by the u logical iterations are disjoint.

� If u > d, then (i+ u � 1)� (i + d) + 1 = u � d of the values computed by logical iterations

1 through u � d can be reused by logical iterations d + 1 through u, if they are saved in

temporary storage.

� If u > 2d, then some logical loop iterations are both the bene�ciaries of work previously

done and the benefactors of later logical iterations. No more than d storage locations need

to be allocated because each value is last reused d logical iterations after it is �rst computed,

and only one new scaled value is produced per logical iteration. Thus, the transformed code

requires as many extra temporary variables as operations are saved, up to a maximum of d.

The per-result costs are graphed in �gure 13 for d = 2 and d = 5. Compare the left side of the

�gure with the results given at the beginning of this section.

The savings for aperiodic stencils which contain more than 2 instances of a scaling expression

are similar. If there are i instances of the scaling expression and the distances between neighboring

instances are d

1

; d

2

; : : : ; d

i�1

, then when the loop is u-unrolled, the original u � i scaling operations

are reduced by

(u� d

1

) + (u� d

2

) + � � �+ (u� d

i�1

) ;

where the parenthesized expressions, if less than zero, should be taken to be zero instead. The same

expression gives the number of temporary variables required to remember old scaled values, except

that each parenthesized expression is also upper-bounded by the appropriate d

j

, so the maximum

2.3. COMMON SUBEXPRESSION EXPOSURE 21

0

1

2

3

4

5

2 4 6 8 10 12
Unrolling

Width = 3

scaling ops/result

extra temporaries

0

1

2

3

4

5

2 4 6 8 10 12
Unrolling

Width = 6

scaling ops/result

extra temporaries

Figure 13: Plots of the number of scaling operations per result, and total additional temporary storage

locations, required to avoid recomputation of scaling operations for the stencils ha; 0; ai (for which d = 2)

and ha; 0; 0; 0; 0; ai (for which d = 5) at various unrollings. The width w is one greater than the index

di�erence d.

is

P

i�1

j=1

d

j

= d. Figure 14 shows the scaling savings gained by unrolling an aperiodic stencil of

width 8 (d = 7) which contains 3 instances of a scaling expression. In general, we cannot save any

stencil combining operations (in this example, the additions which produce the �nal results from

the scaled values) when there is no pattern to the occurrences of the scaling expressions.

To analyze the e�cacy of unrolling for an aperiodic stencil containing multiple occurrences

of more than one scaling operation, we split the stencil into multiple ones, each containing only

one scaling expression (stencil splitting was discussed in section 1.4 on page 12). For instance,

ha; 0; b; 0; a; bi would be split into ha; 0; 0; 0; ai and hb; 0; 0; bi. Each of the resulting stencils is

analyzed independently to determine its the costs and savings, and these results are added up to

get a total for the entire stencil.

A great deal of unrolling is required in order to approach the theoretical limit of one operation

per logical iteration. While the unrolled loops permit some of the repeated computation to be

avoided, they still contain unexploited loop common expressions. (For example, the 6-unrolled

loop on the right side of �gure 14 performs 13 scaling operations, but the lower bound is 1 scaling

operation per result. If the scaling operation appears twice, There are min(d; u) unexploited loop

common expressions per physical loop.) Simply unrolling and performing common subexpression

analysis is not a real solution to the problem of removing loop common expressions.

2.3.2 Base values

Unrolling also results in a reduction of recomputations of base values. The formulas for the number

of base value recomputations avoided are exactly the same as for scaling operations. In the usual

case, every slot of a w-element stencil has a nonzero scaling operation; that is, w consecutive base

elements, possibly scaled, appear in the expression for each result. The total cost to compute u

results in a u-unrolled loop is u+ d base operations (plus the costs of scaling and combining).

The formula of section 2.3.1 says that up to d additional temporaries are required. We can

reduce the number of extra temporaries to min(u; d) by computing several results simultaneously

rather than remembering many base values. The idea is to localize all the references to a particular

22 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

0

1

2

3

4

5

6

7

2 4 6 8 10 12
Unrolling

Width = 8

scaling ops/result

extra temporaries

a � � a � � � a

a � � a � � � a

a � � a � � � a

a � � a � � � a

a � � a � � � a

a � � a � � � a

Figure 14: Scaling costs per iteration and temporaries required to remember scaled values for the stencil

ha; 0; 0; a; 0; 0; 0; ai, which has d

1

= 3 and d

2

= 4. A schematic of the 6-unrolled loop is also shown: each row

corresponds to a di�erent loop iteration, and the loop iterations are o�set so that common computations

appear in the same column. Boxes indicate opportunities for saved scaling operations: only one of the scaling

operations in each column need be performed. If we u-unroll for u > 7, then some scaled values can be used

thrice.

base element rather than all the computations for a particular result. For instance, the code of

�gure 2, when 2-unrolled and rescheduled, becomes that of �gure 15, which requires only 2 extra

temporary variables. (This number is a conservative estimate, because the behavior of the code

scheduler or the structure of the computation many cause the rescheduled code to require even

fewer extra temporaries. In �gure 15, we have only really added one temporary variable because

the unrescheduled code required analogs to both nxi and xt.)

At u = d, which may be a fairly high unrolling, the number of base element computations per

result has only been reduced to 2. See �gure 16 for a graph of the base value cost versus unrollings

for stencils of various widths, when the rescheduling optimization is applied.

In general, to �nd the total operation cost for an aperiodic stencil, we consider the base values

and each particular scaling operation separately and add those to the combining operation cost

(which usually cannot be reduced by unrolling or elimination of loop common expressions). The

total number of extra temporaries is computed similarly, except that in some cases scaling operation

optimizations reduce the number of base expression temporaries required. For instance, suppose we

are computing the code of �gure 12 (on page 19) one result at a time and we are also maintaining

the previous 2 scaled values (multiplications by .25). In other words, when we are about to compute

sm[j], we have stored .25 * r[j � 1] and .25 * r[j]. We only need to have remembered 1 old

base value (r[j], which we will multiply by .5), not 2; there is no need to remember r[j � 1], which

was �rst computed 2 iterations earlier. One base value temporary is saved for every redundant

scaling operation at the trailing edge of the stencil (but usually several temporaries were used for

storing scaled values). When the index increases with each iteration, this is the left side, where the

smaller indices are used. (This optimization appears again in section 3.3.)

2.3.3 Combining operations

In this section we address the e�ects of unrolling and common subexpression elimination on reducing

the computation of loop common combining operations in periodic stencils. The section is divided

2.3. COMMON SUBEXPRESSION EXPOSURE 23

for i = 2 to 96 step 2

nxi = x[i-2]

xt = x[i-1]

nxi = nxi + xt

nxi1 = xt

xt = x[i]

nxi = nxi + xt

nxi1 = nxi1 + xt

xt = x[i+1]

nxi = nxi + xt

nxi1 = nxi1 + xt

xt = x[i+2]

newx[i] = (nxi + xt) / 5

newx[i+1] = (nxi1 + xt + x[i+3]) / 5

Figure 15: The code of �gure 2, 2-unrolled and rescheduled to consolidate references to each source array

element. Temporary variables nxi and nxi1 serve as accumulators for the values of newx[i] and newx[i+1],

respectively, and xt holds a base value|an element of array x. The unrescheduled 2-unrolled code appears

in �gure 17.

0

1

2

3

4

5

6

7

2 4 6 8 10 12
Unrolling

extra temporaries
base expressions/result

width = 3
width = 6
width = 8

Figure 16: A graph similar to that of �gures 13 and 14. The solid lines show how many extra temporaries

are required in order to take full advantage of the base expressions exposed as common subexpressions by

unrollings from 1 to 12. The number of base expressions evaluated per physical loop iteration is u + d =

u+w � 1; the dashed lines show this cost prorated over the number of results computed.

24 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

for i = 2 to 96 step 2

newx[i] = (x[i-2] + x[i-1] + x[i] + x[i+1] + x[i+2]) / 5

newx[i+1] = (x[i-1] + x[i] + x[i+1] + x[i+2] + x[i+3]) / 5

Figure 17: The code of �gure 2, 2-unrolled and formatted to emphasize that not only the base values (array

references), but also the operations upon them can be shared between these two results. We can see that 3

additions of array elements are identical in the two expressions.

into three parts. The �rst notes that �xing the parse of the source expression (determining how

operations are associated) has severe negative consequences. We propose either the use of an

intermediate representation with n-ary operators or a reassociation component of the compiler

to correct the problem. The second part demonstrates that choosing common subexpressions

is hard; not only is it NP-complete [5, 23], but good heuristics are hard to come by even in the

limited problem domain of unrolled stencil computations. We propose a new common subexpression

elimination algorithm that performs well on unrolled stencils (and generally); it �rst determines

which computations appear more than once and only then selects some to evaluate. The last part

of this section argues that even choosing how much to unroll is a di�cult problem; surprisingly,

unrolling more may actually degrade performance, even in the absence of poor interactions with

the memory hierarchy.

2.3.3.1 Fixed association obscures common subexpressions

In the computation of a periodic stencil, not only can computations be saved in computing the

operands, but some of the combining operations can be saved as well. Consider the loop of �gure 17;

this is just the loop of �gure 2, 2-unrolled and formatted to emphasize that 3 of the additions may

be shared between the two sums. After computation of the base value array references (which

we shall ignore for the remainder of this section), each iteration of this physical loop should only

require 5 additions, not 8.

Unfortunately, few compilers would �nd any shared additions in this code, because most com-

pilers perform common subexpression elimination on either three-address machine code or on a

binary tree representing the computations to be performed. No matter how the two expressions of

�gure 17 are parsed (into left-associative, right-associative, or minimum-height binary trees), they

have no addition nodes in common.

There are two obvious solutions to the problem of �xed association. We can permit the nodes of

the intermediate representation to have arbitrary degree, so that all of the operands which can be

shared are readily accessible; this adds slightly to the cost of operations on the intermediate form.

Alternately, we can permit reassociation; for instance, we might transform (a+b)+c into a+(b+c)

in the hope that b+c is used elsewhere in the program. This approach is computation-intensive

and uncertain of success in the reassociator, but the rest of the compiler is una�ected. These two

methods are discussed in more detail on page 57 in section 5.1.4; we assume from now on that this

nontrivial problem has been taken care of.

After discovering which computations are repeated in an unrolled loop, we still must choose

which common subexpressions to compute; we also must decide how far to unroll loops, if we have

a choice.

2.3. COMMON SUBEXPRESSION EXPOSURE 25

a + b + c

b + c + d

c + d + e

d + e + f

e + f + g

f + g + h

g + h + i

Figure 18: Simultaneously choosing two common subexpressions to be evaluated can degrade performance,

even if the subexpressions are disjoint and equally heavily used. If both c+d and f+g are computed, then at

least 12 additions are required to compute these 7 results. The optimal result|11 additions|is achieved by

computing one or the other of c+d and f+g, but not both.

2.3.3.2 Finding good common subexpressions

To e�ectively reduce redundant computation in a program, we must �rst determine which compu-

tations may be shared, then choose which ones actually will be shared. Most compilers leave the

�rst step|determining which computations could be shared|to the vicissitudes of the parser and

so might �nd no common subexpressions at all in the code of �gure 18. In that �gure, choosing

both c+d and f+g as common subexpression yields poor results. Finding optimial common subex-

pressions is NP-complete [5, 23], but the potential savings can be large, and fast heuristics can

perform well. Such heuristics take as input an expression forest (one tree per result) of n-ary trees,

where the arity of associative operator nodes is arbitrary, and return a forest of binary trees which

may share structure. We now compare several such heuristics and discuss the tradeo�s involved

with using them.

multiple commonest The obvious approach to �nding a good binary parse of an expression forest

is to choose some of the common subexpressions occurring most frequently. Choosing multiple

such subexpressions simultaneously is sub-optimal. Even if two choices appear equally good,

selecting one may make the other into a poor choice, even if if no result contains both of

the subexpressions. For instance, in �gure 18, c+d and f+g play symmetric roles in the

computation, and one must be selected as a common subexpression, but both should not be.

arbitrary commonest The common subexpressions to be evaluated should be selected one at

a time, but making an arbitrary choice among those with highest multiplicity is also a bad

idea. In the following code, �rst choosing c+d instead of (say) b+c results in a total cost of 7

instead of 6 additions.

a + b + c

b + c + d

c + d + e

d + e + f

leftmost commonest Stencil computations can be ordered in a logical way from left to right.

Choosing to evaluate the most commonly occurring subexpressions from one end or the

other|but not both|results in a better strategy, than making an arbitrary choice. Fig-

ure 19 shows the result of applying this heuristic to a 9-unrolled 5-element periodic stencil.

Two more operations are performed than need to be.

26 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

B

0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

B

10

B

11

B

12

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

�

�

�

� �

�

� �

�

�

�

�

�

� � �

Figure 19: Schematic of a 9-unrolled 5-element periodic stencil, such as the window sum of �gures 2 and 17.

The B

i

s are base values and the R

i

s are results. The pattern of binary addition nodes shown is that chosen

by most heuristics (such as leftmost-commonest and leftmost-oldest-commonest) for selecting among the

possible execution orders, though those which include randomness or simultaneous choice do worse. Where

lines do not connect addition nodes to addends, the node represents the combination of the obvious nodes

(for instance, R

5

= (B

3

+B

4

) + (B

5

+B

6

) +B

7

), but the associativity of those additions is incidental. The

total cost is 21 additions for 9 results, or 2.33 additions per result.

leftmost commonest oldest The \leftmost commonest" heuristic has no history|after the left-

most among the most frequently occurring subexpressions has been chosen, the next round

recomputes which subexpressions are most common. A variation on this rule which performs

better in some circumstances is to, at the next step, only consider subexpressions which were

also under consideration at the previous step|that is, those whose multiplicities at the last

step were the same as that of the expression we actually chose. The scope of the search is

expanded only when none of the old elements has multiplicity greater than 1. For �gure 19,

this variation happens to perform identically to the simpler \leftmost commonest" heuris-

tic. Many other variations of the \leftmost commonest" were tested; their performance is

uniformly disappointing, even on the restricted subproblem of unrolled stencil-based compu-

tations.

leftmost shallowest commonest Common subexpressions that can be incorporated into larger

common subexpressions are more valuable than those whose value can be used just once. The

\leftmost shallowest commonest" heuristic chooses, among the nodes with highest multiplicity,

the one with the smallest expression depth|that is, the one closest to the leaves. There are

more opportunities for a shallow node to contribute to future common subexpressions than

for a deep one, so given that choosing them has the same immediate bene�t, it pays to invest

in the one that's more likely to pay o� in the future. This argument is far from rigorous, of

course: that is why we call the technique a heuristic (the problem is NP-complete). Figures 19

and 20 show the results of two representative algorithms on a 9-unrolled 5-element periodic

stencil.

leftmost largest commonest restricting The �nal heuristic chooses the largest (in terms of

number of summands), leftmost common subexpression, but immediately after doing so,

restricts its attention to that expression's subexpressions until they are fully parsed. This

rule performs optimally for unrolled stencil computations, as demonstrated in �gure 21.

Determining which common subexpression elimination heuristics perform best is not easy: even

ones which intuitively seem to be good bets perform poorly in some domains. We have, however,

discovered which ones give acceptable performance. Two di�culties with many of these heuristics

2.3. COMMON SUBEXPRESSION EXPOSURE 27

B

0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

B

10

B

11

B

12

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

�

�

�

� �

�

� �

�

�

� �

�

�

�

� �

Figure 20: Schematic similar to that of �gure 19, but with the leftmost-shallowest heuristic used to choose

addition nodes. The total cost is 20 additions for 9 results, or 2.22 additions per result.

B

0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

B

10

B

11

B

12

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

�

�

�

� �

�

�

�

�

�

� �

�

�

�

� �

�

�

Figure 21: Schematic similar to that of �gures 19 and 20 in which an optimal pattern of common subex-

pressions for the 9-unrolled loop is shown. The total cost is 19 additions for 9 results, or 2.11 additions per

result. For a 6-unrolled loop, the cost is to 2 additions per result, as demonstrated by the 12 additions that

produce the �rst 6 results R

2

; : : : ; R

7

.

are that they require an ordering of the arguments left-to-right and they are not local. Nevertheless,

they are better than performing exhaustive search.

There is a good, cheap alternative to these complicated heuristics: split the logical loop iterations

into groups of w + 1 results each (plus one group for the remainder), then optimize each group

separately. This works because (as we shall shortly prove) the per-result combining operation cost

is minimized at an unrolling of w+ 1: we can get optimal performance at any particular unrolling

by splitting the results into as many groups of size w+1 as possible, plus one more group containing

the remaining results. Furthermore, at an unrolling of w+1, nearly every heuristic described above

can �nd the optimum association, even if they do poorly at other unrollings.

2.3.3.3 Determining how much to unroll

The number of loop common expressions turned into ordinary common subexpressions increases

with the amount that a loop is unrolled. Since unrolling by a greater amount has other bene�ts

as well (for instance, the physical loop overhead is prorated over more logical iterations), it seems

reasonable to conclude that a compiler should unroll as much as possible, subject to such constraints

as the target machine's instruction cache size. Surprisingly, this is not the case: the incremental

bene�t of unrolling a loop one more time can be negative, and the cost per logical iteration can

be higher for a loop that has been unrolled more, even when the other bene�ts of loop unrolling

are factored in and even when memory hierarchy e�ects are ignored. This section explains why

and substantiates the claim that (w+1)-unrolling leads to optimal per-result combining operation

28 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9
Unrolling

Width = 5

Base ops/iteration
Combining ops/iteration

Base + Comb.
.5 * Base + 2 * Comb.

Figure 22: This graph shows the per-result costs, in terms of base expression evaluations and of combining

operations, of a 5-element periodic stencil. The graph also shows the combined per-result cost of both base

and combining operations, both when they are equally expensive and when the combining operation costs

four times as much as evaluating the base expressions. This would be the case when, for instance, the base

operations were array references and the combining operations were min or max macros; if the combining

operations were function calls, the cost ratio would be even higher.

costs.

Figure 22 illustrates an example in which prorated costs are larger at greater unrollings. The

per-result combining operation cost for a 5-element stencil increases by over 14% from a 6-unrolled

to a 7-unrolled loop; the per-result combining operation cost for an 8-unrolled loop is 6% higher

than for a 6-unrolled one. These e�ects are even more dramatic for wider stencils. The graph shows

the results obtained by the optimal association; if we use an association from �gure 19 or 20 instead,

then the per-result cost is also greater at an unrolling of 9 than at 8 or 10. The graph also shows the

combined cost of the base element evaluations and the combining operations, for two ratios of those

individual costs. When the base operations are more expensive than the combining operations, then

the reduction in the base expression cost washes out the cost of the combining operations and the

total cost is monotonically decreasing until the unrolling is very large. (That plot is not shown.)

At very high unrollings it is easier to �nd instances of negative incremental bene�ts for additional

loop unrolling, but the percentage di�erences are less, and no one would unroll that much anyway.

In each case the loop overhead contributes insigni�cantly to the per-result cost, so it has not been

added in.

Computing any number of w-element sums requires a minimum of 3(w� 1)=(w+ 1) operations

per result; this minimum can (only) be met at unrollings which are multiples of w+1. Showing that

this is an upper bound on the minimum is straightforward: we simply give a construction which

meets the bound. Proving its optimality at that unrolling, which is also fairly easy, introduces

methods that will be used in the subsequent proofs. For this section only, we number both the

source and result elements starting at 1.

Theorem 1 All the results of a (w+1)-unrolled w-element periodic stencil can be computed using

3(w� 1)=(w+ 1) binary combining operations; furthermore, it is impossible to do better.

Proof: Suppose that no operations have yet been performed. Regardless of how we associate its w

summands, w� 1 operations are required in order to compute R

1

, the leftmost result. Similarly, it

2.3. COMMON SUBEXPRESSION EXPOSURE 29

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

B

10

B

11

B

12

B

13

B

14

R

1

R

2

R

3

R

4

R

5

R

6

R

7

R

8

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

Figure 23: The optimal combining operation cost of 2.25 per result is achieved for the 7-element sum by

8-unrolling. Note that the subscripting conventions are di�erent for this �gure than for �gures 19{21.

takes w� 1 operations to produce R

w+1

, the rightmost result, which shares no summands with R

1

.

The w� 1 other results require at least 1 addition operation each|the one that actually produces

the result. This proves that 3(w � 1) operations is a lower bound for producing w + 1 results

and so, when considering w + 1 results at a time, we cannot better the claimed lower bound of

3(w� 1)=(w+ 1) operations per result.

However, we can meet the bound. If we fully right-associate the sum which computes R

1

and

fully left-associate that for R

w+1

, then for any R

i

such that 2 � i � w, two subexpressions are

available that sum to R

i

, namely B

i

+ � � �+B

w

and B

w+1

+ � � �+B

i+w�1

. The former was computed

as a subexpression of R

1

and the latter as a subexpression of R

w+1

, as illustrated by �gure 23.

Thus, we can compute the w � 1 summands R

2

; : : : ; R

w

with only 1 additional operation each, for

a total cost of 3(w� 1) operations, or 3(w� 1)=(w+ 1) operations per result.

Now that we have shown that the per-iteration cost of 3(w � 1)=(w+ 1) = 3 � 6=(w+ 1) is

an upper and lower bound for (w + 1)-unrollings, it remains to be shown that this cost cannot be

bettered at any other unrolling. For u < w + 1 we show a stronger result, that it cannot even be

equaled, except when w = 2. In that case we do not even consider the stencil to be periodic, since

there are no combining operations to share.

Theorem 2 When u � w and w � 3, every association of binary combining operations in a

u-unrolled w-element periodic stencil requires at least 3� 4=w operations per result.

Proof: Computing R

1

requires w� 1 operations. Since R

1

and R

u

share w+1� u summands,

they can share up to w � u operations, if both sums are associated correctly. Therefore, R

u

's

additional cost can be as low as u� 1 operations. Figure 24 shows this situation.

The remaining u � 2 results require a minimum of one operation each, even if two expressions

that sum to them have already been computed in the course of computing R

1

and R

u

. The total

cost for the u results is therefore lower-bounded by (w�1)+(u�1)+(u�2) = w+2u�4, and the

per-element cost is (w + 2u� 4)=u = 2 + (w � 4)=u, which decreases monotonically with u. Since

we assumed that u � w, its minimum is 3� 4=w.

Proving that even at larger unrollings we cannot do better than 3(w � 1)=(w+ 1) combining

operations per result is more intricate; we defer that proof to appendix A and here show a weaker

result.

30 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

� �

� �

w

-�

u� 1

-�

w � u+ 1

-�

R

1

R

u

u

-�

Figure 24: When u < w, R

1

and R

u

share w � u + 1 summands. After R

1

and the base values have been

computed, computing R

u

can cost as little as u� 1 more combining operations.

Theorem 3 Computing u w-element periodic stencils requires at least 2(u� b(u� 1)=wc) +w� 3

combining operations, which is no less than 2(w� 1)=w operations per result.

Proof: This theorem is a corollary of the proofs of the preceding two theorems.

Every wth result (R

1

; R

w+1

; : : :) requires w�1 operations; there are 1+b(u� 1)=wc such results.

R

u

requires an additional (u � 1) mod w operations, at best, and there are u � b(u� 1)=wc � 2

additional results to be computed, each requiring a minimum of 1 more operation. The total

operation cost is

�

1 +

�

u� 1

w

��

(w � 1) + ((u� 1) mod w) + u�

�

u� 1

w

�

� 2:

Since b(u� 1)=wcw + ((u� 1) mod w) = u� 1, we can rewrite this as

2u+ w � 2

�

u� 1

w

�

� 3 = 2

�

u�

�

u� 1

w

��

+ w � 3 :

The per-result claim of the theorem follows from the fact that b(u� 1)=wc =u < 1=w.

2.4 Loop common expression exposure and rerolling

Unrolling loops and performing common subexpression elimination cannot reduce the number of

loop common expressions in a physical loop, only prorate the cost over a greater number of logical

loop iterations. As a result, the method often requires large amounts of unrolling in order to

approach its best performance. Although we show in the next chapter a direct way to remember

the values of loop common expressions from iteration to iteration, �rst we briey investigate the

use of unrolling and common subexpression elimination to do so. In particular, we introduce and

evaluate the methods of massive unrolling and edge linking.

Finding reused base expressions and scaling operations is fairly easy, so this section focuses

on detecting loop common combining operations. It is worthwhile to to try to �nd loop common

expressions even if unrolling is an option, because exploiting loop common expressions is usually

superior to unrolling, even though the theoretical lower bound on combining operations per result

is lower for unrolling. The bound for unrolling is about 3� 6=w, but that value is only attainable

at relatively high unrollings; at lower unrollings the number is O(w). The bound for loop common

2.4. LOOP COMMON EXPRESSION EXPOSURE AND REROLLING 31

0

1

2

3

4

5

2 4 6 8 10 12 14
Unrolling

Combining operations, width = 5

CSE
LCE

0

2

4

6

8

10

2 4 6 8 10 12 14
Unrolling

Combining operations, width = 11

CSE
LCE

Figure 25: The tradeo�s between (optimal) common subexpression elimination and loop common expression

elimination, when considering combining operations in periodic stencils. While unrolling and then performing

common subexpression elimination can achieve better results, that requires wide stencils and quite a bit of

unrolling. At low amounts of unrolling, loop common expression elimination is superior, though it is more

sensitive to the exact amount of unrolling.

B

0

B

1

B

2

B

3

B

4

B

5

R

2

R

3

� �

�

� �

Figure 26: B

3

+ B

4

is a loop common expression, since it can be used at this iteration and at the next one

(when it plays the role played here by B

1

+ B

2

).

expression elimination is about 4, but even if no unrolling is done the method reduces combining

operations per result to less than 2 log

2

w. Figure 25 graphs the tradeo�s between the two methods.

The key to �nding loop common expressions is forcing the subexpressions computed by two

physical iterations to line up. In �gure 26, the next iteration of the physical loop computes R

4

and R

5

. For that physical iteration, the value B

3

+B

4

can play the role played by B

1

+B

2

at this

iteration. Since B

3

+B

4

need not be recomputed, only 4 additions, not 5, are required per physical

loop iteration. Ordinary common subexpression elimination does not construct computations that

can be shared between physical loops because it is greedy: it attempts to optimize the current

computation (the current loop iteration, basic block, etc.) without regard for other users of its

subexpressions. Common subexpression algorithms arrange that the expressions computed are

used by as many results as possible, and this means choosing to compute expressions near the

center of the unrolled loop, not near the edges. Figures 19 and 20 give evidence of this proclivity:

at the left side of the physical loop iteration, the sums are primarily right-associative, and on the

right side, they are mostly left-associative.

We present two methods for overcoming the local, one-iteration view of ordinary common

subexpression elimination. The �rst, massive unrolling, unrolls su�ciently to dilute or nullify

32 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

the edge e�ects caused by the fact that some computations near the edges of the loop are used

less frequently than others near the center. The second method, edge linking, forces the edges to

line up by either wrapping the computation into a ring or, whenever a sum is chosen on one edge,

choosing the corresponding one on the other edge.

2.4.1 Massive unrolling

The massive unrolling method performs ordinary common subexpression elimination on heavily

unrolled loops. Common subexpression elimination algorithms tend to associate computations

away from the edges of the unrolled computation, but if the unrolling amount is su�ciently large,

then the center is far from the edges and will be optimized in a non-greedy way even by an ordinary

common subexpression elimination algorithm. After the algorithm has run, we look in the center

of the expression forest for a pattern of loop common expressions among the nodes chosen. To put

it another way, we snip out a section of the middle whose ragged edges mesh with one another.

It is possible that no pattern of common subexpressions that double as loop common expressions

can be found. If they can, we presume that they optimize the combining operations well, because

that was the criterion for choosing them as good common subexpressions. Register-to-register moves

may also be required because of a need for the old and new values to be active simultaneously. For

instance, in �gure 26, B

3

+B

4

will eventually need to occupy the register which holds B

1

+B

2

, but

the former cannot be evaluated into that register because the two values need to be added. Moving

B

3

+B

4

into the location where it is expected by the next loop iteration is an example of altruistic

work done by one iteration that saves work for another iteration.

We can arrange that no base elements are recomputed; this requires w � u register-to-register

moves (or zero, if u � w). If the stencil is periodic, then not all of the base elements need to be

saved (for instance, B

3

in the example above), and the total number of register-to-register moves

is w � u. The number of scaling operations is reduced in a similar fashion; we leave the details as

an exercise for the interested reader.

While this method can save work, it is an ine�ective way to �nd loop common combining

expressions. Here we examine a few of the scheme's failings.

First, the loop must be very heavily unrolled before a pattern emerges in its center, because

edge e�ects (which result from the common subexpression algorithm's greediness at the edges of

the unrolled loop) can a�ect the pattern of expressions which computes a result up to w elements

distant from either edge. In order to �nd a pattern of size u, the loop must be unrolled to compute

3w + u results, which requires 4w + u source elements. (Another way to say this is that the u

centermost results share no base expressions with the leftmost and rightmost results.)

The unrolling amount actually required depends on the common subexpression elimination

algorithm chosen. For instance, when using the leftmost-oldest-commonest heuristic, a pattern of

size 4 becomes apparent for a width-7 periodic stencil when u-unrolling for u � 20 (and also for

u = 17, if the arbitrary associations that it does not fully specify happen to line up correctly, but

not for u = 18 or 19). The pattern can �rst emerge for a width-9 stencil after 22 unrollings. The

shallowest-commonest heuristic does better on the 7-element stencil but worse on the 9-element

one. (These heuristics are de�ned on pages 25�.)

Computing common subexpressions for such a large expression forest noticeably slows the com-

piler, but smaller ones are not guaranteed to produce an acceptable result. Even after �nding the

common subexpressions in the large unrolled loop, we still must �nd a pattern in them. This is

a complicated problem, but the di�culty is assuaged by the fact that we only have to look in the

2.4. LOOP COMMON EXPRESSION EXPOSURE AND REROLLING 33

center of the expression forest. (Chapter 3 gives a better loop common expressions algorithm which

only requires one search of the base expressions.)

Finally, we have no control over the size of the repeated computation that we �nd|that is, the

number of results it computes. If it is larger than the maximum tolerable unrolling, it is useless.

This is a reason why the optimal common subexpression elimination algorithm may be undesirable:

the result requires (w + 1)-unrolling. We may need to decide how much we are willing to unroll

before choosing the common subexpression elimination heuristic.

In the next section we give another way to �nd loop common expressions by using ordinary

common subexpression elimination; the next chapter gives a more direct way for doing the same

thing.

2.4.2 Edge linking

Rather than unroll enough to mitigate the edge e�ects by distance from the edges, we can attempt

to eliminate edge e�ects altogether by guaranteeing that the edges mesh. The e�ect is of a circular

rather than linear set of iterations.

There are several similar ways to achieve this e�ect; the two most straightforward are to reduce

the source and result array indices modulo some value, or to arrange that whenever a computation

near one edge is performed, its mate at the other edge is also chosen. Indices that are a�ected by

the modulus reduction (we must keep track of which ones are) represent cross-iteration temporary

values|that is, loop common expressions. The biggest problem with this technique is that it

requires an unrolling of at least u = w so that no two source array elements are mapped onto the

same element in the circle; in fact, we must have u > w because at u = w all of the results are

identical. If we unroll that much, we might as well just use the optimal association. We want to

use loop common expressions to permit a small unrolling amount, but this technique is no help in

doing so. We can try to extract a smaller pattern, but there is no guarantee that one can be found.

This technique also su�ers from the fact that some unrollings are inherently better than others, as

graphed in �gure 22.

On the other hand, if the unrolling amount is �xed beforehand (perhaps by other constraints),

this is an e�ective way of determining what loop common expressions to use. It also illustrates the

advantages of the non-optimal common subexpression elimination heuristics. For instance, when a

width-5 periodic stencil is 8-unrolled, 17 operations are required. No loop common expressions exist

if these are arranged as a block of width 6 = w+ 1 and another of width 2. Non-optimal heuristic

are likely to arrange the computations so as to reveal at least one loop common expression, reducing

the cost to 16 combining operations per 8 results. Furthermore, the pattern of computations is

actually only 2 results wide and so we can see that such a large unrolling is not really necessary

after all.

Finding loop common expressions by unrolling and doing ordinary common subexpression elim-

ination can work, but the unrolling amount, either of the expression upon which common subex-

pression elimination is run or of the resulting loop, can be unmanageably large. Loop common

expressions do not naturally fall out of common subexpressions in unrolled loops. The technique

has the merit of applying familiar technology, but we will shortly see a method for �nding loop

common expressions which is nearly as easy to implement and is conceptually simpler to boot.

34 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

Chapter 3

Loop Common Expression

Elimination

This chapter gives direct methods for eliminating redundant computation of loop common expres-

sions (expressions that appear in more than one loop iteration). This represents an improvement

over the unrolling and common subexpression elimination method of chapter 2, which could only

reduce the number of redundant computations per logical loop iteration, not eliminate them en-

tirely. Loop common expression elimination is simple to implement, runs e�ciently in a compiler,

and is always applicable. The method achieves its greatest incremental gains at small unrolling

amounts; if large unrollings are permissible, other methods are superior (see, for example, sec-

tion 2.4.1 on page 32). Even at small unrollings, loop common expression elimination is nearly

as optimal common subexpression elimination at high unrollings. Application of loop common

expression elimination requires the use of a modest number of extra temporary variables; fewer

temporaries are required by this method than by unrolling.

Loop common expression elimination is similar to common subexpression elimination in that

after an expression's �rst appearance, its value is placed in a temporary storage location and

retrieved whenever it is needed thereafter. Since it is cheaper to retrieve the value than to recompute

it, the resulting program is more e�cient. Loop common expression elimination is a good method for

improving the running time of a parallel program when run on a machine with limited parallelism,

because di�erent virtual processors which are emulated by the same physical processor can share

results without incurring any communication cost. This method can also speed up parallel programs

even when the virtual processor ratio is low, and it is applicable to some serial algorithms as well

(see section 7.3).

Computing and storing a value that can be used by the next loop iteration incurs space and

time costs. Extra space is needed to store values across loop iterations. The time cost comes

from two sources. First, the value may have to be moved to the storage location. Second, the

optimal way to compute the current loop iteration's result may not compute the loop common

expression|it might associate operations di�erently, for example. While arranging that the loop

common expression is available for the next loop iteration causes extra work to be done, such costs

are typically more than o�set by the work done by the previous loop iteration to help the current

one.

As an example, consider again the 5-element periodic stencil, exempli�ed by the window sum of

�gure 2. It must be 6-unrolled in order to reduce the cost of combining operations to 2 per result by

unrolling and common subexpression elimination alone; �gure 27 shows this. We can do just as well

35

36 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

B

0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

R

2

R

3

R

4

R

5

R

6

R

7

�

�

�

� �

�

�

�

�

�

� �

Figure 27: The optimal combining operation cost achievable via unrolling a 5-element periodic stencil (such

as the window average of �gure 2) is 2 per result, achieved by 6-unrolling.

B

0

B

1

B

2

B

3

B

4

B

5

R

2

R

3

� �

�

� �

B

2

B

3

B

4

B

5

B

6

B

7

R

4

R

5

� �

�

� �

Figure 28: Two physical iterations of a 2-unrolled 5-element periodic stencil; each of the physical iterations

contains 2 logical iterations and so computes 2 results. B

3

+ B

4

is a loop common expression, since it can

be used at both the physical iteration on the left and the one on the right. B

5

+ B

6

is also a loop common

expression which can be used at the next physical iteration. When loop common expressions are taken into

account, the cost per result is 2 combining operations, just as in �gure 27.

by 2-unrolling and using loop common expressions. Figure 28 shows the computation of 2 results;

this appears to require 5 operations. However, on the next loop iteration we can reuse the value

B

3

+B

4

and avoid doing the �gure's leftmost addition. The number of combining operations, after

a single startup operation, is just 4 per 2 results, or 2 per result.

4

The number of registers required

to hold intermediate values is also decreased from 5 to 3. Figure 6 gives the code corresponding to

�gure 28.

We now describe simple methods for �nding and eliminating loop common expressions in scaling

operations, in base expressions, and in combining operations.

3.1 Finding patterns

Finding loop common expressions is di�cult because the lexical expressions di�er even though their

instantiations in di�erent loop iterations are identical. To get around this di�culty, we temporarily

replace all (possibly shifted) instances of the index variable with a distinguished value. For instance,

the loop bodies of �gures 1 and 2 become, respectively,

y[i] = f(�) * g(f(�))

4

Since B

1

+B

2

and B

3

+B

4

need to be live simultaneously, 1 extra register-to-register move per physical iteration

may be needed; 4-unrolling eliminates it entirely.

3.2. SCALING OPERATIONS 37

for i = 2 to 398

sm[i] = (1/16) * r[i-2] + (1/4) * r[i-1] + (3/8) * r[i] +

(1/4) * r[i+1] + (1/16) * r[i-2]

Figure 29: Unoptimized code for convolution by the binomial �lter of width 5, which is commonly used for

smoothing digital signals. Array r contains the input signal, and the smoothed result is placed in array sm.

and

newx[i] = (x[�] + x[�] + x[�] + x[�] + x[�]) / 5 .

This representation makes it easier to �nd common expressions. Base expressions|in these cases,

f(i) and x[i]|are then discovered by ordinary common subexpression elimination. Scaling oper-

ations are whatever is left after combining operations; ordinary common subexpression elimination

can identify which ones are shared.

The key to the methods discussed in this chapter is �nding patterns in the input stencil. We

do not look for common expressions at particular distances; rather, we �nd common expressions at

any distance and use as many of them as possible.

We now discuss loop common expression elimination applied to scaling operations, base expres-

sions, and combining operations in turn. Optimization of these parts individually is conceptually

simpler than considering the computation as a whole.

3.2 Scaling operations

Once a stencil has been separated into base expressions, scaling operations, and combining opera-

tions, dealing with the scaling operations is quite straightforward. As in section 2.3.1, we initially

consider only aperiodic stencils with exactly two instances of a particular scaling operation. We

defer the optimization of base expressions to section 3.3 on page 40.

The algorithm is as follows. Allocate enough temporary storage locations to hold the values of

the scaling operation applied to the last d base values, where d is the number of loop iterations

between uses of the loop common scaling expression. This guarantees that the value which is needed

at the current iteration, which was computed d iterations previously, is still available. Treat the d

storage locations like a �rst-in �rst-out queue, storing a new value into each location after using its

old value. The only additional requirement is the addition of some startup code to �ll the queue

before entering the loop. This method works analogously when a scaling operation is used more

than two times, as in the stencil ha; 0; 0; a; 0; 0; 0; ai; a single queue still su�ces.

In order to optimize several scaling operations at once, we create several queues and perform

the optimization on them individually. Figures 29 and 30 show the result of applying the method

to convolution by the binomial �lter of width 5, whose stencil is h

1

16

;

1

4

;

3

8

;

1

4

;

1

16

i.

Several criticisms can be made of the code of �gure 30. A minor one is that we cannot �ll in

new array values until the old ones have been used (or safely moved elsewhere), which results in the

use of 2 extra temporary variables s1 and s2. These variables are not necessary in this particular

example, because the code scheduler can reorder the computations to require no more temporaries

than (the best scheduling of) the unoptimized version of this loop. An extra temporary and/or

register-to-register move is sometimes required; it can be eliminated by expanding the size of the

array by one element. (See section 3.3.1 on page 40 for a discussion of when and how to adjust the

array size.)

38 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

t16[0] = (1/16) * r[0]

t16[1] = (1/16) * r[1]

t16[2] = (1/16) * r[2]

t16[3] = (1/16) * r[3]

t4[0] = (1/4) * r[1]

t4[1] = (1/4) * r[2]

i16 = 0

i4 = 0

for i = 2 to 398

s1 = (1/4) * r[i+1]

s2 = (1/16) * r[i+2]

sm[i] = t16[i16] + t4[i4] + (3/8) * r[i] + s1 + s2

t4[i4] = s1

t16[i16] = s2

i4 = (i4 + 1) mod 2

i16 = (i16 + 1) mod 4

Figure 30: Elimination of loop common scaling expressions in the code of �gure 29. The scaling operations

1

16

and

1

4

are used aperiodically with d

16

= 4 and d

4

= 2. The arrays t16 and t4 act as queues, holding

previous results of the scaling operations until they are needed.

A more signi�cant complaint is that for each division saved, we have introduced an array

reference, an addition, and a modulus reduction. The additions can be eliminated by performing

the modulus reductions directly on the loop variable i. (When the modulus is a power of 2, as

in this case, the modulus reduction can be replaced by a bitwise and operation.) Also recall that

the scaling operation could be a function call or other expensive operation(s) and so its cost could

swamp the array overhead. The cost of the array-accessing operations need not be a worry, as the

next section show how to eliminate them.

3.2.1 Unrolling to scalarize arrays

This section presents a method, based on unrolling and ordinary compiler optimizations, for chang-

ing an array used as a queue into a set of scalar variables. An array is a convenient queue representa-

tion because the code for each loop iteration is identical and no unrolling is required. Nevertheless,

temporary variables are preferable to an array because they can be kept in registers and carry no

overhead for accessing or storing, and no index variables need be maintained. The disadvantage of

using a set of scalar variables is that each temporary variable holds the value of a particular lexi-

cal expression, so di�erent instantiations of a loop common expression may be placed in di�erent

variables.

The simplest way to maintain a queue with a set of registers is to arrange them in a chain and

shift live values forward when the �rst element is no longer needed. In �gure 30, such code would

look like

3.2. SCALING OPERATIONS 39

i16 = 0

for i = 2 to 395 step 4

... = ... t16[i16] ...

t16[i16] = ...

i16 = (i16 + 1) mod 4

... = ... t16[i16] ...

t16[i16] = ...

i16 = (i16 + 1) mod 4

... = ... t16[i16] ...

t16[i16] = ...

i16 = (i16 + 1) mod 4

... = ... t16[i16] ...

t16[i16] = ...

i16 = (i16 + 1) mod 4

=)

for i = 2 to 395 step 4

... = ... t16[0] ...

t16[0] = ...

... = ... t16[1] ...

t16[1] = ...

... = ... t16[2] ...

t16[2] = ...

... = ... t16[3] ...

t16[3] = ...

Figure 31: An example of scalarizing an array by unrolling the code of �gure 30. Since the value of i16 is

0 at the beginning of every physical loop iteration, constant folding can convert the loop on the left side to

that on the right. Then the array elements, which are not used or set elsewhere, can be placed in registers

or changed into temporary scalar variables.

... t16_0 ...

t16_0 = t16_1

t16_1 = t16_2

t16_2 = t16_3

t16_3 = a[i+2] / 16

... t16_3 ...

Each variable has a �xed meaning|for instance, t16_1 contains the third most recently com-

puted value; that value will be reused by the next iteration. The d temporary locations can be

allocated in registers; the array implementation used d locations in main memory. There is no

array reference overhead, but d� 1 register-to-register moves are used per physical iteration. The

register-to-register moves can be eliminated entirely by u-unrolling, where u � d, though then

(u mod d) + d temporary variables are required; this is d i� d divides u.

A more direct way to eliminate array referencing and register-to-register move operations is to

unroll the code of �gure 30 and apply standard optimizations. Figure 31 shows part of the unrolled

code before and midway through optimization; we have concentrated on the 4-element array t16.

Scalarizing arrays is an underappreciated but highly valuable e�ect of loop unrolling. When

the unrolling amount is a multiple of the array size, the array references become compile-time

constants. The compiler can treat each array reference as a variable whose home location in the

store is known, just like any other local variable.

5

The resulting code should be exactly the same

as when scalar temporaries were used in the �rst place, whether or not the entire array �ts in the

machine's registers.

If the unrolling amount is not a multiple of the array size, the array can be scalarized by

expanding the array until its size divides the unrolling amount. Regardless of how big this makes

the array, constant folding and liveness analysis reduce the number of storage locations required to

5

Determining that no other program commands read or write the storage location is made more di�cult if the

array is declared globally or the language permits arbitrary pointer manipulations.

40 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

(u mod d)+d, the same number as are required in the register case. There is never any real reason

to use temporaries instead of arrays as the queue abstraction, since arrays can be conveniently

resized and both methods usually result in the same machine code after optimization. Temporary

scalars should be used, however, if the unrolling amount is constrained to be small and the queue

size is just a little larger than that, in which case the overhead of temporary scalars is less than an

array's would be.

3.3 Base values

Base values are maintained analogously to scaled values: the last several values are remembered so

that each base expression need only be evaluated once. In this section we discuss why loop common

expression elimination should be performed on base expressions last, why recursive application of

loop common expression elimination is worthwhile, and when and how to change the sizes of the

queues used for loop common values.

Base value optimization is performed after scaled values are optimized because the scaling

optimizations may reduce the number of base values that need to be maintained. Once a scaled

value is computed, the base value may not need to be remembered|only the scaled value need

be stored. Thus, the space requirements for optimizing both base and scaled values can be little

or no more than those for optimizing base values alone. For instance, in the binomial stencil

h

1

16

;

1

4

;

3

8

;

1

4

;

1

16

i, although each base expression appears in 5 logical iterations, it only appears in 3

iterations of the loop of �gure 30, because each scaling operation is applied to each base element

only once. We previously saw this optimization on page 22 of section 2.3.2 as a reduction in the

number of temporary variables required to take full advantage of an unrolled loop. Here the same

savings apply, namely 1 storage location for each loop common scaling operation at the left edge

of the stencil.

Recall that the base values of a stencil may involve the loop iteration variable more than once.

On page 12 we noted that when optimizing we should treat the stencil h2; 3; 2; 2; 3; 2i exactly like

h1; 0; 0; 1iwith base value 2y

i�1

+3y

i

+2y

i+1

. In this case, computations of the base values themselves

contain loop common expressions: the base values at elements 22 and 24 are 2y

21

+ 3y

22

+ 2y

23

and 2y

23

+ 3y

24

+ 2y

25

, respectively. When computing these values, we can share not only the y

i

expressions, but also some of the multiplications: in other words, this base expression is itself a

stencil! After a stencil computation has been split into its base expressions and scaling operations,

it pays to perform loop common expression optimization on both the base expressions and the

scaling operations. The base expressions of h2; 3; 2; 2; 3; 2i can be optimized. An example whose

the scaling operations can be optimized is h(g(f(i))) + g(f(i+ 1)) + f(i + 2), in which the base

expression is f(�) and the scaling operations are hh(g(�)); g(�); � i. A part of the pattern of scaling

operations may yield a new base expression|in this case, the �rst two scaling operations can be

considered a stencil with base expression g(�) and scaling operations hh(�); � i.

3.3.1 Adjusting the sizes of temporary arrays

This section discusses tricks for adjusting the sizes of the queues used to maintain temporary

values from iteration to iteration. Changing the array size to be compatible with the unrolling

amount can permit the array to be scalarized, signi�cantly reducing overhead (section 3.2.1). The

technique is equally applicable to scalar variables as to an array representation: in the scalar case,

the savings are primarily eliminated register-to-register moves. Naturally, all of these optimizations

3.3. BASE VALUES 41

t1 = y[0]

t2 = y[1]

t3 = y[2]

t4 = y[3]

for i = 4 to 92 step 4

x[i] = t1 + t3 + t4 + y[i+4]

t1 = y[i]

x[i+1] = t2 + t4 + t1 + y[i+5]

t2 = y[i+1]

x[i+2] = t3 + t1 + t2 + y[i+6]

t3 = y[i+2]

x[i+3] = t4 + t2 + t3 + y[i+7]

Figure 32: Computation of stencil h1; 0; 1; 1; 0; 0; 0;0;1i using a queue of length 4. (A queue of length 3 also

su�ces, but more complicated code results and a temporary variable must be used.) Two array references

are required per result; to reduce that number to one, the queue must have length 8.

are only worthwhile if repeating the computation is more expensive than maintaining the queue;

reducing the queue maintenance cost makes the method of loop common expression elimination

more attractive and applicable to even more expressions. We start by discussing maintaining large

arrays, then extend our techniques to deal with several arrays at once.

When an array is large (compared to either the maximum unrolling amount or the number

of registers available), it can pay to reduce its size to cover only some of its uses. For instance,

consider the stencil h1; 0; 1; 1; 0; 0; 0; 0; 1i. It could be worthwhile to forget the base value after the

rightmost computation, but after computing it for the next time, to then remember it for 3 more

loop iterations so that it can be reused twice. Figure 32 illustrates the result. In this case, to

eliminate one base value computation requires a queue of length 1, to eliminate a second requires

an additional 2 queue elements, and to eliminate a third requires 5 more than that.

The cost of queue maintenance is not linear in the number of storage locations. The cost is

increased signi�cantly if the number of registers is exceeded (because some values must be spilled

and later reloaded frommemory) or if the maximum permissible unrolling is exceeded (because then

register-to-register moves or array references are unavoidable). We also saw that if the unrolling

is more than, but not a multiple of, the queue size, then eliminating register-to-register moves or

array references may require up to twice as many storage locations as the queue size.

Another way to reduce the number of storage locations and the unrolling required to elim-

inate queue operations is to use two smaller queues rather than one large queue. The stencil

h1; 0; 1; 0; 0; 0; 1; 1; 1i, for instance, could have its storage cost reduced to 4 locations while comput-

ing the base value only twice by using 2 arrays, each of size 2.

If exterior constraints prevent us from 8-unrolling but permit us to 4-unroll, we can still eliminate

all repeated computations. We would use 2 queues of size 4 and at each logical iteration move a

value from the head of the �rst queue to the tail of the second one. The additional cost is 1

register-to-register move per logical loop iteration. We can even split arrays more than once, but

the returns diminish quickly. If the original stencil had size d+ 1 and the original queue of size d

is split into dd=ue queues of size u (the unrolling amount), then the per-physical iteration cost is

u(dd=ue � 1) register-to-register moves. The u = d=2 case is illustrated in �gure 33.

Sometimes it is desirable to make an array slightly larger or smaller. For instance, we may want

42 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

t1 = y[0]

t2 = y[1]

t3 = y[2]

t4 = y[3]

r1 = y[4]

r2 = y[5]

r3 = y[6]

r4 = y[7]

for i = 4 to 92 step 4

nx = t1 + t3 + t4

t1 = r1

r1 = y[i+4]

x[i] = nx + r1

nx = t2 + t4 + t1

t2 = r2

r2 = y[i+5]

x[i] = nx + r2

nx = t3 + t1 + t2

t3 = r3

r3 = y[i+6]

x[i] = nx + r3

nx = t4 + t2 + t3

t4 = r4

r4 = y[i+7]

x[i] = nx + r4

Figure 33: Computation of stencil h1; 0; 1; 1; 0;0;0;0; 1i using two queues of length 4 rather than one of

length 8. No repeated computation occurs, but use of the smaller queues requires the extra register-to-

register moves ti = ri.

to adjust the array size to be the same as that of another array (so that we can use a single index

into both) or the same as the unrolling (so that it can be scalarized). Changing the array size may

also reduce other costs|for instance, if the size is a power of two, then modulus operations can be

performed with a single bitwise operation.

Increasing a uniform array's size is trivial: just add the extra elements, as mentioned in sec-

tion 3.2.1 on page 39, and then some of its values are dead across the loop iteration boundary.

Decreasing the array's size, on the other hand, makes a value unavailable. We can either recom-

pute it when it is needed or remember it until then, which requires another queue and an operation

to move the value from one queue to the other; in the simplest case, when we only need to decrease

an array's size by 1 element, the entire additional cost is 1 register-to-register move per logical

iteration. Signi�cantly shrinking an array can be costly.

A �nal technique, for use as a last resort and only when the queue representation is an array,

is to partially unroll and then convert a single array into two interleaved ones. For instance, most

of the physical loops in this paper are unrolled by at least 2, so we could use separate arrays for

odd and even values. This helps to reduce the modulus. For instance, if the modulus is 2, then the

add-and-modulus operation can be expressed as a single arithmetic operation: if i 2 f0; 1g, then

3.4. COMBINING OPERATIONS 43

((i+ 1) mod 2) = 1� i. Further unrolling would be even cheaper, but might not be possible.

3.4 Combining operations

Periodic stencils o�er an opportunity for loop common expression optimization of combining op-

erations. For stencils of width w, combining operation costs decrease from w � 1 to no more than

2 blog

2

wc per result, even without unrolling. For u-unrolled loops, the upper bound is less than

4+2(log

2

w)=u combining operations per result. Meeting these bounds requires w storage locations.

We assume that u < w, because when the unrolling is very large, we can do better with the tech-

niques of section 2.3.3, which discover no loop common combining operations. We sometimes used

large unrollings to show when unrolling with common subexpression elimination does well, but the

constraint that u < w is reasonable if w is large. We further assume that u = 2

i

for some integer

i, because if u is not a power of 2, the storage requirements become excessive and the operation

bound also increases somewhat.

We �rst discuss the combining operation costs, then the storage requirements, of the code

produced by our algorithms; we also prove the bounds claimed.

3.4.1 Combining operation costs

The algorithm for non-unrolled loops is extremely simple: we compute each result by building a

minimum-height binary tree, associating the largest binary subtrees leftward, left-associating the

combining operations, and reusing computations wherever possible. This arrangement makes the

number of distinct heights at which nodes are found (the number of levels in the tree) equal to the

conventional de�nition of the tree's height (the length of the maximum-length path from the root

to a node). If at least 2 subexpressions represent the combination of 2

i

values, for any i, a queue is

allocated for them, so they can be reused. Using a minimum-height tree minimizes the number of

results that must be remembered and so the number of queues. Naturally, we must �ll the queues

before the �rst loop iteration.

Theorem 4 By using a minimum-height binary tree and loop common expressions wherever pos-

sible, a 1-unrolled periodic stencil of width w can be computed using as many combining operations

as the number of levels in the tree, which is bounded between log

2

w and 2 blog

2

wc.

Proof: We can establish both bounds on the number of levels in the tree by considering the

binary representation of w. Summing 2

i

values requires a tree with i levels of operation nodes.

We can sum 2

j

values, for any j < i, without using any additional levels (all such sums are loop

common expressions when the 2

i

-element sum has already been computed).

Summing w values requires b � 1 + b

1

� 1 operations, where the binary representation of w

has b bits, b

1

of which are set to 1. If w = 2

i

, the operation total is i = log

2

w; otherwise

b = dlog

2

we = blog

2

wc+ 1 and b

1

� b, which gives us the upper bound.

The number of combining operations required per result is equal to the number of tree levels.

Exactly one combining operation is performed per level because we presumed that, if there was more

than one operation at a particular level the values were maintained as loop common expressions.

If the loop is u-unrolled, we can share even more operations without jeopardizing the use of loop

common expressions. The following simple algorithm combines two previously-seen algorithms in

a straightforward way.

44 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

B

0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

B

9

B

10

B

11

� �

R

0

R

1

�

�

�

�

� �

Figure 34: Optimizing combining operations by eliminating loop common expressions from a 2-unrolled

periodic stencil of width 11. The dotted circles are base elements which must be computed at this (physical)

loop iteration, and the circles containing plus signs represent combining operations which must be performed

at this iteration. Empty circles are values that have been computed by a previous iteration. The total cost

per 2 results is 2 base expression evaluations and 6 combining operations.

First, sum the centermost c = w�u+1 operations, taking advantage of loop common expressions

where possible. Call this value C. This sum (but no larger one) is a subexpression of every result, so

each result is now a sum of u subexpressions. Associate those sums as advantageously as possible

according to the methods of section 2.3.3.3; it is possible to take advantage of a few more loop

common expressions at this step.

Figure 34 illustrates the method for w = 11 and u = 2, and �gure 35 gives a more intricate

example in which w = 29 and u = 8. (These numbers are not outrageously large; some vision

applications average 64 � 64 blocks of pixels [112].) If u is not a power of 2, then the previously-

computed values may not conveniently line up with the ones used at this iteration. Since we build a

binary tree, most results can be used twice without going through the contortions of the algorithm

for �nding loop common expressions which was given in section 2.4.2 on page 33 and which has no

guaranteed performance lower bound anyway.

Theorem 5 The algorithm given above computes u w-element periodic stencil results using 4u +

2 blog

2

(w� u+ 1)c � 2 log

2

u� 4 combining operations.

Proof: Theorem 4 showed that we can compute C with 2 blog

2

cc operations by using loop

common expressions and a minimum-height binary tree with c = w�u+1 leaves. We require a few

more operations than that in this case, however. Because the loop is u-unrolled, none of the values

depending on the rightmost u base values have been computed yet. This means that computing

the �rst log

2

u levels of the tree requires u� 1 operations; the other (up to) 2 blog

2

cc� log

2

u levels

require 1 operation each.

We have now reduced each result to the sum of u subexpressions. Theorem 2 on page 29 showed

that we can compute u overlapped u-element sums with 3u � 4 combining operations. In fact, if

3.4. COMBINING OPERATIONS 45

� �

u� 1

-�

c = w � u+ 1

-�

u� 1

-�

u

-�

9

>

=

>

;

u� 1

9

=

;

� 2 blog

2

cc

� log

2

u

)

u� 2

g

u

u� 1

� log

2

u

8

<

:

W

C

Figure 35: Loop common expression elimination applied to a periodic stencil with width w = 29 and unrolling

u = 8. Dark nodes are computation done at this physical iteration; light nodes are loop common expressions

that need not be recomputed. Combining operation costs are noted at the sides of the diagram.

we have associated C so that the largest complete binary tree is on the far right or far left, then

(log

2

u)� 1 of the combining operations are loop common expressions, which reduces this part of

the cost to 3u� 3� log

2

u operations.

The total operation count for the u results, then, is

(u� 1) + (2 blog

2

cc � log

2

u) + (3u� 3� log

2

u) = 4u+ 2 blog

2

cc � 2 log

2

u� 4

combining operations, which proves the theorem. It is easy to see that this is less than 4+2(log

2

w)=u

operations per result, which veri�es the claim made at the beginning of this section.

We conjecture that by slightly modifying the algorithm and performing a more sophisticated

analysis, the bound can be reduced by approximately 1 operation per result, making it even more

competitive with common subexpression elimination, even at larger unrollings.

3.4.2 Space requirements

This method appears to require a large number of temporary storage locations, because we remem-

ber base values, plus values at blog

2

uc � 1 tree levels. In fact, a total of w locations can store all

the base values and results of combining operations that will be reused. (We might have required

w � 1 storage locations to hold the base elements alone.) Furthermore, these w storage locations

can be arranged as a single queue (or as several smaller ones, if desired).

The key to reducing the storage requirements to a single w-element queue is noticing that,

because we associated the largest of the b

1

binary trees to the left, every value is the left argument

of only one combining operation. Furthermore, after that use, the value is not used by subsequent

physical loop iterations and so need no longer be remembered as a loop common expression. For

instance, in �gure 34, after B

5

+ B

6

has been used to compute (B

5

+ B

6

) + (B

7

+ B

8

), it will not

be needed again, so we can use one storage location for both of these values. (In fact, this can be

the storage location that originally contained B

5

, which is not used again after the computation

of B

5

+ B

6

.) Despite the replacement of some old queue values, the (log

2

u) � 1 loop common

expressions that will be used on the left side of the physical loop will be available.

46 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

Chapter 4

Loop Di�erencing

This chapter introduces the method of loop di�erencing for optimizing the combining operations of

periodic stencils. The method is easy to implement, and the resulting code requires only 2 operations

per result, no unrolling, and no extra temporaries (except any used to maintain base values).

While loop di�erencing requires less unrolling and results in fewer operations per result (when

width w > 3) than our other methods for exploiting loop common expressions, loop di�erencing

is not without its drawbacks. Loop di�erencing requires that the stencil combining operator be

associative and commutative and have an inverse. The method can be numerically unstable, and it

is applicable only to periodic stencils and certain aperiodic ones with distributive scaling operations.

Loop di�erencing has some similarities with iterator inversion [44, 52, 53, 104, 105]; see section 8.3

on page 75 for more about iterator inversion.

Adjacent logical iterations of a periodic stencil (one whose combining operations form a re-

peating pattern) can theoretically share all but one of each of their computations, but �xing a

particular association of the operands prevents most pairs of iterations from sharing that many.

For instance, consider the 7-element periodic stencil h1; 1; 1; 1; 1; 1; 1i, which we represent as x

i

=

y

i

+ y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

. After computing x

22

, we could compute x

21

with only 1

operation if we had associated x

22

as

x

22

= (y

22

+ y

23

+ y

24

+ y

25

+ y

26

+ y

27

) + y

28

:

Similarly, we could compute x

23

with only 1 operation if the previous sum had been

x

22

= y

22

+ (y

23

+ y

24

+ y

25

+ y

26

+ y

27

+ y

28

) :

However, we cannot start from x

22

and compute both x

21

and x

23

with 1 operation apiece, because

x

22

was computed one way or the other (or neither); it could not have contained both (y

22

+ y

23

+

y

24

+ y

25

+ y

26

+ y

27

) and (y

23

+ y

24

+ y

25

+ y

26

+ y

27

+ y

28

) as subexpressions. This is the crux of

the proofs in section 2.3.3.3 and appendix A that width-w periodic stencil computations require at

least 3(w � 1)=(w+ 1) combining operations per result.

When computing x

i

, we would like to have computed, as a subexpression of x

i�1

, the sum of

the leftmost 6 (more generally, w � 1) elements needed by x

i

, so the new result can be calculated

with a single operation. If the previous iteration didn't compute the sum of those w � 1 elements,

we can compute it ourselves, then pay 1 extra operation to get this iteration's total by adding in

the element we don't have in common with the previous iteration. Computing the w � 1-element

sum could take up to w � 2 operations, depending on how the previous iteration's operations

47

48 CHAPTER 4. LOOP DIFFERENCING

rs = y[0] + y[1] + y[2] + y[3] + y[4] + y[5]

for i = 0 to 94

rs = rs + y[i+6]

x[i] = rs

rs = rs - y[i]

Figure 36: Loop di�erencing applied to the stencil h1; 1; 1; 1; 1;1;1i. Rather than computing each result from

scratch, the di�erence between two adjacent results is added to one result to compute the next.

were associated. We will see how to compute it e�ciently by working backward from the �nal

result rather than forward from subexpressions that have already been computed. This technique

computes the w � 1-element sum with a single operation, leading to a total cost of 2 combining

operations per result.

4.1 Inverting the combining operator

Even if we did not compute the sum of the w � 1 shared summands as a subexpression of the

previous result, we can �nd its value with a single operation by applying the following identity,

which we have illustrated using the 7-element stencil introduced earlier in this chapter.

x

i

= y

i

+ (y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

)

x

i

� y

i

= (y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

)

x

i+1

= (y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

) + y

i+7

x

i+1

= (x

i

� y

i

) + y

i+7

This arithmetic identity holds regardless of how x

i

was actually calculated, if the combining operator

(here, +) is associative and commutative and has an inverse. Commutativity and the inverse were

both required in order to get from the �rst line to the second. Applying an inverse can lead to a loss

of precision; see section 4.3 for a discussion. Some combining operations|such as the minimum

operator|have no inverse.

Programs embodying this idea compute a running sum into which new values are added and

from which old ones are subtracted. Figure 7 on page 8 shows the code produced by loop di�erencing

for a 5-element periodic stencil.

We have used a subexpression of the previous result, but one that was not computed in the

course of producing that result. To create this subexpression, it proved cheaper to work backward

from the �nal result than forward from its subexpressions that had already been computed.

This is interesting because we have used an inverse to go backward, something which is rarely

worthwhile in straight-line code. For instance, to compute

a = X + Y

b = Y + Z

where X , Y , and Z are arbitrary expressions, it is always more e�cient to use

t = Y

a = X + t

b = t + Z

4.2. DIFFERENCING 49

than

t = X

a = t + Y

b = a - t + Z

and so ordinary common subexpression elimination algorithms do not even attempt this transfor-

mation. This use of the inverse is only useful when a has been computed at some other location

in the program, but Y has not, and the extra cost of computing X (and doing a subtraction) is

less than the cost of computing Y . Most compilers would try to store the value of Y while a was

being computed, and if that was not possible, would give up on performing common subexpression

elimination on the computation of b.

4.2 Di�erencing

A perhaps more intuitive way to determine how to obtain one result from another is by symbolically

computing the di�erence between the two results. This method gives the loop di�erencing method

its name, but in most cases we need not resort to it, for we can simply recognize patterns in the

stencil's scaling operations. Computing these di�erences is more general than pattern-matching,

however, and can be used when it fails.

As an example of the method, we can compute the di�erence between two iterations of the

7-element window sum as follows:

x

i+1

= y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

+ y

i+7

� x

i

= y

i

+ y

i+1

+ y

i+2

+ y

i+3

+ y

i+4

+ y

i+5

+ y

i+6

x

i+1

� x

i

= �y

i

+ y

i+7

We can perform just 2 operations to get from one result to the next.

In this case (and in the examples that follow) we found a good result by comparing a loop

iteration with the immediately preceding one. In general the method requires examining multiple

iterations. This can be expensive, though �nding good base elements helps, since in most cases

shifting by the width of a base element is most advantageous.

4.2.1 Aperiodic stencils

Loop di�erencing is applicable not only to periodic stencils, but also to some aperiodic ones, if the

scaling operation is distributive over the combining operation. Distributivity permits base values

to be broken into parts; the scaling operation is applied to each part and the resulting values are

combined. Weighted window sums|the most common sort of stencil|satisfy this property; any

linear function satisfying the equation f(x+ y) = f(x) + f(y) distributes over addition.

We now examine a few types of aperiodic stencil to which loop di�erencing is applicable. These

examples are important enough, and common enough, that recognition of them should be built

into a compiler, and symbolic loop iteration di�erencing would be performed only if none of the

built-in patterns were recognized. Like any optimization, in most cases symbolic loop di�erencing

is not applicable, so other optimizations such as loop common expression elimination should also

be attempted.

The following diagrams show only scaling operations, not base or combining operations, for

clarity.

50 CHAPTER 4. LOOP DIFFERENCING

4.2.1.1 Arithmetic sequences

Consider the stencil h5; 4; 3; 2; 1i, whose scaling operations (coe�cients) form an arithmetic se-

quence. When we compare two iterations with one another, we get the following result:

5 4 3 2 1

� 5 4 3 2 1

�5 1 1 1 1 1

The di�erence looks no easier to compute than the results themselves. Although it includes

only 1 non-unity scaling operation, it has 6 summands, which is more than the results do. All

is not lost because the di�erence contains loop common expressions and so can be computed ef-

�ciently. In particular, the di�erence can be split into the stencils h�5i and h1; 1; 1; 1; 1i. The

former requires 1 scaling operation, and loop di�erencing permits us to compute the latter with

2 combining operations per result.

6

Adding these 2 stencil sums to the previous result takes 2

more combining operations. Our total cost per result (after base values) to compute h5; 4; 3; 2; 1i

is not 4 scaling operations and 4 combining operations but 1 scaling operation and 4 combining

operations. Obviously, this trick works for any arithmetic sequence, regardless of the �rst value or

the (constant) di�erence between adjacent coe�cients.

We can compute an ascending and descending arithmetic sequence in a similar way, except that

the extra scaling and combining operations are not needed:

1 2 3 4 5 4 3 2 1

� 1 2 3 4 5 4 3 2 1

�1�1�1�1�1 1 1 1 1 1

The stencil h1; 2; 3; 4; 5; 5; 4; 3; 2; 1i, which has no distinguished middle element, is no more di�cult

to compute than this one. Either requires just 6 combining operations to compute a new result:

2 each to maintain the values of the stencils h�1;�1;�1;�1;�1i and h1; 1; 1; 1; 1i, and 2 more

to add those values to the previous result. We can do even better by noticing that the best way

to optimize the stencil h�1;�1;�1;�1;�1; 1; 1; 1; 1; 1i is like h�1; 0; 0; 0; 0; 1i with base expression

h1; 1; 1; 1; 1i. This requires no more temporary storage locations than the previous method but

saves an additional 2 combining operations per result.

We saved several combining and scaling operations by considering the di�erence between full

results rather than splitting h1; 2; 3; 4; 5; 4; 3; 2; 1i into two smaller stencils, each an arithmetic se-

quence, and optimizing them individually. More to the point, using loop di�erencing is signi�cantly

better than using loop common expression elimination to prevent reapplication of the scaling op-

erations 2, 3, etc. A compiler should always check whether loop di�erencing is applicable before

attempting loop common expression elimination.

A practical use for weighted window sums with coe�cients in two arithmetic progressions is data

windowing. Convolving with a square window results in \leakage" because the window turns on

and o� rapidly and so has substantial high-frequency components. The leakage can be reduced by

using a window function which changes more gradually from zero to a maximum and back to zero.

One recommended function is the N -element Parzen window (or the similar Bartlett window) [108],

6

A stencil of this size can also be optimized to 2 combining operations per result by using unrolling (chapter 2)

or loop common expression elimination (chapter 3).

4.2. DIFFERENCING 51

which ramps linearly approximately from 0 to 1 and back down again:

w

j

= 1�

�

�

�

�

2j � (N � 1)

N + 1

�

�

�

�

; 0 � j � N � 1 :

4.2.1.2 Geometric sequences

Stencils whose coe�cients form a geometric sequence succumb to the same sort of analysis, except

that instead of symbolically subtracting a previous result from the one we wish to compute, we

perform elementwise division. For instance, consider the stencil ha

5

; a

4

; a

3

; a

2

; ai:

a

5

a

4

a

3

a

2

(a)

� (a

5

) a

4

a

3

a

2

a

a a a a

We have enclosed in parentheses the results which cannot be considered (since both dividing by

zero and dividing zero are meaningless in this context). We can compute a new result with only 2

combining operations and 2 scaling operations:

a

5

a

4

a

3

a

2

a

� a

5

+ 1

�a

a

5

a

4

a

3

a

2

a

In this �gure, \�a" represents a single scaling operation applied to the entire sum. This method

works for any a > 0, including negative and fractional values.

If the stencil's last scaling coe�cient is not a, then 1 more scaling operation per timestep is

required. (This cost could be absorbed into the cost of computing the base values, but it must be

paid at some point.)

If multiplication by 1=a is preferred to multiplication by a (for instance, the latter is inexact

because a = 1=3), then the stencil ha

5

; a

4

; a

3

; a

2

; ai can be treated as hb; b

2

; b

3

; b

4

; b

5

i, where b = 1=a,

and processed from right to left instead of from left to right.

We saw on page 50 that when a stencil's coe�cients contain ascending and descending arithmetic

sequences, similar methods to those used for simply ascending or descending sequences could be

used to extract even more performance. Di�erencing can indicate when a stencil's coe�cients

form an ascending and descending geometric sequence, but there is no simple-to-compute value

which can be added to or multiplied by a previous result in order to obtain a new one. The best

method is to split the stencil into two simple geometric sequences and optimize them separately.

Although it may seem that we are giving up the opportunity to avoid some recomputations (for

instance, of multiplication by a

2

in ha; a

2

; a

3

; a

4

; a

3

; a

2

; ai), we save much more than we would have

by optimizing those operations|in fact, no scaling by a

2

need be done explicitly!

Practical examples of stencils whose coe�cients form a geometric sequence abound. Most phys-

ical systems su�er exponential decay as exempli�ed by the unit response of a resistor-capacitor

circuit to an impulse of current or voltage; such circuits are frequently used to model other sys-

tems [117, 119]. The circuit's decay is mirrored exactly by such a stencil, except that subtraction

of the last term (a

5

in our example) is an artifact of the limited window size and the desire for

52 CHAPTER 4. LOOP DIFFERENCING

quick parallel evaluation. It is interesting that in this example, the serialized code is more natural

and more like the system being modeled than the parallel implementation.

Convolution by the ascending-and-descending geometric stencil h[n] = a

jnj

is used to smooth

digital signals. It also provides an excellent approximation to the blurring e�ect of an imperfect

lens or out-of-focus imaging system [69, 119].

4.3 Numerical stability

The chief disadvantage of the loop di�erencing method is its potential numerical instability. In

practice, instability is not a serious problem, because it occurs only when one base value is much

larger than the sum of the others and when inexact oating-point operations are used. Loop

di�erencing guarantees exact results when exact operations such as integer addition and logical

operations are used.

Numerical instability has two sources. First, some mathematical methods are not guaranteed

to converge; certain inputs produce an incorrect answer or no answer at all. A simple example is

Newton's iterative method r

n+1

= r

n

+ f(r

n

)=f

0

(r

n

) for �nding a root of an equation [45, p. 128],

which does not converge for the function f(x) =

3

p

x when the initial estimate r

0

= �1. The second,

more interesting, type of numerical instability results when the computer implementation of a well-

de�ned mathematical method produces incorrect results because of the computer's �nite precision

or approximations to ideal mathematical operations. As an example, consider calculating all the

non-negative integer powers of the golden ratio � = (

p

5� 1)=2. Since �

n+1

= �

n

��

n�1

, the results

can be obtained iteratively by subtraction, without any exponentiation. However, this method gives

completely wrong answers by about n = 16 because of roundo� error and the admixture of the

other solution, (�

p

5� 1)=2, to the recurrence [108, p. 27].

We have shown that, if the combining operation is associative and commutative and has an

inverse, the code resulting from application of the loop di�erencing optimization produces the

same results as did the original, unoptimized code. (This is the de�nition of a correct optimization.)

Although reasonable computer implementations of such operations as oating-point addition and

multiplication are commutative, they are not necessarily associative or distributive and may not

have true inverses [87]. The IEEE standard [33, 70, 74, 75] guarantees commutativity, and a limited

form of associativity (to within rounding error) is provided by the inclusion of denorms [32, 34],

which ensure that x� y = 0 i� x = y and that (y�x)+x returns y even if y�x underows. As an

example of associativity failure, consider adding the author's mass (67.7 kg) to the rest mass of a

proton (1:67� 10

�27

kg), then subtracting out the author's mass again. We would hope to be left

with the proton's mass, but in fact on most computers we get

(1.67e-27 + 67.7) - 67.7 =) 0 :

This error is due to the computer's limited precision, not to spontaneous proton decay [96].

Errors can be introduced by roundo� error (for instance, 1/3 might equal .33333333, which,

multiplied by 3, produces .99999999, not 1), by underow (as illustrated above), or by overow

(which is similar). The order in which operations are performed can have an important e�ect on

the �nal result.

In oating point additions and subtractions, roundo� error amounts to about half of the least

signi�cant bit (call this quantity �) in the result. If the magnitudes of the operands and the results

are approximately equal, this is not too bad, and the order of the operations does not matter. When

nearly equal numbers are subtracted from one another, then the relative error can be increased even

4.3. NUMERICAL STABILITY 53

when the absolute error remains approximately the same [87, 108]; in the proton example above,

67.7 is a good approximation to 67:7+ 1:67� 10

�27

, but 0 is a bad approximation to 1:67� 10

�27

,

even though both approximation err by the same amount, 1:67� 10

�27

.

Even if the roundo� error for a particular sum is small, it can accumulate from repeated addi-

tions. After n results have been computed, the cumulative error (or drift) may be as great as 2n�

(suppose that all the subtractions were rounded down, while all the additions were rounded up).

If the roundo� occurs up and down with equal probability, the expected drift is only

p

2n�, but

properties of the data or the machine implementation may produce the worse result [108]. This

problem can be solved by computing the sum from scratch (i.e., without inverses) every so often;

this brings the error back down to zero and resynchronizes the results with what they ought to be.

Another trick is to work in both directions (left and right) from wherever the result is known to be

accurate; this reduces the number of operations between resynchronizations by half.

54 CHAPTER 4. LOOP DIFFERENCING

Chapter 5

Implementation Issues

The methods of this report have been implemented in a compiler optimization phase which was

used to generate most of the examples in this report and the results presented in chapter 6. (The

implementation ordinarily produces C, but it was modi�ed to produce pseudocode instead for the

examples of this report, in order to avoid burdening the user with C's baroque for-loop syntax.)

The methods are simple, so we spend only a little time discussing our particular implementation

and leave the details to the reader. In the second part of the chapter we point out how these opti-

mizations interact with other compiler optimizations and present two alternative ways to compute

stencils, one taking advantage of distributivity and the other using scans to perform combining

operations.

5.1 Details of the implementation

Our improved common subexpression elimination algorithms, loop common expression elimination,

and loop di�erencing have been implemented in a prototype compiler. The compiler, which consists

of little besides those optimizations, peephole optimizations, and a back end which outputs C [84],

proves the practicality of these optimizations. While we discuss the compiler's performance only

on stencil kernels, it operates on entire programs. Adding an existing C front end [81] would

have been easy, but it was more direct to use the compiler's intermediate representation as input.

Construction of the compiler occupied only a few weeks of work.

The compiler is written in GNU Emacs Lisp [94, 91, 144] because of its excellent programming

environment. The intermediate language is a medium-level list-based multiple-arity representa-

tion; converting to a low-level representation such as three-address code would have obscured the

structure of the program and made the compiler's job harder, not easier.

At present the compiler only recognizes stencils whose scaling operations are multiplications and

whose base expressions are array references; the combining operation can be arbitrary. Extending

the compiler to recognize arbitrary scaling operations would be straightforward. We have not done

so because the compiler is intended as a proof of concept, not a production-quality optimizer.

The input need not be in any stylized form (such as that required by the CM convolution

compiler [22]). An initial simpli�cation step exposes stencil computations by folding constants,

consolidating expressions, distributing operations, ordering expression operands canonically, and

performing other peephole optimizations. The stencil may contain some base elements which are

not used at all, or some which are used without a scaling operation.

If a stencil computation is found, it and the containing loop are replaced by a higher-level

55

56 CHAPTER 5. IMPLEMENTATION ISSUES

construct, and optimizations are performed on this more tractable form. It explicitly lists the

scaling operations, the base expression, the combining operation, the relative o�set of the result

(which we have ignored elsewhere in this report), and several types of information about the

context in which the result is used. Contexts such as f(� +2) are used to represent computation on

an unknown value, particularly for base expressions and scaling operations.

The compiler chooses base expressions that are as large as possible, following the rules given

in section 1.4 on page 12. The optimizer �rst attempts to apply loop di�erencing (only pattern

matching, not symbolic loop di�erencing, has been implemented to date). If loop di�erencing is not

applicable, loop common expression elimination is tried. If either of these methods succeeds, the

resulting code can either compute one result at a time (as most of our examples do) or reference

each source array element only once (as does the code of �gure 15 on page 23), depending on what

resources are scarcest. If neither method succeeds, the stencil is computed naively.

5.1.1 Connections with other optimizations

It is important that standard compiler optimizations be linked with the ones presented in this

paper; the synergy results in better code than either could produce alone. For instance, peephole

optimizations and code reorganization can expose apparently unstructured computations as stencils,

and further simpli�cations are convenient midway through our optimizations to simplify the code

and to evaluate compile-time constants. Elimination of loop common expressions may enable a

compiler's other optimizations to be performed more e�ectively (for instance, by removing false

data dependences); see section 7.3 for an example.

Optimizations which improve the use of the memory hierarchy, such as loop jamming or schedul-

ing loop iterations onto particular processors, often reduce the opportunity for optimizations based

on loop common expressions but can still be successfully applied after loop common expression

elimination.

5.1.2 Wide base elements

Most of the base elements in our examples contain only a single instance of the loop index variable,

but we saw on page 12 that it is more pro�table to consider some stencils to have wider base

elements. For example, consider the periodic stencil h1; 2; 1; 2; 1; 2; 1; 2i, whose pattern has period 2

and occurs 4 times. As for any width-8 stencil, eight base elements must be remembered if none are

to be computed; when the base elements have period greater than 1, some of these base elements

overlap. Each result only combines 4 of the queue elements, however; we e�ectively have two

interleaved queues, each of size 4.

Figures 37 and 38 show code for this stencil before and after loop di�erencing optimization.

We have departed from our practice of giving pseudocode to show actual C input and output. For

clarity, some variables have been renamed, and some optimizations have been disabled in order to

make the code simpler. Some such disabled optimizations are:

1. Temporaries have been allocated as a two-dimensional array; ordinarily they would be stored

in a one-dimensional array (or, more commonly, in registers).

2. Modulus operations have been left in the program rather than being converted to bitwise

operations; ordinarily x % 4 would be transformed into x & 3.

3. Arithmetic operations performed modulo 2 have not been simpli�ed; ordinarily (x + 1) % 2

would be transformed into 1-x.

5.1. DETAILS OF THE IMPLEMENTATION 57

int eight_elt()

{

int i;

for (i=minindex; i<=maxindex; i++)

R[i+2] = S[i] + 2 * S[i+1]

+ S[i+2] + 2 * S[i+3]

+ S[i+4] + 2 * S[i+5]

+ S[i+6] + 2 * S[i+7];

}

Figure 37: Original C code for the eight-element stencil h1; 2; 1; 2; 1; 2; 1;2i. S is the source array, and R is

the result array.

4. Unrolling has been disabled in order to keep the code small; unrolling would reduce loop

overhead, scalarize arrays, and eliminate some arithmetic operations.

5.1.2.1 Partial patterns

We can conveniently process stencils such as h1; 2; 3; 1; 2; 3; 1; 2i whose last base element is incom-

plete. We use the entire base expression (h1; 2; 3i in this case) as our loop common expression, and

the code generated is nearly the same as it would have been if the last base expression had been

complete. Each base expression is �rst used before it is fully computed, but the full base expression

(which will be used by one or more future loop iterations) is placed on the queue. This is a good

example of altruistic computation, since the full value placed on the queue is not used by the current

loop iteration. Figure 39 gives an example for the case when each base expression is computed all at

once; the details are similar when the code should refer to each expression containing a particular

loop reference (in �gure 39, array references) only once.

5.1.3 Loop initialization

Since each loop iteration assumes that the previous iteration has computed some results and left

them in temporary storage locations, we must add initialization code to set up these variables for

the �rst few iterations.

The initialization code is trivial to compute: we simply run a modi�ed copy of the main loop

for w � 1 iterations. The modi�ed copy fails to store results, or even to compute them, but every

expression which is needed to compute a loop common expression is computed.

Figure 38 gives an example; although w = 4, the initialization loop runs 6 times because there

are two interleaved queues to be initialized.

5.1.4 Reassociation

Section 2.3.3.1 showed that if a compiler is to discover common subexpressions e�ectively, the

parse of the source program must not be �xed ahead of time. In most existing compilers, however,

the common subexpression elimination phase operates on a binary tree representing one parse

of the input program; only common subexpressions made explicit by that particular parse will be

discovered. The result can be very poor code in certain important situations, such as unrolled loops.

58 CHAPTER 5. IMPLEMENTATION ISSUES

int diff_eight_elt()

{

int B[2][4] = { { 0, 0, 0, 0 },

{ 0, 0, 0, 0 } };

int RS[2] = { 0, 0 };

int i;

int thisshift = 1;

int thisoffset = 0;

for (i=minindex; i<=minindex+5; i++)

{

B[thisshift][thisoffset] = S[i] + 2 * S[i+1];

RS[thisshift] += B[thisshift][thisoffset];

thisshift = (thisshift + 1) % 2;

if (thisshift == 0)

thisoffset = (thisoffset + 1) % 4;

};

for (i=minindex+6; i<=maxindex+6; i++)

{

RS[thisshift] -= B[thisshift][thisoffset];

B[thisshift][thisoffset] = S[i] + 2 * S[i+1];

RS[thisshift] += B[thisshift][thisoffset];

R[i-4] = RS[thisshift];

thisshift = (thisshift + 1) % 2;

if (thisshift == 0)

thisoffset = (thisoffset + 1) % 4;

};

}

Figure 38: Optimized C code produced by the implementation for the eight-element stencil h1; 2; 1; 2;1; 2; 1;2i

after loop di�erencing. S is the source array, and R is the result array. Temporary arrays B and RS hold

the base values and the running sums. There are two running sums, one each for even- and odd-indexed

results, and also two four-element queues of base values. Most examples, though also produced by the

implementation, appear in a simpler pseudocode for clarity.

for i = ...

newbase = S[i+6] + 2 * S[i+7]

R[i] = h�rst queue elementi + hfourth queue elementi + newbase

newbase = newbase + 3 * S[i+8]

hInsert newbase onto queue.i

Figure 39: Pseudocode for evaluation of the stencil h1; 2; 3; 1; 2;3;1; 2i, whose last base expression is incom-

plete. S is the source array, and R is the result array.

5.1. DETAILS OF THE IMPLEMENTATION 59

This section discusses the two general solutions to this problem: adding operators of arbitrary arity

to the compiler's intermediate form or performing associative transformations on the input.

Actually, the problem is not always soluble. Reassociation might be illegal because the operators

are not associative or because the value of the expression could be changed by the transformation.

Some languages explicitly disallow reassociation in certain circumstances; for instance, a Fortran

compiler may cause the processor to \evaluate any mathematically equivalent expression, provided

that the integrity of parentheses is not violated" [13, sec. 6.6.4]. Therefore, a+b+c could be evalu-

ated as either (a+b)+c or a+(b+c), but neither of those may be substituted for the other. In some

cases, the situation is even worse than it appears. In the IBM XL Fortran compiler, \The [VAST]

preprocessor rewrites the expression with additional parentheses to make the common expression

apparent to the compiler" [72, ch. 4]. In fact, this compiler requires this preprocessing step be-

cause \the compiler can [only] recognize: : :duplicate expressions [when] they are either coded in

parentheses or coded at the left end of the expression" [72, ch. 7]. The XL C compiler is similar [71].

Our implementation represents associative operators as nodes of unlimited degree [21, 98], and

the children of commutative operators are unordered: the intermediate form reects the semantics

of the source program rather than those of the target machine. This makes sense because it

simpli�es implementation of our optimizations, which are machine-independent but source-code-

dependent. A disadvantage of this method is that operations on variable-arity trees tend to be

slightly more expensive than those on �xed-arity trees in other parts of the compiler. The internal

representation of the list of a node's children is similar to the internal representation of a supernode

or cluster [118] of binary nodes all representing the same operation, but the complexity is hidden

behind an abstraction barrier instead of being exposed to the compiler writer.

Another approach is to use the standard binary tree intermediate representation, but to permit

reassociation, such as transforming (a+b)+c into a+(b+c) in the hope that the latter form will

expose more common subexpressions than the former. Reassociation can have other bene�ts as well.

Transforming scalar1 * (scalar2 * vector) into (scalar1 * scalar2) * vector changes a

vector multiplication into a scalar multiplication [97], and transforming 11+(11+x) to (11+11)+x

removes a run-time addition entirely, since addition of two constants can be done by the compiler.

Often commutative as well as associative transformations are required in order to achieve these

gains. Simply ordering the operands canonically can cause common subexpressions to be missed,

and canonical ordering will not expose the common subexpression shared by a+c and a+b+c.

Reassociation is attractive because it can be easily integrated into existing compilers and ap-

plied only where desired. However, reassociation can be very expensive: for a particular ordering of

n operands, there are O((n� 1)!) associations. (There are n� 1 choices for the �rst pair, and then

we are basically associating n � 1 elements. Some of the (n � 1)! associations thus produced will

be duplicates, but not enough to reduce the asymptotic bound.) For each of these associations, a

common subexpression elimination algorithm must be run to determine how many common subex-

pressions that association exposes. The complexity can be reduced by using dynamic programming

or computing only the overall change in code cost caused by a small change in the association, but

the methods are still time-intensive. In addition, for any set of n operands, there are n! ways to

commute them before the associativity is even considered.

The PL.8 [15, 31] and Id [137] compilers perform reassociation of loop invariants to increase the

e�ectiveness of loop-invariant code motion. Since these expressions are typically very small, the cost

is small, but the speedups were not found to be dramatic either, for loop-invariant expressions [62].

60 CHAPTER 5. IMPLEMENTATION ISSUES

5.2 Alternative implementations

This section describes two other ways to optimize stencils. When the scaling operation distributes

over the combining operation, factoring out scaling operations reduces the number of scaling opera-

tions performed for aperiodic stencils to the same number that loop common expression elimination

achieves, and it is slightly simpler to boot. Scans can be used to evaluate periodic stencils and, if

hardware support is available, may be competitive with the methods we have presented.

5.2.1 Factoring scaling operations

When the scaling operations distribute over the combining operation, we can directly factor a

stencil to reduce the number of operations performed. For instance, the 5-element binomial stencil

h

1

16

;

1

4

;

3

8

;

1

4

;

1

16

i can also be viewed as

1

16

� h1; x; 1i, where x is 4 � h1;

3

2

; 1i; this form contains

only 3 scaling operations. (Loop common expression elimination structures this computation as

h

1

16

; 0; 0; 0;

1

16

i+ h

1

4

; 0;

1

4

i+ h

3

8

i and so also requires just 3 scaling operations per result.)

The resulting code is slightly more straightforward than that produced by loop common expres-

sion elimination, and the method can be performed automatically. Furthermore, it uses 2 fewer

temporaries in this example, since only base values, not scaled values, need to be remembered.

Even if we used this method for optimizing the scaling operations, we still must use loop common

expression elimination to optimize base expression evaluations, so the result is essentially the same

as that produced by loop common expression elimination, except that some of the computations

have been rearranged. This method is also not as general as loop common expression elimination,

since it requires distributivity. Therefore, in our implementation we �nd it more convenient to use

a single mechanism than to implement a general one and a specialized one as well, but in practice

adding this method would be worthwhile.

When the coe�cients form an arithmetic or geometric sequence, loop di�erencing outperforms

this technique, as demonstrated in sections 4.2.1.1 and 4.2.1.2.

5.2.2 Scans

Scans (also known as reductions or parallel pre�x computations) [93, p. 32] can compute periodic

stencils via a method similar to loop di�erencing. After the base operations have been computed,

a single �-reduction (where � is the combining operation) sets the ith value of the result vector

to the sum of the �rst i base elements. To �nd the value of a window of width w, we only need to

subtract (that is, perform the combining operation's inverse upon the two values) two values which

are separated by width w.

This implementation's cost is 1 scaling operation and 1 combining operation per result, plus 1

scan, which costs around O(logn), where n is the machine size. The di�erencing implementation

required 1 scaling operation and 2 combining operations per result.

Computing stencils using scans reduces the danger of instability or inaccuracy due to round-

o� problems, but it increases the danger due to truncation and overow. Roundo� errors are

reduced because the depth of the operation tree for computing a particular value is shallower|

since fewer operations were performed, the maximum cumulative drift is smaller. The worst case

error is reduced to about (2 logn)�, compared to 2n� for the standard running-sum implementa-

tion. (Section 4.3 gave methods for arbitrarily reducing the latter value, at the cost of some extra

computation.)

5.2. ALTERNATIVE IMPLEMENTATIONS 61

While the roundo� problem is reduced, the problem of truncation is exacerbated, and it is

di�cult to predict which will be worse for a particular application. The error analysis predicting

precision within (w+ 1)� holds only if the combining operation and its inverse each cause a loss of

no more than � precision. This will not necessarily be the case if two approximately equal values are

subtracted. Suppose that our computer has b bits of precision, we are computing a total of t window

sums, and the base values are all about equal (say, approximately 1). The last few scan values are

equal to about t, so they have the same �rst log t bits; their di�erence will only have b� log t bits

of precision. If t is large (1,000,000 data elements is modest for today's supercomputers), then we

have lost 20 bits of precision.

While the scan operation may have hardware support or be very e�ciently coded at a low

level as system software, that is not a su�cient justi�cation for its use. On a machine of size

n, a scan requires O(logn) time, much more than the running sum method. Intuitively, we do

not need the scan's ability to communicate information all the way across the machine, and that

feature slows down even nearby communications. Purely local communication patterns will be

more e�cient since they provide exactly what we need. Even if we use the scan operation, we still

need to perform local communications to move the values that will be subtracted near one another.

When the virtual processor ratio is high, scans are implemented using sequential algorithms on

each processor anyway; we might as well do so directly ourselves and avoid the overhead performed

by the combining tree.

62 CHAPTER 5. IMPLEMENTATION ISSUES

Chapter 6

Timing results

This chapter compares the e�cacy of our three methods for reducing recomputation of loop common

expressions. We present timings of the code produced for both periodic and aperiodic stencils

by unrolling, by loop common expression elimination, and by loop di�erencing. The performance

depends on the actual stencil and the cost of its execution, but we can usually improve performance

by at least a factor of four and sometimes by even more.

We ran our compiler on serial programs whose loops were marked as parallelizable but which

were otherwise unannotated; this information could easily have been provided by a good dependence

anlysis algorithm. The compiler produced serial C code. In some cases, to make testing easier, the

transformed code was rewritten using C preprocessor macros [124], but no hand-optimization was

performed beyond that done automatically by the compiler. The C program was compiled with

a standard compiler [125, 130] with optimization ags on. We report timings from executing the

object code on a Sun-4 SPARCstation 1+ [131].

We used a variety of base expressions, scaling operations, and combining operations in order to

see the e�ect of varying the relative costs of those parts of the stencil. The base expressions were

either an array reference or an evaluation of the polynomial (x+1)(x+2)(x+3) = x

3

+6x

2

+11x+6; in

each case the value was coerced to an extended-precision oating-point type. The aperiodic stencils

were binomial �lters; their scaling operations were multiplications and their combining operation

was addition. The periodic stencils used addition and minimum (each implemented as a macro and

as a function) as their combining operations.

The times reported are seconds on a SPARCstation 1+. When the base expression is an

array reference, the time is that required for the computation of 1,000,000 results; when the base

expression is a polynomial evaluation, 100,000 results were computed.

We give results for aperiodic stencils (binomial �lters) and periodic stencils (window averages)

of widths 5, 7, 9, and 11, at unrolling amounts of 1, 2, 4, 6, 8, 10. There is nothing magic about

odd widths or even unrollings; those are just the values we happened to choose.

These results are somewhat preliminary; we expect to give fuller results in a future version of

this paper.

6.1 Aperiodic stencils

Figure 40 graphs the relative e�ectiveness of loop common expression elimination and common

subexpression elimination on aperiodic stencils|in particular, binomial �lters. (Loop di�erencing

is not applicable to this stencil.) When the loop common expressions do not represent much

63

64 CHAPTER 6. TIMING RESULTS

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
 p

er
 1

,0
00

,0
00

 r
es

ul
ts

)

Unrolling

Array reference base
0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
 p

er
 1

00
,0

00
 r

es
ul

ts
)

Unrolling

Polynomial base

Figure 40: Timings for optimized aperiodic stencils with base ex-

pression an array reference (left graph) and a polynomial evaluation

(right graph). The legend for these graphs appears at right. The

line type indicates whether loop common expressions or just com-

mon subexpressions were eliminated, and the point type indicates

the size of the binomial �lter used.

Loop common expressions
Common subexpressions

width = 5
width = 7
width = 9

width = 11

computation (an array reference, in the left graph), there is little to be gained from optimizing

them. When they represent more work (a polynomial evaluation containing several multiplications,

on the right side of the �gure), the savings are signi�cant even at low unrollings. Nothing is gained

by unrolling more than w � 1 times, where w is the stencil's width, and large unrollings can even

decrease performance due to the allocation and manipulation of many extra temporary variables.

Common subexpression elimination also gained little performance in this case.

The speedups shown in the graph for loop common expression elimination are a severe under-

estimate, because many of our techniques were not implemented in the prototype compiler or were

turned o� for this test to avoid even the appearance of fudged data. For instance, when the un-

rolling was too small for the entire base queue to be scalarized, then only part of it was scalarized;

we could have split the queue into two or more smaller ones of size no greater than the unrolling

and scalarized them individually. Similarly, when a queue for a scaling operation was larger than

the unrolling, it was omitted entirely. No e�ort was made to optimize loop common expressions

when the loop was 1-unrolled, though that would have saved more time.

6.2 Periodic stencils

We performed similar experiments for periodic stencils, but here there was an additional variable:

the combining operation used. We only report the results for an addition macro (which is very

inexpensive: a single machine instruction) and an addition function (whose function call overhead

is fairly expensive), because they are representative of a spectrum of costs.

In this case common subexpression elimination has a larger e�ect, as indicated by �gure 41,

which shows speedups gained without any cross-iteration optimization at all. The graph for loop

common expression elimination is similar, but drops o� even faster; to avoid graph overload, we do

not plot this. The time required for loop di�erencing is essentially independent of the unrolling and

the stencil size, since it performs just two base element evaluations and two combining operations

6.2. PERIODIC STENCILS 65

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
)

Unrolling

Addition combiner

Array reference base
Polynomial base

width = 5
width = 7
width = 9

width = 11

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
)

Unrolling

Function combiner

Array reference base
Polynomial base

width = 5
width = 7
width = 9

width = 11

Figure 41: Speedups for a periodic stencil (a window average) achieved by unrolling and performing our

common subexpression elimination algorithm. (Ordinary algorithms �nd no common subexpressions, so the

performance is nearly independent of the unrolling amount.) The combining operation for the left graph is

addition; the right graph uses a function (whose body happens to be a simple addition) as its combining

operation. The legends for the two graphs are identical: the line style indicates whether the base expression

was an array reference or a polynomial evaluation, and the point style indicates the size of the window of

values being averaged.

per result. The following table gives timings at a few points for all three methods. The base

expression is a polynomial evaluation; when it is an array reference, the relative numbers are

similar (though their magnitudes are smaller), except that loop di�erencing is dramatically better

when the combining operation is addition.

Addition combiner

w = 7 w = 9 w = 11

u = 2 u = 2 u = 4

CSE 7.1 8.1 5.4

LCE 5.0 3.4 5.6

Di�. 4.3 4.3 4.3

Function combiner

w = 7 w = 9 w = 11

u = 2 u = 2 u = 4

CSE 8.9 10.8 8.0

LCE 7.3 4.8 7.6

Di�. 5.5 5.5 5.5

Like the numbers for loop common expression elimination, those for loop di�erencing are an

underestimate, because the current implementation never tries to optimize loop common expres-

sions.

66 CHAPTER 6. TIMING RESULTS

Chapter 7

Extensions

In this chapter we present several extensions to our methods for reducing the number of loop

common expressions recomputed by a program. First we discuss scheduling of jobs onto processors,

which can be done at compile time using standard techniques even if the problem size and machine

size are not known at compile time. Next we show how to e�ciently compute two-dimensional

stencils using the methods we have developed for one-dimensional ones. We give an example of

how loop common expressions can be optimized even in purely serial programs and, lastly, discuss

some miscellaneous extensions.

7.1 Scheduling jobs onto processors

While our goal is to improve the performance of parallel programs on both parallel and serial

machines, we have only discussed compilation for a single physical processor. A collection of

serial programs does not make a parallel program, and in this section we briey discuss additional

concerns in a real system, primarily the allocation of data, virtual processors, and work among

physical processors, and communication among physical processors.

Perhaps most importantly, the data (and virtual processors) must be assigned to physical pro-

cessors. We rely on previous work, which has primarily been concerned with minimizing commu-

nication [2, 86]. Our optimizations are only applicable if a particular physical processor executes a

collection of subsequent loop iterations, in order. (If the loop iterations are randomly distributed

among the processors, then it may be the case that no physical processor is assigned internally

redundant work, even though work is being repeated in the system.) This requirement is met

by most data distribution algorithms. Another issue for a real compiler for a parallel machine is

communication of values from processor to processor; not all of the data is local, though much of

it may be if the virtual processor ratio is high. This issue has also been adequately discussed in

the literature [2, 22, 60, 61, 63, 86, 141].

Although some previous scheduling work has required compile-time speci�cation of the number

of physical processors [37, 38], all that is really needed is a simple way to allocate work at run time.

For instance, if each physical processor can determine the data set size n, the machine size m, and

its own processor number i (0 � i < n), then it can compute at run time the lower and upper bounds

on its virtual processor emulation loops, namely bin=mc and b(i+ 1)n=mc� 1. These values could

have been compile-time constants, but the information is likely not to be available then and the

cost of computing them at run time is very slight. Furthermore, if they are compile-time constants,

then the programs run on each processor are di�erent, complicating storing and debugging. More

67

68 CHAPTER 7. EXTENSIONS

complicated expressions involving run-time loads or processors of di�ering powers can be derived

but are of limited use.

Although the machine and problem sizes need not be known at compile time, that is when

the jobs are scheduled onto physical processors. This di�ers from the work pile model of parallel

processing in which, when a processor becomes idle, it obtains more work from a centralized loca-

tion [54, 59, 95, 99, 100]. If the tasks do not all complete in about the same amount of time, e�cient

execution in that model requires additional overhead in the form of communication and synchro-

nization. For the stencil-based computations considered in this paper, instruction-level simulation

of the Alewife parallel architecture [4, 28, 103] has shown a work pile scheme to be up to 250%

as expensive as prescheduling [46, 47]. The non-prescheduled code also has fewer opportunities for

further optimization.

7.2 Two-dimensional stencils

Two-dimensional stencils are found especially in relaxation problems, but also in numerous other

applications. In this report we have considered only one-dimensional stencils, primarily because

the exposition is considerably easier for them. Here we outline two approaches to optimizing

two-dimensional stencils (directly or by doing multiple one-dimensional stencils) and discuss some

implementation issues.

The loop common expressions of a two-dimensional stencil can be directly exposed. For instance,

the coe�cients corresponding to a formula for the Laplacian operator r

2

[12, 26, 67, 69], which is

used to compute two-dimensional derivatives, are

1=20 1=5 1=20

1=5 �1 1=5 :

1=20 1=5 1=20

The result at a location is the negative of the location's data value, plus one-�fth of each of its

horizontal and vertical neighbors, plus one-twentieth of its diagonal neighbors. A more popular,

but worse-behaved, version of this is

1=4

1=4 �1 1=4 :

1=4

If either stencil is strip-mined (producing a multistencil [22]), then the common scaling operations

can be relatively easily exposed, even those in di�erent rows and columns. The major di�culty with

this method|and the others for two-dimensional stencils|lies in choosing heuristics for splitting a

stencil into smaller pieces in order to optimize the size of the base expressions and how often each

is used.

A simpler method for computing a two-dimensional stencil is to combine the results of several

one-dimensional stencils. If the two-dimensional convolution can be performed as two orthogonal

one-dimensional convolutions, then the resulting program is trivial. Relatively few stencils can be

so decomposed [66], but some important ones|including many smoothing operators|can.

Any two-dimensional stencil can be performed as a series of one-dimensional stencils. First a

one-dimensional stencil computation is performed for each column of the original two-dimensional

stencil; then these results are added up by performing a one-dimensional row stencil. (We can just

7.3. LOOP COMMON EXPRESSIONS IN SERIAL ALGORITHMS 69

as easily reverse the order of the directions.) For instance, to compute the nine-point Laplacian

shown above for an array a, we would �rst compute, for each point, the stencils

e

i;j

= a

i;j�1

+ 4a

i;j

+ a

i;j+1

and

c

i;j

= 4a

i;j�1

� 20a

i;j

+ 4a

i;j+1

:

Then the �nal value can be computed by the stencil

r

2

i;j

= e

i�1;j

+ c

i;j

+ e

i+1;j

:

When several one-dimensional stencils are combined to produce the two-dimensional convolu-

tion, then either the �rst pass can be done completely before starting the orthogonal one, or they

can be interleaved via strip mining. The former is conceptually simpler, but in the presence of

virtual memory the latter is probably better because the computation is more local and less extra

storage is required; the latter may also expose more computations as loop common expressions. In

any event, a single horizontal (vertical) pass over the data can compute several horizontal (vertical)

stencils, even if they have di�erent sizes. In the example above, e and c would be computed in a

single loop.

7.3 Loop common expressions in serial algorithms

Loop common expression elimination can be as pro�table for serial algorithms as for parallel ones.

We have so far concentrated on parallel programs (though we have examined execution on a single

processor) because they provide particularly fruitful ground for application of the method. Another

advantage of parallel applications is their lack of data dependences, which simpli�es the application

of our methods: we don't have to worry about whether an expression's value will change from one

iteration to the next, invalidating our stored copy. This problem prevents most compilers from

even attempting such transformations.

Properly applied, however, loop common expression analysis can improve the performance of

serial algorithms. Here we give, as an example, the transformation from bubble sort to insertion

sort. (We will show two implementations of bubble sort; one cannot be transformed into insertion

sort, and the other can.) Bubble sort is among the most trivial of algorithms: it sorts n values in

O(n

2

) time. Insertion sort also requires O(n

2

) time, but it reduces the number of array references

and stores by more than half. Here is an implementation of bubble sort:

for j = 2 to n

for i = j-1 to 1 step -1

if a[i+1] > a[i]

then

swap(a[i+1], a[i])

Ordinary common subexpression elimination and inlining of swap can transform this to

70 CHAPTER 7. EXTENSIONS

for j = 2 to n

for i = j-1 to 1 step -1

olda = a[i+1]

newa = a[i]

if olda > newa

then

a[i] = olda

a[i+1] = newa

but no further. Even cross-iteration optimization seems likely to be foiled, because there are

apparently no guarantees about the values of elements of array a: it can be assigned to in the body

of the loop. If we maintain the temporaries olda and newa as loop common expressions, however,

we can optimize away an array reference:

for j = 2 to n

olda = a[j]

for i = j-1 to 1 step -1

newa = a[i]

if olda > newa

then

a[i] = olda

a[i+1] = newa

else

olda = newa

The inner loop now accesses each array element only once; at the beginning of each iteration

olda = a[i+1], but when the then clause is taken, it does not need to be set at all. The remainder

of the transformation to insertion sort requires the insight that the inner for loop does not need

to run all the way down to 1, but only until the test fails. Since the �rst j� 1 elements are already

in order, the jth element only needs to be inserted in its proper place. Recognizing this property

probably requires human intervention, though it is possible that a theorem-prover could determine

it. Let us suppose, then, that the original bubble sort implementation is as follows:

for j = 2 to n

i = j-1

while (i > 0) and (a[i] > a[i+1])

swap(a[i+1],a[i])

i = i-1

We can quickly get to

for j = 2 to n

olda = a[j]

newa = a[j-1]

i = j-1

while (i > 0) and (newa > olda)

a[i] = olda

a[i+1] = newa

newa = a[i-1]

i = i-1

7.4. OTHER COMPLICATIONS 71

Now it is not too di�cult to notice that one of the array assignments undoes the other one. The

code's �nal form is

for j = 2 to n

olda = a[j]

newa = a[j-1]

i = j-1

while (i > 0) and (newa > olda)

a[i+1] = newa

newa = a[i-1]

i = i-1

a[i+1] = olda

This version contains only 1 array load and 1 array store in its inner loop; this is even more e�cient

than the version of insertion sort in [35, p. 3].

The optimizations were mostly standard ones, but they could not be applied until the loop

common expressions had been eliminated, making clear where the dependences actually were.

What is noteworthy about this is not so much that bubble sort was converted to insertion sort, but

that it was done by general optimizations rather than by pattern-matching. (It would still work if,

for instance, the loops were reversed to run in the opposite directions.) We did have to start with

a reasonable implementation of bubble sort. It is no surprise that we can write implementations

(like the �rst one, on page 69) that our methods cannot transform all the way to insertion sort.

7.4 Other complications

In this section we discuss a few more of the �ner points in a practical implementation of our

methods. We show how to perform loop common expression optimizations even when the stencil

computation being performed is not known at compile time, how to deal with inactive virtual

processors, and how to optimize when a single value, not an array, is the result.

If a stencil's pattern of scaling operations, but not the scaling operations themselves, can be

determined at compile time, then all of the methods of this report are still applicable without

change. (For instance, occasionally the weights

1=12 1=6 1=12

1=6 �1 1=6

1=12 1=6 1=12

are preferable to those on page 68 for the Laplacian operator [68, p. 191]. At compile time, even if

we did not know which version we desired, we would know the pattern of loop common expressions.)

In fact, the methods become even more attractive in this case, because optimizations of the scaling

operations cannot be performed as e�ectively and so they will be relatively more expensive than

when they are known at compile time. In fact, all of the optimizations of this report can be

performed at run time, if desired. When a computation is applied to a great many data, this may

be worthwhile.

We have so far assumed that every virtual processor computes a stencil and remembers the

result, but in many applications not all virtual processors participate in every computation. There

are two possibilities for inactive or masked-out processors: they can contribute a base element but

not store a result, or they can not contribute a base element. (The former may be the case even if

72 CHAPTER 7. EXTENSIONS

there is no valid data at that point|the contribution may be the combining operation's identity.)

If no base element is contributed, then none of the w results that depend on it are valid, where

w is the width of the stencil. Since the results on either side of this gap have no computation in

common, we might as well stop the computation and start it from scratch, as at the beginning

of a loop. If there are many such results, then the loop startup overhead consumes a relatively

high proportion of resources. If, on the other hand, every virtual processor contributes a base

element but some do not compute results, then it is rarely advantageous to change the pattern

of computations. The combining operation which produces that result can be omitted (except in

the case of loop di�erencing), but stopping the loop and starting it up again is usually much more

expensive.

The examples in the rest of this report have produced entire arrays as results, but sometimes we

want a single result, such as the sum of that array's elements. (In this case we would not actually

produce the array at all.) For instance, when numerically integrating, we might not be interested

in the improved approximations to the area under each interval of the curve, but only in the total

area under the curve. Our methods are still applicable in this case, but other simple techniques

are even more attractive. For example, if the scaling operation is distributive and all references to

a particular base element are moved to one loop iteration, then all loop common base expressions

are eliminated and only one scaling operation per base value is required.

Chapter 8

Perspective

While the methods of this report are original, some of them have been independently discovered in

the past and used to hand-optimize inner loops [127]. Our techniques also share some similarities

with previously published work. This chapter surveys related work in serializing parallel programs

to reduce overhead, in iterator inversion (a form of strength reduction which is similar to loop

di�erencing), in parallelizing serial programs, and in other attacks on stencil computations and

loop common expression elimination. Finally, we recap our contributions.

8.1 Reducing overhead

Previous work on serializing parallel programs can be viewed as overhead reduction, because it

makes no change to the program's computations but only reduces its overhead. The number and

type of program computations remain �xed, but the operations may be reordered and/or some

system operations may be removed. Such transformations reduce overhead for looping constructs,

task management, and storage allocation. The methods of this report reduce overhead, but more

importantly, they reduce the amount of computation required to generate the program's output.

The false metric of MIPS (millions of instructions per second) count is not necessarily improved by

elimination of loop common expressions, but the program completes faster, which is what the user

really cares about.

The most direct way to reduce a loop's resource usage is to unroll the loop, prorating the �xed

physical loop overhead over several logical iterations. This e�ect is only noticeable if the loop body

cost is comparable to the loop overhead. Other bene�ts of loop unrolling include better use of the

data and instruction caches and exposure of more instructions to optimizations and to the register

allocator and instruction scheduler.

Loop fusion (also known as loop jamming) [8, 143] also reduces loop overhead. If the bounds

on two adjacent loops are identical, and the transformation would not change the data dependence

relation between the loop bodies, then they can be consolidated into a single loop. Not only is the

loop overhead for the second loop removed, but data locality can be improved. Figure 42 displays

an example of this transformation.

Most overhead reduction work for parallel programs focuses on increasing the grain size of com-

putations [138]. When tasks are very small, a disproportionate amount of time is spent switching

between tasks rather than performing the program's computations. Increasing the size of each

thread decreases the overhead and so the program's running time. Since the data-parallel pro-

gramming model has no concept of a task, grain size modi�cation is not directly applicable to our

73

74 CHAPTER 8. PERSPECTIVE

for i = L to U

a[i] = ...

for i = L to U

d[i] = ... a[i] ...

=)

for i = L to U

a[i] = ...

d[i] = ... a[i] ...

Figure 42: Loop fusion or loop jamming. The two loops can be joined, reducing loop overhead, if the bounds

on the two loops are identical and the fusion does not change the data dependence relation(s) between the

two loop bodies. The values of the expressions L and U must not be modi�ed by the loop bodies or between

the loops. In this example loop fusion also improves data locality, since a[i] is accessed while its value is

still in the cache or a register.

problem domain.

Loop throttling (also known as k-bounded loops) [36, 37, 38] is another method for partially

sequentializing a parallel program. In a loop whose iterations are independent and so can all be run

simultaneously, loop throttling limits the parallelism by permitting only a limited number of loop

iterations to be active at once. So long as this leaves enough parallelism to keep the machine busy,

it does not result in idle processors. Throttling lowers resource usage, because the presence of extra

tasks adds to task management overhead, including time for task switching and space for storing

swapped-out tasks. These methods are more applicable to our problem domain than increasing the

grain size, but data-parallel programs rarely have either a task queue which consumes resources

or run-time interlocks to delay computations whose values are not yet ready. In any event, the

methods of this paper do at least as well as loop throttling, since the number of loop iterations

active at once is exactly the number of processors actually available.

8.2 Vectorization

Vectorization, or optimization of computations for execution on vector processors, is an important

and active area of research, in part because vector processors were long the machine of choice

for computation-intensive programming. Compilation for vector processors can employ all the

optimization techniques used for serial code, plus additional techniques aimed at two goals: ensuring

that the machine's most valuable resource, the vector unit, is fully utilized, and managing the

memory hierarchy to avoid loads and stores (and, where loads or stores are required, to avoid cache

misses). Allen and Kennedy [9] present many examples of the �eld's technology, though they have

no implementation of the techniques for demonstrating their e�ectiveness. Allen and Kennedy

view the main problems vector register allocation as subdividing the vector operations into sections

that �t the hardware of the target machine and transforming the program to improve locality of

reference.

Because vector unit operations are much faster than the equivalent number of scalar operations,

it is advantageous to transform loops into vector operations where possible. The �rst step is

checking data dependence, which indicates whether the iterations really are independent and so

can be processed by the vector unit. Loops must then be sectioned into pieces that �t in the

vector registers. In some cases, loop indices can be adjusted in order to align vectors and permit

them to be processed by the vector unit; when references overlap, the entire vector register must

be reloaded. This is in contrast to the work described in this report, which makes a virtue of

misalignment on di�erent loop iterations in order to reduce the total work done by a loop.

The focus in vectorizaton is e�ective use of the vector registers, which are expensive to empty

and �ll. They may also be a scarce resource. Thus, much attention is paid to ensuring that results

8.3. ITERATOR INVERSION 75

can be used as computed. This work is analogous to standard register allocation, which seeks to

arrange that results can be used soon after being computed, though vector register allocation is

complicated by the fact that not only the data, but also the particular subset of it being operated

upon, must match. Another important optimization is data placement to avoid cache thrash-

ing. Transformations such as loop interchange, loop reversal, loop splitting, and use of temporary

registers aid in these goals.

All of these transformations achieve speedups by moving computations into more e�ective ALUs

or by improving use of the memory hierarchy. They are quite di�erent from loop common expression

elimination, which changes the computations being performed in order to reduce the total work

required. It is likely that each could be extended into the other's domain in order to complement

one another and further improve performance.

8.3 Iterator inversion

The method of loop di�erencing has similarities to iterator inversion (also known as �nite di�er-

encing) [44, 52, 53, 104, 105, 106], a form of strength reduction intended to transform high-level

abstract code into e�cient code. An expression's value is kept available by updating it when values

it depends on change. Instead of recomputing the expression's value from scratch, the new value is

determined from its old value; the code that does this is called the expression's derivative. Given

a large collection of simple derivative rules and a chain rule for combining them [105], we can

determine the derivatives for many expressions.

The iterator inversion work is targeted for the SETL language [41, 116], and the only modi-

�cations to a program value supported are adding an element to a set and removing an element

from a set (derivatives are provided, or can be inferred, for a number of interesting operations on

sets). In that limited problem domain, signi�cant speedups are achieved, but most of the speedup

results from the ine�ciency of the input programs. (The canonical example is computation of the

size of a set once per iteration, where each iteration also removes one element from the set.) The

optimizations are performed only when they can be proved to asymptotically improve running time;

constant factor speedups are not considered cost-e�ective in the compiler.

Loop di�erencing di�ers from iterator inversion in several important ways. Most importantly,

it can improve e�cient input programs. We have given methods for computing the exact costs and

savings for each optimization, so that the compiler can tell which ones will improve a program's

performance. Loop di�erencing's unique use of inverses also sets it apart from iterator inversion and

other optimizations. Iterator inversion is theoretically more widely applicable than loop di�erencing

since it can operate on any expression reused from loop to loop, but in practice it is more limited.

Loop di�erencing does not even require the particular reused expression to be explicitly mentioned

in the source program, much less be a set. (The summands of a periodic stencil may be thought of

in that way if desired; scaling operations complicate the picture.)

8.4 Reversing parallelization

There is a sizable body of work on parallelizing sequential programs, both automatically and by

hand; the ideal mechanism for sequentializing parallel programs would be to simply reverse those

techniques. The prospects for this are poor because parallelization techniques are ad hoc, because

removal of data dependences is very di�erent from their addition, and because most parallelization

work is vectorization rather than concurrentization.

76 CHAPTER 8. PERSPECTIVE

While each parallelization method is internally consistent, they do not all �t into a common

framework; even after some parallelizations had been turned into serialization techniques, the next

one would not be any easier to reverse. In fact, most parallelizations simply recognize patterns

and transform the input according to heuristics speci�ed by the programmer. Casting parallel and

serial algorithms into a more general form is an interesting and challenging research problem which

would make parallelizations conceptually simpler and would also make reversing them less tedious.

While a parallelizing compiler attempts to remove dependences, a sequentializing compiler adds

them. Parallelizing compilers devote much of their energy to discovering the \unnecessary" depen-

dences that e�cient single-threaded implementations usually add. Dependence analysis indicates

which control and data dependences are not inherent in the computation but are added by the

implementation (by reusing variables, for instance). It is much harder to decide where they can

be most advantageously added, without a�ecting performance. Dependences can be arbitrarily

added, so choosing the right ones can be di�cult; when removing dependences, on the other hand,

there are a �nite number of possibilities. Another di�culty in dependence removal is the lack of

hard-and-fast algorithms for telling when the job is done.

Our goal has been to make data-parallel programs execute more e�ciently. Concurrentization,

which results in code runnable on a multiprocessor, is the sort of parallelization that could be

most advantageously reversed to address this goal, since its output is typically a data-parallel

SPMD program. The literature on concurrentization continues to grow, but that body of work

is still relatively small because historically most work on parallelizing dusty-deck code has been

vectorization.

8.5 Stencil computations

The Connection Machine Convolution Compiler [22] addresses the same problem domain as this

paper: its techniques are designed to optimize the performance of stencil computations on the CM-

2 [132]. Most of its optimizations, such as strip mining, software pipelining, and loop unrolling, are

well-known; the others are speci�c to, or mandated by, details of the architecture (oating point

and vector unit timing, vector sizes, and so forth). Its schemes for register reuse in multistencil

computations are similar to our cyclic reuse of temporary variables.

8.6 Parallel intermediate representations

Compilers of serial languages to serial machines may use a parallel intermediate representation, such

as the program dependence graph [51], program dependence web [16, 24], MIT dataow graph [14],

or value dependence graph [140]. Such a representation exposes instruction-level parallelism, en-

ables code motion, and can simplify analyses and transformations.

The potential drawback of a parallel representation is that it must be serialized before serial

code is emitted [49, 50, 120, 121, 128]. A frequent strategy is to produce a control ow graph

(CFG) from the parallel representation and to geneate code from the CFG using well-understood

methods.

While this work can also be viewed as serializing parallel code, the intent and approach are

completely di�erent from those used in transforming explicitly parallel code into a serial form. In

particular, it shares nothing with loop common expression elimination.

8.7. CONTRIBUTIONS 77

8.7 Contributions

The analysis and the techniques (with the exception of unrolling and traditional common subex-

pression elimination, which are well-known) of this report are original. In this section we highlight

our new contributions, which primarily appear in the chapters devoted to our three optimization

methods: unrolling with common subexpression elimination, loop common expression elimination,

and loop di�erencing.

The primary contribution is the idea of loop common expressions, which can be optimized

despite occurring in di�erent loop iterations. Ordinary optimizations do not remove redundant

computation (or do much of anything else) across loop boundaries. We showed that altruistically

computing loop common expressions for the use of future iterations, which a greedy optimizer

with a narrow (inter-loop-iteration) view would never do, improves overall performance. The small

additional cost is more than washed out by the work done by the previous iteration to help the

current one. We show how to optimize three types of loop common expression: base expressions,

scaling operations, and combining operations.

In our discussion of unrolling with common subexpression elimination to reduce redundant com-

putation, we observe two interesting phenomena. First, although the topic is considered mature,

current common subexpression elimination methods do quite badly in many common and impor-

tant applications. Their problem is that they work on a �xed parse of the input, and any obvious

parsing method obscures most common subexpressions in unrolled stencil computations. We solve

the problem by using a multiple-arity (rather than binary) intermediate representation and by sep-

arating the common subexpression elimination process into two stages. The �rst stage determines

which expressions appear multiple times, taking advantage of associativity and commutativity, and

the second stage chooses some of them to actually execute. Previous algorithms left the �rst stage

to the vicissitudes of the parser or, at best, combined the two stages in a greedy way. Our method

improves the performance of the resulting code by 4 times or more.

Our second observation is that unrolling can degrade performance by up to 33%, even if the

resulting code does not exceed hardware limits such as instruction cache size or number of registers.

This is surprising because the common wisdom is to unroll as much as possible subject to those

constraints. We show how to select an unrolling thgat does not incur extra costs.

We prove that in the absence of loop common expression optimization or use of inverses, at

least 3(w� 1)=(w+ 1) combining operations per result are required to evaluate a stencil of width

w, no matter how much the stencil computation loop is unrolled or what common subexpression

elimination algorithm is used. When the unrolling u � w, the bound is about 2 + w=u We give an

algorithm that meets these bounds and characterize performance at all unrollings.

Next we turn our attention to direct methods for optimizing loop common expressions. We

give simple algorithms for removing all redundant base and scaling operation computations. These

techniques are interesting in that they implement cross-iteration optimizations without performing

unrolling or examining more than one copy of the loop body; they examine the structure of the

computation, which is a more straightforward method. We proved that, even without unrolling,

a stencil computation's combining operation costs can be reduced to logw per result, its scaling

operation costs to 1 per result per distinct scaling operation, and its base expression costs to 1 per

result. For u-unrolled loops, the combining operation costs drop to less than 4 + 2(log

2

w)=u per

result; the other costs are already minima and are not included.

We showed that unrolling can scalarize arrays, transforming them into collections of scalar

variables. The latter representation is signi�cantly more e�cient because no array manipulation

78 CHAPTER 8. PERSPECTIVE

is required and all loads and stores are to locations known at compile-time or link-time. This

optimization alone makes unrolling worthwhile in many cases. We also showed how to adjust the

sizes of arrays when they cannot be scalarized, or in order to make them scalarizable.

Our third method, loop di�erencing, permits a loop iteration to share with the preceding loop

iteration a unique type of common expression|one that was never computed. The essential in-

sight is that undoing work can be faster than doing work, so such expressions can be computed

more cheaply by working backward from previously-computed values than by working forward

from (other) previously-computed values. Results can be computed with just 2 base expression

evaluations (or fewer if loop common expression elimination is also performed) and 2 combining

operations each.

Finally, we discuss some implementation details stemming from our experience with a prototype

and present experimental veri�cation that our methods do improve programs' performance.

Throughout we emphasize practical, rather than synthetic, appliations; many examples are

taken from real programs. An appendix lists further real-world problems to which our techniques

are applicable.

While our main thrust is improvement of parallel execution times, our methods are applicable

to serial programs too.

Appendix A

Optimality of (w + 1)-unrolling

This appendix outlines the method used to show that if loop common expressions are not taken

advantage of and the combining operator's inverse is not used, then at least 3(w� 1)=(w+ 1)

operations per result are always necessary when evaluating a w-element stencil, regardless of its

unrolling amount u.

We have already shown this result for u � w + 1 in theorems 1 and 2, but for u > w + 1 we

only showed, in theorem 3, that we need at least 2(w� 1)=w operations per element. We assume

the reader is familiar with these proofs, which appear in section 2.3.3.3 on pages 28{30.

As the full proof is extremely tedious, we illustrate the method for only a few cases and let the

dedicated reader �nish the rest.

Theorem 6 At least 3(w� 1)=(w+ 1) operations per result are required to evaluate a (w + 2)-

unrolled w-element sum.

Proof: This theorem is obvious for w = 2 and true by inspection for w = 3. For w � 4, we will

prove that at least 3w operations are required to compute the w + 2 results; this proves our claim

since 3w=(w+ 2) > 3(w� 1)=(w+ 1).

The proof is by contradiction. Suppose we can compute all w + 2 results, R

1

; : : : ; R

w+2

, from

base elements B

1

; : : : ; B

2w+1

, using just 3w� 1 combining operations.

Regardless of how they are computed, R

1

and R

w+1

, having no summands in common, require

w� 1 operations each to produce. Results R

2

; : : : ; R

w

require at least 1 additional operation each;

this boosts the total to at least 3w� 3.

There are two possibilities for the number of operations performed to compute R

w+2

, in addition

to those already used for R

w+1

: 1 or 2. If R

w+2

required 3 additional operations, the grand total

would be at least 3w, contradicting our hypothesis.

The operation cost for R

w+2

is lower-bounded by the depth s of B

w+1

in the expression for

R

w+1

. Figure 43 graphically represents the computation of R

w+1

; s is the number of addition nodes

between B

w+1

and R

w+1

, inclusive (in this case, s = 4). Computing R

w+2

requires the summation

of B

w+2

; : : : ; B

2w+1

, and there are at least s + 1 operands to be combined: B

2w+1

, which has not

yet been operated upon at all, and s more in the range B

w+2

; : : : ; B

2w

.

We examine the two cases s = 1 and s = 2 in turn.

s = 1 The �nal operation which produced R

w+1

summed B

w+1

with (B

w+2

+ � � �+ B

2w

). To com-

pute R

w

, we must add a minimum of 3 terms: B

w

, B

w+1

, and (B

w+2

+ � � �+B

2w

). The �rst

two terms, which are base values, have not yet been used in any sums useful to R

w

, but the

79

80 APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING

B

w+1

B

2w

B

2w+1

� � � � � � � � � � � � �

R

w+1

R

w+2

�

�

�

�

�

�

� �

�

�

� �

Figure 43: Computing R

w+2

requires at least s operations, where s is the number of addition nodes directly

between B

w+1

and R

w+1

, inclusive. In this �gure w = 12 and s = 4.

third term may have been computed as a subterm of R

w+1

and of R

w+2

. If it was not, then

computing R

w

costs at least 3 operations, and we are over our operation limit, so we must

assume that it was. Figure 44 shows the situation so far.

Computation of the next result, R

w�1

, requires at least 2 operations. When all the operations

performed so far are added to the minimum of 1 per result required for the w� 2 results not

yet considered, the total is at least 3w, which contradicts our hypothesis.

s = 2 There are two additions between B

w+1

and R

w+1

. Figure 45 shows three of the w � 2

possibilities for the last few elements added to create R

w+2

.

If we are to use fewer than 3w operations, then each of R

2

; : : : ; R

w

must require only 1

additional operation. We can arrange this for R

w

by choosing the third association shown in

�gure 45. If we do so, R

w�1

requires a minimum of 2 operations, so all w+ 2 sums require at

least 3w operations, contradicting our hypothesis.

Theorem 7 At least 4(w � 1) operations are required to evaluate a (w + 2)-unrolled w-element

sum. This bound is tight.

Proof: The proof, a minor extension of the proof of theorem 6, is left as an exercise in book-

keeping for the reader. The idea is to show that if computing R

w+2

is cheap, then computing R

w

is expensive.

Theorem 8 At least 3(w� 1)=(w+ 1) operations per result are required to evaluate a (w + 3)-

unrolled w-element sum.

This is a corollary of theorem 7, but since we gave no proof of theorem 7, we sketch one here

which also shows some of the subtleties in extending this series of theorems.

Proof: For small w, the theorem can be shown on a case-by-case basis. When w � 6, we will

show that at least 3w + 3 operations are required to evaluate a (w+ 3)-unrolled w-element sum.

APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING 81

B

w�1

B

w

B

w+1

B

2w

B

2w+1

� � � � � � � � � � �

R

w�1

R

w

R

w+1

R

w+2

�

�

�

�

�

� �

Figure 44: The s = 1 case in the proof of theorem 6. After R

w+1

has been computed, if R

w+2

requires only

1 additional operation, then R

w

requires at least 2.

The proof is by contradiction; suppose the u = w + 3 results can be computed with 3w � 2

operations.

We can think of ourselves as being granted 5 = 3 � 2 � 1 operations with which to compute

R

w+2

and R

w+3

, so long as we do not increase the number of operations required for R

1

; : : : ; R

w+1

above 3(w � 1), which is optimal. If we use fewer than 5 operations for R

w+2

and R

w+3

, then we

are permitted to increase the operation count for the �rst w + 1 sums correspondingly while still

using fewer than 3w+ 3 operations overall.

Let s

w+2

and s

w+3

be the incremental costs to compute R

w+2

and R

w+3

, respectively. We

consider four cases for s

w+2

.

s

w+2

= 1 R

w+1

's right subexpression was B

w+2

+ � � �+ B

2w

, and we know from the proof of the-

orem 6 that s

w

� 2. By inspection, s

w+3

� 3, but if we are to meet the operation limit, then

s

w+3

� 3, so suppose s

w+3

= 3. Now s

w

= 2 (it cannot be 1, and if s

w

> 2, we exceed our

operation limit), but that forces s

w�1

� 2, which is too many operations.

s

w+2

= 2 We consider three possibilities for s

w+3

.

s

w+3

= 1 We must have chosen the �rst diagram in �gure 45. Now computing each of

R

4

; : : : ; R

w

costs at least 2 operations, far outspending our budget.

s

w+3

= 2 The right child of R

w+1

's left child must have been either a base element or a sum

whose left operand was a base element.

Since we have now used 4 of our 5 free operations, we require that s

w

� 2. If R

w

's left

child is a sum of l base elements, then R

2+l

; : : : ; R

w�1

require 2 operations each, and the

total is too large.

s

w+3

= 3 R

2

; : : : ; R

w

must require only one operation apiece. If s

w

= 1, we must have chosen

the third diagram in �gure 45, but then s

w�1

� 2.

s

w+2

= 3 If s

w+3

= 1, then s

w

� 2 and s

w�1

� 2. On the other hand, if s

w+3

= 2, we can have

s

w

= 1, but in that case s

w�1

� 3. In either case we have used too many operations.

s

w+2

= 4 Every other result (R

2

; : : : ; R

w

, and R

w+3

) must require only one operation, but we

cannot have both s

w

= 1 and s

w�1

= 1.

82 APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING

B

w�1

B

w

B

w+1

B

2w

B

2w+1

� � � � � � � � � � �

R

w�1

R

w

R

w+1

R

w+2

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

w�1

B

w

B

w+1

B

2w

B

2w+1

� � � � � � � � � � �

R

w�1

R

w

R

w+1

R

w+2

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

w�1

B

w

B

w+1

B

2w

B

2w+1

� � � � � � � � � � �

R

w�1

R

w

R

w+1

R

w+2

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 45: The s = 2 case in the proof of theorem 6. After R

w+1

has been computed, if R

w+2

requires 2

additional operations, then there are w� 2 di�erent possibilities for the immediate subexpressions of R

w+1

.

Three of those possibilities are shown.

The proof proceeds similarly for larger unrollings and is much simpli�ed by strategic use of

theorem 7. The number of extra operations is actually

�

3(w� 1)

w + 1

u

�

� 3w � 3� 1 ; for u <

4(w+ 1)

3(w� 1)

, this is 3(u� w � 1)� 1 :

An added complication at high unrollings is that we must consider the possibility that s

i

is

big enough that some precomputed expressions can be ignored. For the small s

i

that we have

considered, we must use those subexpressions or fail to meet our operation goal.

We can partially simplify the situation by assuming that every adjacent pair of results R

i

and

R

i+1

share at least one computation. If they did not, then we we might as well split the unrolled

computation into two smaller ones of sizes i and u� i and optimize them separately. By induction

on u, their per-result operation costs are at least 3(w � 1)=(w+ 1), and therefore so is that of the

original computation.

Appendix B

Applications

This appendix lists several important and common types of stencil computation. For each of them

a justi�cation for not using some other implementation, and a list of practical applications, is

provided.

B.1 Convolutions

A weighted sum stencil is another name for a convolution, which is an important problem in signal

processing and other applications. All window sums are really convolutions [108]. Every linear

shift-invariant or linear time-invariant system performs a convolution [69].

B.1.1 Why not use FFT?

Most implementations of convolution operate not in the original problem domain but in its Fourier

transform. The convolution code operates by performing a Fast Fourier Transform (FFT; see [108]

for references), a single element-by-element multiplication, and another FFT, for a running time of

�(n logn) on n data points. When the stencil's size is O(n), the cost of a direct implementation

can be O(n

2

) operations. While the FFT implementation is attractive (and sometimes superior to a

stencil-based implementation), e�ciency or correctness concerns can dictate that the computation

be performed directly.

B.1.1.1 E�ciency

The cost of directly performing a convolution with a �lter of width w is O(wn); when w < logn, this

is less than O(n logn), the cost of the FFT implementation. Furthermore, the constant factors are

lower in the stencil computation than in the FFT one, which performs multiplications of complex

numbers, among other operations. If e�ciency is a primary concern and n is large, then only a

small constant number of operations per datum may be acceptable, but the cost of FFT grows

super-linearly.

An algorithm which makes good use of the machine's resources can outperform an asymptoti-

cally faster algorithm. On a machine organized as a grid, a stencil implementation of convolution is

natural [88], while the FFT implementation requires expensive operations such as communication

with distant processors. Grids are an attractive and common parallel architecture because they

are easy to build, scalable, and have been shown to be faster than other networks even for many

computations which are not grid-based [3, 39].

83

84 APPENDIX B. APPLICATIONS

Perhaps the most important practical case in which FFT is unacceptable is when real-time

response is required. FFT is a batch algorithm which works on many data at once, but (even after

our optimizations have been performed) the stencil implementation can produce outputs at the

same rate as inputs are provided.

B.1.1.2 Correctness

If high-frequency components are present in either the stencil or the data with which it is convolved,

then the Fourier representation is very large. For instance, a square wave's frequency-domain

representation is in�nite; convolution with any �nite portion is inaccurate to some degree. (When

the tails are very thin, as in the binomial and Gaussian distributions, it does not take a very large

�lter to accurately approximate the result of an in�nitely large one for many problems.) Inaccuracy

also results from adding together the results of several small applications of the FFT method in

order to reduce its O(logn) overhead. Such a decomposition is very complex and its gains are

slight [108, p. 431]. The stencil implementation, on the other hand, gives exact answers.

When convolutions model real systems, such as the human visual system, physical realizability

is important: it is desirable that what the model does, could be the real system's mechanism as

well. Therefore, the computation should be causal (depending on only inputs seen so far) and have

�nite support (depend only on a �nite number of input values). The FFT method is acausal: data

are processed in a batch, not incrementally. The Fourier transform of any �nite stencil is in�nite,

so the requirement of �nite support is also violated.

B.1.2 Applications

Convolutions are widely used for noise smoothing, linear edge enhancement, edge crispening, digital

�ltering, numerical relaxation, and other applications [89]. Some of these applications appear below;

others are deferred to later sections.

Correlation is a measure of how closely two inputs are related [88, p. 287; 108, p. 433] and is

computed by the formula

Corr(g; h)

j

=

N�1

X

k=0

g

j+k

h

k

:

Correlations of delayed signals can be computed to see how much the signals must be shifted

(this is called the lag) to achieve the best correlation. While the FFT method can compute

the correlation at all lags simultaneously, this information isn't very useful. For instance, in

stereo matching, if the two pictures are shifted by more than a few pixels, then they probably

aren't related at all.

Smoothing makes trends more evident in noisy data and removes glitches and other spurious

anomalies. Smoothing is the �rst step of many signal processing applications, because some

algorithms perform particularly well on smoothed surfaces [65]. Even when smoothing is

not an explicit step, the desired convolution is sometimes �rst convolved with a smoothing

operator and the resulting stencil, which simultaneously smooths and performs the original

operation, is used instead. In fact, estimation formulae with large support (wide stencils)

are typically equivalent to formulae of small support applied to smoothed images [68, p. 190;

64]. Averaging, weighted-sum, minimum or maximum, and median �lters are all common

in digital signal processing [108]; all but the median �lter can be e�ciently implemented as

stencils.

B.2. VISION AND DIGITAL SIGNAL PROCESSING 85

Blurring or simulating the e�ect of an imperfect lens or an out-of-focus imaging system is done

with the stencil h[n] = a

jnj

[119, p. 275; 69, p. 104]. Section 4.2.1.2 on page 51 showed how

to process this stencil e�ciently. This convolution cannot be performed by the FFT method

because lenses are only linear-shift-invariant only for limited displacements and because aber-

rations vary with distance from optical axis [69, p. 105].

Polynomial multiplication is just convolution [78, p. 386; 90, p. 198]; so is integer multiplica-

tion [90, pp. 162, 174].

B.2 Vision and digital signal processing

Many vision algorithms iteratively produce new images from old ones by local operations [69,

pp. 77{80]; for an extensive list of papers using the iterative approach, see [67, pp. 534{536]. One

example is �nding an image's skeleton by etching away the boundaries of an object; like many of

the algorithms, this one may require some communication with neighboring processors [69, p. 81].

Basically all low- and medium-level vision algorithms, even non-iterative ones, are paralleliz-

able [88, p. 272]. Parallel algorithms are particularly attractive for machine vision because they

simulate the parallel operation of the human visual apparatus.

Most of the applications mentioned in the previous section could be classi�ed as signal process-

ing; here we mention some others.

Filtering to remove noise need not be done via a convolution. In fact, averaging (which is a

stencil computation, but not a convolution) is e�ective at smearing details and reducing

spatial resolution. Other good �ltering combining operators are minimum, maximum, and

median [69].

Edge detection often involves convolution with an edge detection matrix; examples of vertical

and horizontal ones are

�1 �c �1

0 0 0

1 c 1

and

�1 0 1

�c 0 c

�1 0 1

:

Usually c = 1 or 2. When the magnitude of (the result of) the convolution is large, an edge

has been detected [107].

Other more sophisticated edge detection methods (such as Canny's [25], mentioned in the

introduction as an example of the relative complexity of parallel and serial code) also use

stencils in the course of their computation.

Brightness estimation is another application for large-scale averaging. To estimate the bright-

ness di�erence across an edge, a large area on each side of it must be averaged (so that local

e�ects do not dominate the average). A larger averaging area reduces the e�ects of noise and

makes weak edges easier to detect (but an excessively large area can include other edges by

accident) [69].

Repetitive smoothing is required by some stereo matching algorithms that use very heavily

smoothed images to �nd an initial match and successively less-smoothed images for �ner

matching, once an approximate match has been computed [69].

86 APPENDIX B. APPLICATIONS

Reconstructing images from their projections is done via convolution [107]. This problem is

also known as the inverse Radon or inverse Hough transform. There are also interesting ad

hoc approaches to removing redundant computations for this problem [20].

Template matching can be solved by performing two-dimensional convolution [88].

Stereo matching is done by shifting an image by a small amount and checking correlation locally

(using a small section of the image). Motion detection is similar but may have to deal with

two-dimensional shifts and di�erent shifts in di�erent parts of an image [56].

B.3 Partial di�erential equations

Partial di�erential equations (PDEs) [108, pp. 636�] are very common in scienti�c applications.

Perhaps the most popular method for solving them is the �nite element method (the �nite di�er-

encing method is the same solution, recast in a di�erent light).

An iterative relaxation method can be used to solve partial di�erential equations. The key is

computing a partial derivative using old values at adjacent points and using �xed values where

boundary conditions apply. (This is the Dirichlet space [29].) The discrete approximations of these

partial derivative operators are also called computational molecules [66]; these are just stencils, so

our methods are directly applicable.

We briey discuss just one vision application, the variational approach to machine vision. It

sets up a criterion function to determine the goodness of �t between an actual image and that

predicted from one's solution. The Euler equations for these variational problems are typically

coupled partial di�erential equations, often including second, fourth, or other higher even order.

Direct solutions are out of the question because the problems have hundreds of thousands of

unknown parameters. Iterative �nite element solutions of systems of partial di�erential equations

like this one often use the multigrid method. However, multigrid does not work when the PDE

is nonlinear (as in this case: the reectance map usually depends nonlinearly on the gradient

7

),

and multigrid becomes complicated when there are boundary conditions [65]. The traditional

characteristic strip method is neither biologically likely nor e�cient and robust [67].

Optical ow (computing a vector �eld showing how image brightness patterns appear to be

moving) [68, 69] was the �rst problem solved using the variational approach. Another application

is determining height and gradient from shading [65]. Hundreds of iterations may be required,

even for images of moderate size, especially if the contrast is low, so it is a good candidate for

optimization.

The fourth-order biharmonic operator is preferable to the second-order Laplacian for iteratively

computing these partial derivatives [66]. The Laplacian is only marginally stable, while the bihar-

monic is numerically stable even in the presence of noise. The biharmonic is also more amenable to

our optimizations because its stencil is larger. (Generally, large stencils are desirable, to ensure sta-

bility [108]. When stencils are large, then there is more opportunity for redundant computation to

be eliminated, and the expense of the computation makes e�cient execution even more important.)

The Laplacian uses only 5 to 9 points, but the biharmonic uses 13 to 25 points. The obvious form

7

The moon is a notable exception: the full moon is just as bright at the edges as at the center, which is why it

looks more like a disc than a sphere.

B.4. OTHER APPLICATIONS 87

for the two-dimensional stencil is the convolution of the 5-point Laplacian operator with itself [11]:

1

2 �8 2

1 �8 20 �8 1 ;

2 �8 2

1

Starting from the 9-point form of the Laplacian results in a better stencil,

1 8 18 8 1

8 �8 �144 �8 8

18 �144 468 �144 18 ;

8 �8 �144 �8 8

1 8 18 8 1

but this still isn't as good as one customized to work well for a 4th-order equation. One used in a

program for interpolating digital terrain models from contours [66] was:

�1 �1 �4 �1 �1

�1 8 18 8 �1

�4 18 �76 18 �4 :

�1 8 18 8 �1

�1 �1 �4 �1 �1

There are many other applications for the biharmonic operator, such as the stress function for

the edges of a plate under tension [26].

B.4 Other applications

Our optimizations can bene�t many other applications, from the direct implementation of Neville's

algorithm for constructing an interpolating polynomial [108] to histogram equalization, which com-

putes the average of the neighborhood around each point [107]. We have already mentioned others,

such as numerical integration, and simulation of physical systems such as electrical circuits. Some

of these only use a value twice, but that use is in the inner loop, where any gain is worthwhile.

Band-pass �lters are used to convert an ordinary or suppressed-carrier AM signal into single-

side-band (SSB) AM signal, which only occupies half as much bandwidth [119]. Because of the

real-time constraint, if this is done digitally, it should be done in the time domain as a stencil

convolution.

The methods used in the vision examples (di�erentiation and solution of systems of equations)

are quite general and apply to a large class of problems even when no partial derivatives are involved.

Subsurface imaging, an important seismic application used for oil exploration, uses iterative

methods which involve the stencil

�1

16

�1 16 �60 16 �1

16

�1

and a few other terms; this operator is fourth order in both space dimensions [102].

88 APPENDIX B. APPLICATIONS

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Programs. MIT

Electrical Engineering and Computer Science Series. MIT Press and McGraw-Hill, 1985.

[2] Santosh G. Abraham and David E. Hudak. Compile-time partitioning of iterative parallel loops to

reduce cache coherency tra�c. IEEE Transactions on Parallel and Distributed Systems, 2(3):318{328,

July 1991.

[3] Anant Agarwal. Limits on interconnection network performance. IEEE Transactions on Parallel and

Distributed Systems, 2(4):398{412, October 1991.

[4] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A processor ar-

chitecture for multiprocessing. In Proceedings, 17th Annual International Symposium on Computer

Architecture, pages 104{114, Seattle, Washington, May 1990.

[5] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions with common subex-

pressions. Journal of the ACM, 24(1):146{160, January 1977.

[6] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools.

Computer Science Series. Addison-Wesley, Reading, Massachusetts, 1986.

[7] M. Ajtai, J. Koml�os, and E. Szemer�edi. An O(n logn) sorting network. In Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing, pages 1{9, 1983.

[8] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor, Design and

Optimization of Compilers, pages 1{30. Prentice-Hall, Englewood Cli�s, New Jersey, 1972.

[9] Randy Allen and Ken Kennedy. Vector register allocation. Technical report, Rice University, Houston,

Texas, April 1986. Revised March 1988.

[10] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in programs.

In Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages,

pages 296{306, San Diego, California, January 1988.

[11] WilliamF. Ames. Numerical methods for partial di�erential equations. Academic Press, second edition,

1977.

[12] R. S. Anderssen and P. Bloom�eld. Numerical di�erentiation procedures for non-exact data. Numer.

Math., 22:157{182, 1974.

[13] ANSI. ANSI Fortran Draft S8, Version 111.

[14] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token dataow architecture.

IEEE Transactions on Computers, 39(3):300{318, March 1990.

[15] M. Auslander and M. Hopkins. An overview of the PL.8 compiler. In Proceedings of the SIGPLAN '82

Symposium on Compiler Construction, pages 22{31, Boston, Massachusetts, June 1982. Proceedings

were also published as SIGPLAN Notices 17(6).

[16] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program dependence web: a

representation supporting control-, data-, and demand-driven interpretation of imperative languages.

In Proceedings of the SIGPLAN '90 Conference on Programming Language Design and Implementation,

pages 257{271. ACM Press, June 1990.

[17] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-92-103, Carnegie

Mellon University, Pittsburgh, Pennsylvania, January 1992.

89

90 BIBLIOGRAPHY

[18] Guy E. Blelloch and Siddhartha Chatterjee. VCODE: A data-parallel intermediate language. In

Proceedings of the Third Symposium on the Frontiers of Massively Parallel Computation, pages 471{

480, College Park, Maryland, October 1990.

[19] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. Time

bounds for selection. Journal of Computer and System Sciences, 7(4):448{461, 1973.

[20] Martin L. Brady and Whanki Yong. Parallel discrete approximation algorithms for the Radon trans-

form. In Proceedings of SPAA '92: The 4th Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 91{99, San Diego, California, June 29{July 1, 1992.

[21] Melvin A. Breuer. Generation of optimal code for expressions via factorization. Communications of

the ACM, 12(6):333{340, June 1969.

[22] Mark Bromley, Steven Heller, Tim McNerney, and Guy L. Steele Jr. Fortran at ten gigaops: The

Connection Machine convolution compiler. In Proceedings of the ACM SIGPLAN '91 Conference on

Programming Language Design and Implementation, pages 145{156, June 26{28, 1991.

[23] John Bruno and Ravi Sethi. Code generation for a one-register machine. Journal of the ACM,

23(3):502{510, July 1976.

[24] Philip L. Campbell, Ksheerabdhi Krishna, and Robert A. Ballance. Re�ning and de�ning the program

dependence web. Technical Report CS93-6, University of New Mexico, Albuquerque, March 1993.

[25] John Francis Canny. Finding edges and lines in images. Technical Report 720, MIT Arti�cial Intelli-

gence Laboratory, Cambridge, Massachusetts, June 1983.

[26] Brice Carnahan, H. A. Luther, and James O. Wilkes. Applied Numerical Methods. John Wiley & Sons,

New York, 1969.

[27] Todd Cass. canny.lisp, 1987. Connection Machine implementation of Canny's edge detector.

[28] David Chaiken, Beng-Hong Lim, and Dan Nussbaum. ASIM users manual. Alewife Systems Memo 13,

MIT Laboratory for Computer Science, Cambridge, Massachusetts, August 1990. 9 pages; revised

November 26, 1991.

[29] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones and Bartlett,

Boston, Massachusetts, 1992.

[30] J. Cocke. Global common subexpression elimination. SIGPLAN Notices, 5(7):20{24, July 1970.

[31] John Cocke and Peter Markstein. Measurement of program improvement algorithms. Computer

Science 35193, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, February 7,

1980.

[32] W. J. Cody. Analysis of proposals for the oating-point standard. IEEE Computer, 14(3):63{68, March

1981.

[33] Jerome T. Coonen. An implementation guide to a proposed standard for oating-point arithmetic.

IEEE Computer, 13(1):68{79, January 1980. Errata appear in IEEE Computer, 14(3):61, March 1981.

[34] Jerome T. Coonen. Underow and the denormalized numbers. IEEE Computer, 14(3):75{87, March

1981.

[35] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT

Electrical Engineering and Computer Science Series. MIT Press and McGraw-Hill, Cambridge, Mas-

sachusetts and New York, New York, 1990.

[36] David E. Culler. Managing parallelism and resources in scienti�c dataow programs. Technical Report

MIT-LCS-TR-446, MIT Laboratory for Computer Science, Cambridge, Massachusetts, March 1990.

[37] Ron Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the 1986 Interna-

tional Conference on Parallel Processing, pages 836{844, August 1986.

[38] Ron Cytron. Limited processor scheduling of doacross loops. In Proceedings of the 1987 International

Conference on Parallel Processing, pages 226{234, August 1987.

[39] William J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions

on Computers, 39(6):775{785, June 1990.

[40] F. Darema-Rogers, V. A. Norton, and G. F. P�ster. Using a single-program-multiple-data computa-

BIBLIOGRAPHY 91

tional model for parallel execution of scienti�c application. Technical Report RC 1152, IBM, Yorktown

Heights, New York, November 12, 1986. Revised version.

[41] Robert B. K. Dewar. The SETL programming language. Manuscript, 1978.

[42] D. M. Dhamdhere. A usually linear algorithm for register assignment using edge placement of load

and store instructions. Computer Languages, 15(2):83{94, 1990.

[43] Karl-Heinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise's

\Global optimization by suppression of partial redundancies". ACM Transactions on Programming

Languages and Systems, 10(4):635{640, October 1988.

[44] J. Earley. High level iterators and a method for automatically designing data structure representation.

Computer Languages, 1(4):321{342, 1975.

[45] Charles Henry Edwards, Jr. and David E. Penney. Elementary Di�erential Equations with Applications.

Prentice-Hall, Englewood Cli�s, New Jersey, 1985.

[46] Michael D. Ernst. Sequentializing parallel grid programs. Manuscript, May 13, 1992.

[47] Michael D. Ernst. Serializing parallel programs (abstract). In Charles E. Leiserson, editor, Proceedings

of the 1992 MIT Student Workshop on VLSI and Parallel Systems, pages 13{1{13{2, July 21, 1992.

[48] Michael D. Ernst. Serializing parallel programs by removing redundant computation. Master's thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, August 1992.

[49] Jeanne Ferrante and Mary Mace. On linearizing parallel code. In Proceedings of the Twelfth Annual

ACM Symposium on Principles of Programming Languages, pages 179{190, January 1985.

[50] Jeanne Ferrante, Mary Mace, and Barbara Simons. Generating sequential code from parallel code. In

Proceedings of the 1988 International Conference on Supercomputing, pages 582{592, June 1988.

[51] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its use in

optimization. ACM Transactions on Programming Languages and Systems, 9(3):319{349, July 1987.

[52] Amelia C. Fong. Inductively computable constructs in very high level languages. In Conference Record

of the Sixth ACM Symposium on Principles of Programming Languages, pages 21{28, San Antonio,

Texas, January 29{31, 1979.

[53] Amelia C. Fong and Je�rey D. Ullman. Induction variables in very high level languages. In Confer-

ence Record of the Third ACM Symposium on Principles of Programming Languages, pages 104{112,

Atlanta, Georgia, January 19{21, 1976.

[54] G. C. Fox, A. Kolawa, and R. Williams. The implementation of a dynamic load balancer. Pages

114{121.

[55] Geo�rey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-Wen Tseng, and

Min-You Wu. Fortran D language speci�cation. Technical Report COMP TR90-141, Rice University

Department of Computer Science, Houston, Texas, December 1991. Revised February, 1991.

[56] W. Eric L. Grimson. Computing stereopsis using feature point contour matching. In A. Rosenfeld,

editor, Techniques for 3-D Machine Perception, pages 75{111. Elsevier Science Publishers B.V. (North-

Holland), 1986.

[57] Patrick A. V. Hall. Common subexpression identi�cation in general algebraic systems. Technical

Report UKSC 0060, IBM United Kingdom Scienti�c Centre, Peterlee, County Durham, England,

November 1974.

[58] Patrick A. V. Hall. Optimization of single expressions in a relational data base system. IBM Journal

of Research and Development, 20:244{257, May 1976.

[59] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transac-

tions on Programming Languages and Systems, 7(4):501{538, October 1985.

[60] Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on MIMD Computers. Scienti�c

and Engineering Computation. MIT Press, Cambridge, Massachusetts, 1991.

[61] Philip J. Hatcher, Michael J. Quinn, Anthony J. Lapadula, Bradley K. Seevers, Ray J. Anderson, and

Robert R. Jones. Data-parallel programming on MIMD computers. IEEE Transactions on Parallel

and Distributed Systems, 2(3):377{383, July 1991.

92 BIBLIOGRAPHY

[62] James E. Hicks. Personal communication, 1992.

[63] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for Fortran D on

MIMD distributed-memory machines. Technical Report CRPC-TR91162, Rice University Center for

Research on Parallel Computation, Houston, Texas, April 1991. Revised August, 1991.

[64] Berthold K. P. Horn. Hill shading and the reectance map. Proceedings of the IEEE, 69(1):14{47,

January 1981.

[65] Berthold K. P. Horn. Height and gradient from shading. International Journal of Computer Vision,

5(1):37{75, 1990.

[66] Berthold K. P. Horn. Personal communication, 1992.

[67] Berthold K. P. Horn and Michael J. Brooks, editors. Shape From Shading. Arti�cial Intelligence. MIT

Press, Cambridge, Massachusetts, 1989.

[68] Berthold K. P. Horn and Brian G. Schunck. Determining optical ow. Arti�cial Intelligence, 17:185{

203, 1981.

[69] Berthold Klaus Paul Horn. Robot Vision. MIT Electrical Engineering and Computer Science Series.

MIT Press, Cambridge, Massachusetts, 1986.

[70] David Hough. Applications of the proposed IEEE 754 standard for oating-point arithmetic. IEEE

Computer, 14(3):70{74, March 1981.

[71] IBM. XL C User's Guide.

[72] IBM. XL FORTRAN Compiler/6000 Version 2.2 User's Guide.

[73] IBM. APL2 Programming: Language Reference, August 1984. Order number SH20-9227-0.

[74] Institute of Electrical and Electronics Engineers. IEEE standard for binary oating-point arithmetic.

345 East 47th Street, New York, NY 10017, August 12, 1985. IEEE Standard 754-1985.

[75] Institute of Electrical and Electronics Engineers Computer Society. A proposed standard for binary

oating-point arithmetic: Draft 8.0 of IEEE Task P754. IEEE Computer, 14(3):51{62, March 1981.

[76] K. E. Iverson. A Programming Language. Wiley, New York, 1962.

[77] K. E. Iverson. A dictionary of apl. APL Quote Quad, 18(1):5{40, September 1987.

[78] Joseph J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachusetts, 1992.

[79] Mattias Jarke. Common subexpression isolation in multiple query optimization. In Won Kim, Davis S.

Reiner, and Don S. Batory, editors, Query Processing in Database Systems, Topics in Information

Systems, pages 191{205. Springer-Verlag, Berlin, 1985.

[80] M. A. Jenkins, J. I. Glasgow, and C. McCrosky. Programming styles in Nial. IEEE Transactions on

Software Engineering, January 1986.

[81] Kirk Johnson. Using the LALR parser generator, September 19, 1991. Documentation version 0.9.

[82] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global

program optimization: Part I. International Journal of Computer Mathematics, 11:21{41, 1982.

[83] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global

program optimization: Part II. International Journal of Computer Mathematics, 11:111{126, 1982.

[84] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Software Series. Prentice

Hall, Englewood Cli�s, New Jersey, second edition, 1988.

[85] Greg Klanderman. Canny edge detector. smooth.c, May 18, 1990.

[86] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele Jr. Data optimization: Allocation of arrays to

reduce communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102{118,

1990.

[87] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.

Addison-Wesley, Reading, Massachusetts, second edition, 1981.

[88] Vipin Kumar, P. S. Gopalakrishnan, and Laveen N. Kanal, editors. Parallel Algorithms for Machine

Intelligence and Vision. Symbolic Computation|Arti�cial Intelligence Series. Springer-Verlag, New

York, 1990.

BIBLIOGRAPHY 93

[89] H. T. Kung and S. W. Wong. A systolic array chip for the convolution operator in image process-

ing. VLSI Document V046, Carnegie-Mellon University Computer Science Department, Pittsburgh,

Pennsylvania, February 1980.

[90] S. Lakshimivarahan and Sudarshan K. Dhall. Analysis and Design of Parallel Algorithms: Arithmetic

and Matrix Problems. Supercomputing and Parallel Processing. McGraw Hill, New York, 1990.

[91] Daniel LaLiberte. Edebug User Manual: A Source Level Debugger for GNU Emacs Lisp, March 1992.

Edition 1.2.

[92] C. Lasser. The Essential *Lisp Manual. Thinking Machines Corporation, Cambridge, Massachusetts,

July 1986.

[93] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann, San Mateo, California, 1992.

[94] Bil Lewis, Dan LaLiberte, and the GNU Manual Group. GNU Emacs Lisp Reference Manual. Free

Software Foundation, Cambridge, Massachusetts, December 1990. Version 1.03.

[95] John D. C. Little, Kattta G. Murty, Dura W. Sweeney, and Caroline Karel. An algorithm for the

traveling salesman problem. Operations Research, 11(6):972{989, November{December 1963.

[96] J. M. LoSecco, Frederick Reines, and Daniel Sinclair. The search for proton decay. Scienti�c American,

252:54�, June 1985.

[97] Larry Meadows. Personal communication, 1992.

[98] Randall Mercer. The CONVEX FORTRAN 5.0 compiler. In Lana P. Kartashev and Steven I. Karta-

shev, editors, Third International Conference on Supercomputing, volume II, pages 164{175, Boston,

Massachusetts, May 1988.

[99] Joseph Mohan. A study in parallel computation|the traveling salesman problem. Technical Report

CMU-CS-82-136, Carnegie-Mellon University Department of Computer Science, August 18, 1982.

[100] Joseph Mohan. Experience with two parallel programs solving the traveling salesman problem. In

Proceedings of the 1983 International Conference on Parallel Processing, pages 191{193, 1983.

[101] Etienne Morel and Claude Renvoise. Global optimization by suppression of partial redundancies.

Communications of the ACM, 22(2):96{103, February 1979.

[102] Jacek Myczkowski and Guy L. Steele Jr. Seismic modeling at 14 gigaops on the Connection Machine.

In Proceedings, Supercomputing '91, pages 316{326, Albuquerque, New Mexico, November 18-22, 1991.

[103] Dan Nussbaum. ASIM reference manual. Alewife Systems Memo 28, MIT Laboratory for Computer

Science, Cambridge, Massachusetts, January 1991. 17 pages; revised November 26, 1991.

[104] Bob Paige and J. T. Schwartz. Expression continuity and the formal di�erentiation of algorithms. In

Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, pages

58{71, Los Angeles, California, January 17{19, 1977.

[105] Robert Paige and Shaye Koenig. Finite di�erencing of computable expressions. Technical Report

LCSR-TR-8, Rutgers University Laboratory for Computer Science Research, New Brunswick, New

Jersey, August 1980. Revised December, 1981.

[106] Robert Paige and Shaye Koenig. Finite di�erencing of computable expressions. ACM Transactions on

Programming Languages and Systems, 4(3):402{454, July 1982.

[107] Theodosios Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,

Rockville, Maryland, 1982.

[108] WilliamH. Press, Brian P. Flannery, Saul A. Teukolksy, and WilliamT. Vetterling. Numerical Recipes

in C: The Art of Scienti�c Computing. Cambridge University Press, Cambridge, England, 1988.

[109] William Pugh and Tim Teitelbaum. Incremental computation via function caching. In Principles of

Programming Languages, pages 315{328, 1989.

[110] J. Rose and G. L. Steele Jr. C*: An extended C language for data parallel programming. Technical

Report PL87-5, Thinking Machines Corporation, Cambridge, Massachusetts, April 1987.

[111] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and redundant com-

putations. In Conference Record of the 15th Annual ACM Symposium on Principles of Programming

94 BIBLIOGRAPHY

Languages, pages 12{27, San Diego, California, January 1988.

[112] Bill Ross. Personal communication, 1992.

[113] Gary Sabot. Paralation Lisp Reference Manual, May 1988.

[114] Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming. MIT Press,

Cambridge, Massachusetts, 1988.

[115] Gary W. Sabot. Optimized CM Fortran compiler for the Connection Machine computer. In Proceedings

of Hawaii International Conference on System Sciences 25, pages 161{172. IEEE Computer Society,

1992.

[116] J. T. Schwartz. On programming: An interim report on the SETL project, Installments I and II.

Technical report, Courant Institute of Mathematical Sciences, New York University, New York, New

York, 1974.

[117] Stephen D. Senturia and Bruce D. Wedlock. Electronic Circuits and Applications. John Wiley & Sons,

New York, New York, 1975.

[118] Ravi Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Journal of

the ACM, 17(4):715{728, October 1970.

[119] William McC. Siebert. Circuits, Signals, and Systems. MIT Electrical Engineering and Computer

Science Series. MIT Press and McGraw-Hill, Cambridge, Massachusetts and New York, New York,

1986.

[120] Barbara Simons, David Alpern, and Jeanne Ferrante. A foundation for sequentializing parallel code

| extended abstract. In Proceedings of the 2nd ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 350{359, 1990.

[121] Barbara Simons and Jeanne Ferrante. An e�cient algorithm for constructing a control ow graph

for parallel code. Technical Report TR 03.465, IBM, Santa Teresa Laboratory, San Jose, California,

February 1993.

[122] John Miles Smith and Philip Yen-Tang Chang. Optimizing the performance of a relational algebra

database interface. Communications of the ACM, 18(10):568{579, October 1975.

[123] Arthur Sorkin. Some comments on \A solution to a problem with Morel and Renvoise's `Global

optimization by suppression of partial redundancies' ". ACM Transactions on Programming Languages

and Systems, 11(4):666{668, October 1989.

[124] Richard M. Stallman. The C Preprocessor. Free Software Foundation, Cambridge, Massachusetts, �rst

edition, April 1989.

[125] Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation, Cambridge, Mas-

sachusetts, February 1992. For GNU CC version 2.0.

[126] Guy L. Steele Jr. CM-Lisp. Technical report, Thinking Machines Corporation, Cambridge, Mas-

sachusetts, 1986.

[127] Guy L. Steele Jr. Personal communication, 1992.

[128] Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible programs. Technical

Report MSR-TR-93-14, Microsoft Research, Redmond, WA, August 1993.

[129] J. M. Stone, F. Darema-Rogers, A. Norton, and G. F. P�ster. The VM/EPEX FORTRAN preprocessor

reference. Technical report, IBM, Yorktown Heights, New York.

[130] Sun Microsystems. C Programmer's Guide, 1989. Part number 800-3844-10.

[131] Barbara Tansy. SPARCstation1 Sun System User's Guide. Sun Microsystems, 1989.

[132] Thinking Machines Corporation. Connection Machine Model CM-2 technical summary. Technical

Report HA87-4, Cambridge, Massachusetts, April 1987.

[133] Thinking Machines Corporation, Cambridge, Massachusetts. C* Programming Guide, 1990. Version

6.0 Beta.

[134] Thinking Machines Corporation, Cambridge, Massachusetts. CM Fortran User's Guide, preliminary

edition, October 1991. Thinking Machines con�dential.

BIBLIOGRAPHY 95

[135] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Started in *Lisp, June 1991.

Version 6.1. First printing.

[136] Thinking Machines Corporation, Cambridge, Massachusetts. *Lisp Dictionary, October 1991. Version

6.1. Revised printing.

[137] Kenneth R. Traub. A compiler for the MIT tagged-token dataow architecture. Technical Report

MIT-LCS-TR-370, MIT Laboratory for Computer Science, Cambridge, Massachusetts, August 1986.

[138] Kenneth R. Traub. Sequential implementation of lenient programming languages. Technical Report

LCS-TR-417, MIT Laboratory for Computer Science, Cambridge, Massachusetts, October 1988.

[139] J. D. Ullman. Fast algorithms for the elimination of common subexpressions. Acta Informatica,

2(3):191{213, 1973.

[140] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value dependence graphs:

Representation without taxation. Technical Report MSR-TR-94-03, Microsoft Research, Redmond,

WA, April 13, 1994.

[141] Skef Wholey. Automatic data mapping for distributed-memory parallel computers. Technical Report

CMU-CS-91-121, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991.

[142] Robert G. Willhoft. Parallel expression in the APL2 language. IBM Systems Journal, 30(4):498{512,

1991.

[143] Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research Monographs in Parallel and

Distributed Computing. MIT Press and Pitman, Cambridge, Massachusetts and London, England,

1989.

[144] Jamie Zawinski and Hallvard Furuseth. Compilation of Lisp code into byte code. bytecomp.el,

March 9, 1992. Version 2.05.

