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Abstract

This paper presents a methodology for proving properties of distributed sys-
tems in which simulated execution assists and enhances formal proofs. It is well
known that techniques such as testing can increase confidence in an implementa-
tion, but cannot by themselves demonstrate correctness. In addition to detecting
simple errors quickly and to providing intuition about behavior, execution-based
techniques can also reveal unexpected properties, suggest necessary lemmas, and
provide information to structure proofs. This paper also describes the use of these
techniques in a machine-checked proof of correctness of the Paxos algorithm for
distributed consensus.

1 Introduction

Traditionally, execution serves as a prelude to formal verification. Testing reveals
departures from desired behavior that are corrected (either in the code or in the
specification of its behavior) before attempting to prove code correct. Testing
via simulated execution can do the same even in the absence of a complete
implementation. This paper discusses additional ways execution or simulated
execution can assist in formal verification, and describes their use in producing
a machine-checked proof of a distributed algorithm.

First, execution can serve in a more powerful way as a prelude to formal veri-
fication. Tools for dynamic program analysis can extract descriptions of program
behavior from executions, and programmers can match the extracted descrip-
tions against their expectations. Unlike the traditional use of execution to test
behavior, this use can reveal unexpected behaviors, not just departures from
anticipated behaviors.

Second, execution can help produce the lemmas required for successful proofs
of correctness. Unlike human proofs, which are peppered with phrases like “it is
obvious that,” machine-checked proofs often require many explicit lemmas. To
avoid the tedium of enumerating these lemmas by hand, verifiers can discover
them by using execution and dynamic program analysis.

Third, information that directs simulated execution to examine interesting
aspects of a program’s behavior can also be used to direct a proof of correctness.



For example, programmers may ensure that executions cover the entire range of
expected behaviors by formulating case splits that distinguish between normal
and unusual behaviors; these same case splits can also provide helpful ways of
organizing a proof.

We illustrate these uses of execution in constructing a formal proof of correct-
ness for Paxos, a distributed algorithm for consensus [Lam98,PLL00]. This paper
is concerned primarily with a general methodology for verifying distributed algo-
rithms— and with the role execution and automated tools play in that method-
ology— and not with the details of the Paxos algorithm itself. Our methodology
is based on the input/output (I/O) automaton framework [LT89] for modeling
and verifying distributed algorithms, in which each component of a system is
represented as an automaton whose external behavior is defined by a simple
mathematical object called a trace.

This paper is organized as follows. Section 2 introduces the I/O automaton
model, discusses the IOA language and toolkit, which support use of this model,
and contrasts the toolkit with related tools that use run-time techniques to aid
formal verification. The remainder of the paper presents our execution-based
methodology in more detail, using a proof of the Paxos algorithm as a running
example. Section 3 formulates specifications and implementations as I/O au-
tomata, Section 4 describes how these automata are executed, and Section 5
shows how dynamically detected invariants reveal properties of an automaton.
Section 6 describes how two automata, one a specification and one an imple-
mentation, can be executed in lock-step, and Section 7 shows how this paired
execution can be used to construct a machine-verified proof.

2 Preliminaries

Our methodology uses the I/O automaton model, the IOA language, and three
tools in the IOA toolkit [GL98]: the IOA interpreter, the LP theorem-prover,
and the Daikon dynamic invariant detector.

2.1 I/O automata and the IOA language

An I/O automaton is a simple state machine in which transitions between states
are associated with named actions, which are classified as either input, output,
or internal. The inputs and outputs are external actions used for communica-
tion with the automaton’s environment; internal actions are visible only to the
automaton itself. An automaton controls which output and internal actions it
performs, but input actions are not under its control. An I/O automaton con-
sists of its signature, which lists its actions; a set of states, some of which are
distinguished as start states; a state-transition relation, which contains triples
of the form (state, action, state); and an optional set of tasks (not considered in
this paper).

Action π is enabled in state s if there is a state s′ such that (s, π, s′) is
a transition of the automaton. Input actions are enabled in every state. The



operation of an I/O automaton is described by its executions s0, π1, s1, . . ., which
are alternating sequences of states and actions, and by its traces, which are the
externally visible behavior occurring in executions. One automaton implements
another if all its traces are also traces of the other.

Definition 1 (Forward simulation). A forward simulation from automaton
A to automaton B is a relation f on states(A) × states(B) with the following
two properties. (1) For every start state a of A, there is a start state b of B such
that f(a, b). (2) If a is a reachable state of A, b is a reachable state of B such
that f(a, b), and a

π→ a′, then there is a state b′ of B such that f(a′, b′) and an

execution fragment β of B such that b
β→ b′ and trace(π) = trace(β).

Theorem 1. If there is a forward simulation relation from A to B, then every
trace of A is a trace of B [Lyn96].

The IOA language provides notations for describing I/O automata and for
stating their properties; it uses Larch Shared Language [GHG+93] specifications
to axiomatize the semantics of I/O automata and the data types used to describe
algorithms. In IOA, transition relations are defined in terms of preconditions
and effects. These can be written either in an imperative style (as a sequence
of assignment, conditional, and loop statements), or in declarative style (as a
predicate relating state variables in the pre- and post-states, transition param-
eters, and other nondeterministically chosen parameters). It is also possible to
use a combination of these two styles. Nondeterminism appears in IOA in two
ways: explicitly, in the form of choose constructs in state variable initializations
and the effects of the transition definitions, and implicitly, in the form of action
scheduling uncertainty.

Nondeterminism allows systems to be described in their most general forms
and to be verified considering all possible behaviors without being tied to a
particular implementation of a system design.

The sample programs in this paper do not exploit the full generality of the
language. They all define primitive (i.e., not composite) automata in an imper-
ative style with no explicit nondeterminism.

2.2 Tools used in the IOA toolkit

The IOA interpreter The IOA interpreter [KCD+02a,KCD+02b] assists users
in formulating and checking properties of automata. The interpreter can simulate
execution either of a single automaton in isolation (checking stated assertions
and displaying or logging the automaton’s execution) or of two automata running
in lockstep. In the latter case, a user presents the interpreter with two automata,
a candidate simulation relation, and a mapping, called a step correspondence,
from the actions of the lower-level automaton to sequences of actions of the
higher-level one. The interpreter simulates execution of the low-level automaton,
generates a simulated execution of the high-level automaton induced by the
step correspondence, checks that the two executions have the same trace, and



checks that the candidate simulation relation holds throughout the executions.
The IOA interpreter is also known as the “IOA Simulator,” but is called the
interpreter in this paper to avoid confusion with the notions of forward and
backward simulation.

The Larch Prover The Larch Prover [GG91] (LP) is an interactive theorem
proving system for multisorted first-order logic. It admits specifications of theo-
ries in the Larch Shared Language (LSL). The IOA toolkit includes a tool called
ioa2lsl [Bog01], which translates IOA definitions of automata into LSL theories
that describe the operation of the automaton. It also generates proof obligations
for the invariants and simulation relations of the automaton.

The Daikon invariant detector The Daikon invariant detector [ECGN01]
proposes program properties that are likely to be true. It operates dynamically,
by examining values computed during execution, postulating and checking prop-
erties, and reporting those that pass a battery of statistical and other tests. The
technique is unsound, because there is no guarantee that the test suite fully
characterizes the execution environment. However, the reported properties are
often true and generally helpful in explicating the system under test and/or its
test suite. We achieve soundness by using LP to check proofs.

2.3 Related work

Other toolkits, such as AsmL [GSV01], Mocha [AHM+98], SMV [McM], and
TLC [LY01], support execution or verification of concurrent and distributed
systems. The execution is used mainly for debugging and understanding the be-
havior of a system. The IOA toolkit uses execution not only for these purposes,
but also for automatically discovering program properties that can be used as
lemmas in formal proofs. Moreover, the facility for executing of pairs of au-
tomata together, matching actions of one against those of the other, helps users
in organizing formal proofs of correctness based on simulation relations.

Mocha, SMV and TLC use model checking as the verification method. Model
checking is attractive because it requires relatively less expertise than theorem-
proving and it provides counter-examples to falsified properties. However, model
checkers provide no intuition about true properties and can analyze only a finite
state space; theorem-provers apply to finite and infinite systems alike.

The “invisible invariants” method [PRZ01] facilitates automated verification
of parameterized, finite-state systems. This method uses model-checking tech-
niques for calculating candidate invariants, for checking their inductiveness, and
for proving the verification conditions generated by the standard invariance rule
of deductive verification. A key characteristic of this method is that invariants
can be proved automatically and they need not be shown to a human. By con-
trast, we regard invariants as a means to inform users about interesting pro-
gram properties they might have overlooked. Invariants detected by Daikon are
intended to be simple and easily readable properties. Additionally, our method-
ology is not limited to finite-state systems or inductively provable properties.



type Node = tuple of location : Int
type Value = tuple of value : Int

automaton Cons
signature

input fail(i: Node ), init(i: Node, v: Value)
output decide(i: Node, v: Value)
internal chooseVal(v: Value)

states
initiated : Set[Node ] := {}, proposed : Set[Value ] := {},
chosen : Set[Value] := {}, decided : Set[Node] := {},
failed : Set[Node] := {}

transitions
input init(i, v)

eff i f ¬(i ∈ failed ) ∧ ¬(i ∈ initiated ) then
initiated := initiated ∪ {i};
proposed := proposed ∪ {v}

f i
internal chooseVal(v)

pre v ∈ proposed ∧ chosen = {}
eff chosen := {v};

output decide(i, v)
pre i ∈ initiated ∧ ¬(i ∈ decided ) ∧

¬(i ∈ failed ) ∧ v ∈ chosen
eff decided := decided ∪ {i}

input fail(i)
eff failed := failed ∪ {i}

Fig. 1. Specification of consensus in IOA

3 Specifying automata in IOA

The first step in verifying that an implementation is correct with respect to a
specification is to define the specification and implementation automata in IOA.
The I/O automaton version of Paxos defines a hierarchy of four automata for
achieving consensus. The highest-level automaton, Cons, provides a specification
for consensus. The lowest-level automaton, Paxos, provides a distributed imple-
mentation. An intermediate-level automaton, Global1, although non-distributed,
captures how Paxos uses ballots and quorums to achieve consensus. The correct-
ness proof involves showing the existence of a series of forward simulations,
between each pair of successive levels in the hierarchy. Our case study examines
the forward simulation between Cons and Global1.

3.1 Specification automaton

Paxos implements distributed consensus in an asynchronous system in which
individual processes can fail. Suppose that I is a finite set of nodes representing
the processes in the system and V is the set of possible consensus values. Pro-
cesses in I may propose values in V . The consensus service is allowed to return
decisions to processes that have proposed values. It must satisfy two conditions:
all nodes must receive the same value (“agreement”) and that value must have
been proposed by some process (“validity”).

The signature of the specification automaton Cons (Figure 1) contains an
input action init(i,v), representing the proposal of value v by process i, an



internal action chooseVal(v), representing the choice of a consensus value v, an
output action decide(i,v), representing the report of the consensus value to
process i, and an input action fail(i), representing the failure of process i.
The automaton provides the required agreement and validity guarantees: only a
single consensus value can be chosen, and that value must have been previously
proposed.

3.2 Implementation automaton

The automaton Global1 (Figure 2) specifies an algorithm that implements con-
sensus in a non-distributed setting. This automaton uses a totally ordered set of
ballots for values, one of which may eventually be chosen as the consensus value
if sufficient approval is collected from the processes in the system.

In addition to the external actions of the automaton Cons, the signature of
Global1 includes internal actions for making ballots, assigning them values, and
voting for or abstaining from ballots. The automaton Global1 determines the
fate of a ballot by considering the actions of quorums, which are finite subsets
of I, on that ballot. Global1 allows a ballot to succeed only if every node in a
quorum has voted for it.

4 Simulating execution of an automaton with the IOA
toolkit

The second step in verifying the correctness of an implementation using the IOA
toolkit is to test its behavior by simulating its execution. The IOA interpreter
simulates execution of an I/O automaton on a single machine, allowing the user
to help select the executions and to propose invariants for the interpreter to
check.

The interpreter requires that IOA programs be transformed into a form suit-
able for execution. For example, quorums in Paxos have to be initialized opera-
tionally, whereas they were specified declaratively in the original I/O automaton
model. Aside from such bookkeeping issues, the crucial problem in this transfor-
mation is resolving nondeterminism. The IOA interpreter solves this problem by
requiring the user to supply a program, called an NDR program, to each source
of nondeterminism in an automaton [KCD+02a,KCD+02b].

In our case study, we wrote several NDR programs to execute Global1 with
different interleavings of actions, causing some nodes to fail and some to abstain
from a ballot. For example, the NDR program statement

f ire output decide ([4], [1]);

causes the IOA interpreter to execute the decide action with the given argu-
ments. We did not use structured test generation methods (e.g., code coverage)
to produce the NDR programs; instead, we simply selected executions that exhib-
ited what we felt was the normal behavior of the automaton (and that exercised
every action). In our experience, such an intuitive scheduling is adequate for
the purpose of dynamic invariant detection. However, as noted in Section 5.2, a



type Ballot = tuple of ordering : Int

automaton Global1
signature

input fail(i: Node ), init(i: Node, v: Value)
output decide(i: Node, v: Value)
internal start(theNodes , initAllBallots ), makeBallot(b: Ballot ),

abstain(i: Node, B: Set[Ballot ]), assignVal(b: Ballot , v:Value),
vote(i: Node, b: Ballot ), internalDecide(b: Ballot)

states
initiated : Set[Node ] := {}, proposed : Set[Value] := {},
decided : Set[Node] := {}, failed : Set[Node] := {},
ballots : Set[Ballot ] := {}, succeeded : Set[Ballot ] := {},
val: Array[Ballot , Null[Value ]] := constant(nil),
voted : Array[Node, Set[Ballot ]] := constant ({}),
abstained : Array[Node, Set[Ballot ]] := constant ({})
quorums : Set[Node],
dead: Set[Ballot ] := {}

transitions
internal start(theNodes , initAllBallots)

eff quorums := delete ([1], theNodes );
for i: Node in theNodes do voted[i] := {}; abstained[i] := {[0]} od;
for i: Ballot in initAllBallots do val[i] := nil od

input init(i, v)
eff % As in Cons ( Figure 1)

input fail (i)
eff failed := failed ∪ {i}

internal makeBallot(b)
pre ¬ (b ∈ ballots );
eff ballots := ballots ∪ {b};

internal assignVal(b, v)
pre b ∈ ballots ∧ val[b] = nil ∧ v ∈ proposed

∧ ∀ b ′ :Ballot (b ′ .ordering < b.ordering ⇒
val[b ′ ] = embed(v) ∨ b ′ ∈ dead)

eff val[b] := embed(v)
internal vote(i, b)

pre i ∈ initiated ∧ ¬(i ∈ failed ) ∧ b ∈ ballots ∧ ¬(b ∈ abstained[i])
eff voted[i] := voted[i] ∪ {b}

internal abstain(i, B)
pre i ∈ initiated ∧ ¬(i ∈ failed ) ∧ voted[i] ∩ B = {}
eff abstained[i] := abstained[i] ∪ B;

for aBallot:Ballot in B do
i f ∀ aNode:Node (aNode ∈ quorums ⇒ aBallot ∈ abstained[aNode])

then dead := insert ( aBallot , dead);
f i ;

od;
internal internalDecide(b)

pre b ∈ ballots ∧ ∀ j:Node (j ∈ quorums ⇒ b ∈ voted[j])
eff succeeded := succeeded ∪ {b}

output decide(i, v)
pre i ∈ initiated ∧ ¬(i ∈ decided ) ∧ ¬(i ∈ failed)

∧ ∃ b:Ballot (b ∈ succeeded ∧ embed(v) = val[b])
eff decided := decided ∪ {i}

Fig. 2. A ballot-based implementation of consensus in IOA



preliminary test run reported an unexpected invariant, which indicated a (sub-
sequently corrected) deficiency in the test data. In another case study, involving
the Peterson mutual exclusion algorithm, use of the IOA simulator uncovered a
bug in the IOA transcription of the implementation.

5 Dynamically detecting likely invariants

A proof of a simulation relation often depends on invariants and on auxiliary
lemmas; machine verification requires that such bookkeeping details be made
explicit. These parts of the proof are usually not the most interesting parts
and also tend to be relatively simple; thus, automating them holds promise. We
attempt to automatically generate invariants and lemmas by use of dynamic
invariant detection.

The Daikon invariant detector is a run-time tool that proposes invariants
based on program executions [ECGN01]. It examines the values that a program
computes, generalizes over them, and reports the generalizations in the form of
IOA invariants. Daikon’s heuristics and analyses result in output in the form
of a formal specification that often matches what a human would have writ-
ten [NE02]. Three potential problems with the technique are that it is unsound,
that it is incomplete, and that the reported properties are not guaranteed to be
useful. We discuss Daikon’s output and how to cope with the potential problems.

5.1 Daikon results for the case study

For Paxos, Daikon analysis produced 23 invariants, four of which were helpful
in the simulation relation proof in Section 7. The four were:
Inv1: ∀ anIndex:Node (size(voted[anIndex ] ∩ abstained[anIndex ]) = 0)
Inv2: val.values.val(nonNull ) ⊆ proposed
Inv3: size(succeeded ∩ dead) = 0
Inv5: succeeded ⊆ ballots

We have added the names Invi for convenience in this presentation.
A full proof of the Paxos simulation relation required six invariants: five for

the simulation relation proper, and one more for one of the invariants. The two
missing invariants were:
Inv4: ∀ b:Ballot ∀ b ′ :Ballot

(val[b] 6= nil ∧ b ′ < b ⇒ val[b ′ ] = val[b] ∨ b ′ ∈ dead(abstained ))
Inv6: ∀ b_Inv6:Ballot

(b_Inv6 ∈ succeeded ⇒ ∃ q_Inv6:Set[Node] ∀ n_Inv6:Node
(q_Inv6 ∈ wquorums ∧ ( n_Inv6 ∈ q_Inv6 ⇒ b_Inv6 ∈ voted[n_Inv6 ])))

These two invariants are outside Daikon’s grammar, so it neither checked nor
reported them. (Daikon does not report invariants with existential quantifiers,
nor does it report those with more than a given number of subterms.)

5.2 Discussion of dynamically detected invariants

We now discuss how to cope with potential problems in the invariant detector
output.



First, dynamic invariant detection is unsound: reported properties are true
over the test suite, but, as with all execution-based techniques, there is no guar-
antee that the test suite fully characterizes the execution environment of the
program. This does not hinder us for two reasons. First, we use Daikon’s out-
put to help in proposing, understanding, and verifying program properties, but
soundness is provided by the theorem prover. Second, most of the output in our
case study was correct. Most false facts Daikon produced were easily-corrected
artifacts of the test suite (execution scheduling). For example, in one set of exe-
cutions, Daikon reported that the size of the failed variable was a constant. We
corrected this by randomizing failures in our NDR program, thereby improving
the quality of the test suite for its use in Section 6. In the general, however,
simply covering every action seems to be adequate.

Second, dynamic invariant detection is incomplete: the proposed invariants
may be insufficient for verification, because some true invariants are not reported.
Daikon restricts the set of invariants it checks for two reasons: to conserve run-
time and to reduce the number of false positives that it reports (the more prop-
erties it checks, the larger the number of false properties it will report). In our
case study, we had to add Inv4 and Inv6 to the set proposed by Daikon. We did
not find this a hindrance because our methodology does not aim for completely
automatic verification. Rather, we aim to reduce human effort — particularly
non-imaginative effort. Qualitatively, we believe the output did so, by providing
four of the six required invariants. Some assistance was better than none, even
though work remained.

It is notable that Inv3, while true and necessary for the proof, was not prov-
able in isolation: establishing it required use of Inv6. In other words, Daikon
was able to postulate a simple property with a complicated proof, prompting a
user to find that proof. In addition to nicely decomposing the proof into parts,
this demonstrates a strength of our technique: it is easy to dynamically check
properties that may have quite complicated static proofs and thus are likely to
be beyond the capabilities of static tools.

Third, some reported properties may be true but not useful. As an example,
Daikon reported decided ⊆ initiated (and a number of other properties), but
we did not use that fact in the proof. Daikon uses heuristics to prune useless facts,
for instance, by limiting output based on variable types. However, it is impossible
for a tool to know what a human will find desirable in a given situation. We found
that although there were over a dozen true but irrelevant invariants, it was easy
to pass over the uninteresting ones— and examining them helped us solidify
our understanding of the algorithm and the implementation. Thus, a moderate
amount of extra information does not distract or disable users.

Finally, the reported properties may be more than are needed for a proof: a
proof accepted by a theorem-prover may use more invariants than are strictly
necessary, thus obscuring the essential argument. We believe it is better to first
obtain a working, machine-verified proof, and then to reduce it after the fact.
Automating this task (possibly following Rintanen [Rin00]) is future work. We
did not have to perform such a reduction in our case study.



forward simulation from Global1 to Cons:
Cons.initiated = Global1.initiated ∧
Cons.proposed = Global1.proposed ∧
Cons.decided = Global1.decided ∧
Cons.failed = Global1.failed ∧
∀ v:Value (v ∈ Cons.chosen ⇔

∃ b:Ballot (b ∈ Global1.succeeded ∧ Global1.val[b] = embed(v) ))
proof
init ia l ly Cons = [{}, {}, {}, {}, {}]
for internal start(S: Set[Node ], B: Set[Ballot ]) ignore
for input init(i: Node, v: Value) do fire input init(i, v) od
for input fail(i: Node) do fire input fail(i) od
for output decide(i: Node, v: Value ) do fire output decide(i, v) od
for internal makeBallot(b: Ballot ) ignore
for internal abstain(i: Node, B: Set[Ballot ]) ignore
for internal vote(i: Node, b: Ballot ) ignore
for internal assignVal(b: Ballot , v: Value) do
i f ¬(b ∈ Global1.succeeded ) then ignore
else i f ∃ b:Ballot (b ∈ Global1.succeeded ∧ Global1.val[b] 6= nil) then ignore
else f ire internal chooseVal(v)
f i od

for internal internalDecide(b: Ballot ) do
i f (b ∈ Global1.succeeded ) then ignore
else i f ( Global1.val[b] = nil) then ignore
else i f ∃ b:Ballot (b ∈ Global1.succeeded ∧ Global1.val[b] 6= nil) then ignore
else f ire internal chooseVal(Global1.val[b].val)
f i od

Fig. 3. Forward simulation relation and step correspondence (proof block) from
Global1 to Cons

6 Paired execution

As noted in Section 2.2, users can also exploit the IOA interpreter in formu-
lating and checking the validity of a forward simulation relation, as they work
toward the goal of proving the correctness of an implementation with respect to
a specification.

A forward simulation relation is a predicate that relates the states of two
automata (see Definition 1). Figure 3 contains a candidate forward simulation
relation from Global1 to Cons. The simulation relation is just a predicate relat-
ing the states of the two automata. It does not specify how each step in the
implementation Global1 corresponds to a sequence of steps in the specification
Cons. In general, there might be multiple step correspondences that preserve the
simulation relation; even if there is only one, it can be difficult to find it. Hence
Figure 3 also contains a “proof block,” which describes a step correspondence for
use as an “attempted proof” of the simulation relation. With this proof block,
the paired interpreter can execute the specification automaton in lockstep with
the implementation automaton.

The proof block contains two sub-blocks, corresponding to the two properties
needed to show a simulation relation (Definition 1). The first sub-block, started
by initially, shows how to start the specification automaton1. The second sub-
1 The set of legal start states of the specification automaton is determined by the

states block in its code as usual; the initially block picks a particular start state,
which may depend on the start state of the implementing automaton.



block contains an entry for each action of the low-level automaton; this entry
provides an algorithm for producing a high-level execution fragment. A proof

section may also contain a third sub-block that declares auxiliary variables used
by the step correspondence.

In Figure 3, the proposed simulation relation is the identity on all state
variables of Cons except chosen, which is not a state variable of Global1. The
simulation relation defines chosen in Cons to contain a value v if and only if
there is a successful ballot in Global1 with value v. The proof block is straight-
forward for the start state and for the external actions: each external action
in the low-level execution is matched by the action with the same name in the
high-level automaton. The internal actions start, makeBallot, abstain, and vote

are matched by an empty execution sequence of the automaton Cons.
The IOA interpreter reveals the need for the careful treatment of the internal

actions assignVal and internalDecide in Figure 3. Given a naive treatment
for internal assignVal(b: Ballot , v: Value) ignore
for internal internalDecide(b: Ballot)

do fire internal chooseVal(Global1.val[b].val) od

for these actions in the proof block, the interpreter catches two problems with
the purported step correspondence. First, given a (legal) schedule that executes
internalDecide twice in Global1, the interpreter discovers that the precondition
for chooseVal fails the second time it is executed in the lockstep execution of
Cons. Second, assignVal needs to fire chooseVal if a ballot has been decided
internally but does not yet have a value assigned; hence we must fire chooseVal

when firing assignVal, but only if no other ballot in Global1.succeeded has a
non-nil value.

Most of the above case analysis is necessary because Global1 allows ballots
to be voted on (and to succeed) before they are assigned values. This nondeter-
minism makes the algorithm more flexible, but the proof a bit longer.

7 Verifying a simulation relation in LP

Since a paired execution provides only empirical evidence for the correctness of
a simulation relation, it is desirable to supplement this evidence with a proof —
ideally, a proof checked by an automated tool such as LP. The uses of simulated
executions described in Sections 5 and 6 assist the LP user in constructing such a
proof that the purported forward simulation relation in Figure 3 has the required
properties. First, the proof block of the paired execution provides an outline for
the proof. Second, invariants suggested by Daikon provide insight and can save
the user time in finding auxiliary invariants needed for verification.

The LP proof that the purported simulation relation satisfies property (1) of
Definition 1 is straightforward. The only interaction required from the user is to
supply the start state of Cons specified in the initially section of Figure 3 as a
“witness” for an existential quantifier:
prove start(a:States[Global1 ]) ⇒ ∃ b:States[Cons ] ( start(b) ∧ F(a, b)) by ⇒

resume by specializing b to [{}, {}, {}, {}, {}]

Given this witness, LP automatically rewrites the conjecture and finds that
start(b) and F(a, b) are both true, thereby completing the proof.



The LP proof that the purported simulation relation satisfies property (2)
of Definition 1, being lengthier, benefits to a greater extent from the results in
earlier sections. This proof proceeds by cases, one for each action of the imple-
mentation automaton Global1. In each case, the user must supply an execution
fragment β of Cons, which is readily available from the for statements in the
proof block in Figure 3: each action referred to in a fire statement is just an
element of the witness execution, while the ignore statement represents the null
execution. For the init, fail, makeBallot, abstain, and vote actions, the user
need supply nothing more: LP finishes the proof automatically. For example, to
guide the proof for the init action, it suffices to type

resume by specializing beta to init(n, v) * {}

Only a trivial amount of additional guidance (telling LP to work harder) is
needed for the decide action.

The cases for the assignVal and internalDecide actions are themselves fur-
ther divided into subcases, in accordance with the for statements for those ac-
tions in the proof block. In addition, the proof in these cases uses invariants Inv1
through Inv5. Invariant Inv2 is used when ChooseVal is the witness execution for
InternalDecide to show that the value being chosen belongs to Cons.proposed.
The other four, which show that all ballots not in Global1.dead have identi-
cal or nil values, help show that changes to Global1.succeeded and Global1.val

preserve the simulation relation.
Of course, the invariants used to establish the simulation relation must be

verified themselves. Here too, the interpreter and Daikon provide help. First,
invariants sometimes require other invariants in their proofs. In the case study,
only Inv3 required auxiliary invariants: Inv1 and Inv6. Daikon detected one of
these. Second, the statement of complicated invariants such as Inv6 can be tested
via simulated execution; once stated properly, the proof of this invariant was
rather simple.

Our techniques do not completely eliminate the need for human guidance
in proving invariants and simulation relations. They can automatically discover,
and prove with little human assistance, invariants such as Inv1, Inv2, and Inv5.
They cannot yet discover invariants such as Inv4 and Inv6, even though their
proofs are simple. And although they discover invariant Inv3, which is simple,
the proof of this invariant using LP requires moderate human guidance.

8 Conclusion

Theorem provers are the only tools that can soundly reason about general in-
finite state systems, leading to guarantees of correctness or other properties. A
machine-checked proof provides more assurance than a hand proof, but it also
carries a cost in terms of human interaction. We propose a methodology that
reduces but does not eliminate the human effort required for formally proving
properties of programs. In particular, the methodology partially automates some
of the tedious, low-level aspects of using a theorem prover, freeing the user to
focus on the proof itself.



The methodology integrates simulated execution — running a distributed al-
gorithm over a test suite on a uniprocessor — with theorem proving. Exploratory
analysis by experimenting with a system is a well-known technique for building
intuition and performing inexpensive sanity checks. We extend the use of run-
time techniques in two ways.

First, we use a dynamic invariant detector to generalize over observed ex-
ecutions, reporting logical properties that are likely to be true of the imple-
mentation. This technique reifies properties that would otherwise have to be
synthesized by a person. These properties can reveal unexpected properties of
the implementation, can buttress understanding more effectively than merely ex-
amining execution traces, and can provide invariants and lemmas that simplify
proofs and reduce theorem-proving effort.

Second, we observe that the effort to build good test suites can be re-used in
theorem-prover scripts: the proof scripts often mirror the form of the scripts for
driving paired executions, and it pays to get these scripts right before investing
effort in attempting a formal proof.

We have illustrated the use of the methodology, and of a toolset that supports
the methodology, by means of a case study that formally proves the correctness
of an implementation of consensus based on Lamport’s Paxos protocol.
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A A schedule block for executing Global1

Following is a sample schedule block for Global1, which produces the output
in Appendix B. The full test suite, used for our runtime analysis with Daikon,
employs more sophisticated constructs, such as loops and conditionals, along
with randomized ballot creation. We omit it here to conserve space.

schedule
states

theNodes : Set[Node ] := insert ([0], insert ([1], insert ([2], {}))) ∪
insert ([3], insert ([4], insert ([5], {})))

do
fire internal start(theNodes );
f ire input init ([0], [1]);
f ire input init ([1], [2]);
f ire input fail ([5]);
f ire internal makeBallot ([0]);
f ire input init ([2], [1]);
f ire input init ([4], [3]);
f ire internal assignVal ([0], [1]);
f ire internal vote ([0], [0]);
f ire internal vote ([1], [0]);
f ire internal vote ([2], [0]);
f ire internal vote ([4], [0]);
f ire input init ([3], [2]);
f ire internal makeBallot ([1]);
f ire internal abstain ([3], {[0]});
f ire internal assignVal ([1], [1]);
f ire internal makeBallot ([2]);
f ire internal abstain ([0], {[1]});
f ire internal abstain ([1], {[1]});
f ire internal abstain ([2], {[1]});
f ire internal abstain ([3], {[1]});
f ire internal assignVal ([2], [1]);
f ire internal vote ([0], [2]);
f ire internal vote ([1], [2]);
f ire internal vote ([2], [2]);
f ire internal vote ([3], [2]);
f ire input fail ([0]);
f ire internal internalDecide ([2]);
f ire output decide ([1], [1]);
f ire output decide ([4], [1]);

od

B Paired interpreter output for Global1

Following is the beginning of the output of a paired execution of Global1 and
Cons, in which execution of Global1 is driven by the schedule block shown in
Exhibit A and execution of Cons is driven by the proof block of the forward
simulation relation.
1: internal start(([0] [1] [2] [3] [4] [5])) in automaton Global1
2: input init([0], [1]) in automaton Global1
2: input init([0], [1]) in automaton Cons
3: input init([1], [2]) in automaton Global1
3: input init([1], [2]) in automaton Cons
4: input fail([5]) in automaton Global1
4: input fail([5]) in automaton Cons
5: internal makeBallot([0]) in automaton Global1
6: input init([2], [1]) in automaton Global1
6: input init([2], [1]) in automaton Cons


