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Abstract

Program slicing is a technique for visualizing dependences and restricting attention to just the

components of a program relevant to evaluation of certain expressions. Backward slicing reveals which

other parts of the program the expressions' meaning depends on, while forward slicing determines

which parts of the program depend on their meaning. Slicing helps programmers understand program

structure, which aids program understanding, maintenance, testing, and debugging; slicing can also

assist parallelization, integration and comparison of program versions, and other tasks.

This paper improves previous techniques for static slicing. Our algorithm is expression-oriented

rather than based on statements and variables, resulting in smaller slices. A user can slice on any value

computed by the program|including ones that are not, or cannot be, assigned to variables. The slicer

accounts for function calls, pointers, and aggregate structures. It takes advantage of compiler analyses

and transformations, resulting in more precise slices, and bypasses syntactic constraints by directly

constructing executable slices. These techniques are implemented in a slicer for the C programming

language that accepts input via mouse clicks; operates on the value dependence graph, a data
ow-

like program representation that is especially well-suited to slicing; and displays closure slices by

highlighting portions of the program in the programmer's editor.

1 Introduction

A program slice [Wei84] captures a subset of a program's behavior. A slice represents either all parts of

a program that can a�ect the slicing criterion|the expression of interest to the user|or all parts of the

program whose run-time values may depend on the slicing criterion's value. Slices are usually represented

to the user as a subset of the original program. In programming environments, slices demonstrate the

relationships between di�erent parts of a program; in program manipulation, slices limit how much of

the program is manipulated. We present a slicer that improves three aspects of previous slicers: the size

of the slices produced, programmer control over the slicing criterion, and support for a full, practical

language.

First, our slicer produces more precise slices, restricting attention to a smaller subset of the program.

The slicer decreases slice size by exploiting compiler analyses and transformations, thereby removing

false dependences, eliminating dead code, and otherwise improving the resulting slices. Representing the

program in terms of the original source requires maintaining a correspondence between the optimized

and unoptimized versions of the program. The slicer also decreases slice size by constructing slices out of

expressions rather than full statements. In a language that permits expressions to have side e�ects, only

the relevant portion of each statement is included. Executable slicing can generate code directly from

such slices without regard to syntactic constraints, since the slice is not con
ated with its representation

in terms of the original program.

Second, our slicer enhances programmer control over slicing: instead of restricting slicing criteria

to variable references, a slicing criterion may specify any value computed by the program|including

intermediate results, structure components, and non-�rst-class values such as I/O streams and the stack.
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Richer and more precise speci�cation of slicing criteria results in �ner, more intelligible slices. We also

discuss techniques, such as depth-limiting, for narrowing slices and making them more intelligible.

Third, we slice a real programming language. We enhance work on slicing in the presence of pointers

and function calls. We introduce techniques for handling arrays, structures, unions, and expressions with

side e�ects. Our slicer supports the entire C programming language (except longjmp). The implementa-

tion is written in Scheme [Han93] and integrated with GNU Emacs [Sta94] for input and output; it uses

the value dependence graph [WCES94] as its intermediate representation.

1.1 Types of slices

Venkatesh [Ven91] categorizes slices into eight types according to three distinctions: backward vs. forward,

executable vs. closure, and static vs. dynamic. This classi�cation will help us to situate this research

with respect to previous work.

A backward slice represents those program components a�ecting the values produced by execution of

a set of expressions (the slicing criterion). A forward slice speci�es all components of the program that

may be a�ected by the slicing criterion values. For concreteness, all further references are to backward

slicing, but our techniques are equally applicable to forward slicing.

Execution of code generated from an executable slice produces the same values for the slicing criterion

as an execution of the original program on the same inputs. The traditional approach to executable

slicing has been to produce a compilable slice, a syntactically correct program subset, then to compile it.

Syntactic constraints complicate the construction of compilable slices and force the inclusion of extraneous

program components. A closure slice (named for the graph reachability algorithm that computes it)

contains only the components related to the slicing criterion and is more useful to programmers in

understanding code behavior. We use a single slice for both types of slicing, either generating code

directly from it or using it to direct highlighting of a program.

A static slice includes the program components that may have an e�ect on (or may be a�ected by)

the slicing criterion values. A dynamic slice gives de�nite information for some particular execution by

maintaining an execution trace of a running program. This paper discusses only static slicing, which uses

analysis to discover dependences.

2 Slicing the value dependence graph

Our slicing algorithm operates on the value dependence graph (VDG) [WCES94], a sparse, parallel,

functional, data
ow-like program representation. The VDG is composed of nodes which represent com-

putation and arcs which carry values between computations. Figure 1 shows a program and its VDG

representation.

The basic slicing algorithm [OO84] on the VDG is extremely simple: the slice consists of all com-

putations encountered in a graph traversal starting at the slicing criterion. A backward slice traversal

follows consumer-producer arcs; at call results, it proceeds to all corresponding call returns, and at formal

parameters it proceeds to corresponding actual parameters. Because each VDG node is visited at most

once, this algorithm runs in time linear in the size of the slice, which is no larger than the VDG. Figure 2

shows a slice of the procedure of �gure 1.

The VDG is an attractive representation for slicing; the advantages of our slicing approach accrue

both from the VDG's features and their exploitation by our algorithms. Because the VDG's unit of

granularity is the computation rather than the statement, slicing criteria and results are �ner. Because

the graph directly links value producers with consumers, all dependences are made explicit in a single

graph. Because all values and computations, including those on the global store and I/O streams, are

explicitly represented, the algorithm need not account for hidden constraints and e�ects.
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void sum_product(int n)

{

int sum = 0;

int product = 0;

int i = 0;

while (i++ < n)

{ sum = sum + i;

product = product * i;

}

printf("Sum %d, product %d",

sum, product);

}

n I/O

*<

γ

+
Call

γ

Call

+

1

sumi

sum product

product

0

Call

I/O

"Sum..."

printf

Figure 1: A procedure and its VDG [WCES94] representation. The arrows point from consumers to producers of

values. The 
 node is a selector whose output is its left or right input, depending on whether its boolean argument

(attached to the side of the 
 node) is true or false. All looping and other control 
ow is represented by function

calls; the heavy boxes represent function bodies, with arguments along the top edge and return values along the

bottom edge.

The basic slicing algorithm is simple, fast, and easy to understand, but imprecise: the slices it

produces are larger than necessary. We will improve this algorithm by extending it to address pointers

and aggregate values (section 4) and procedure calling context (section 5). Other sections discuss our

techniques for expression-oriented slicing (section 3), executable slicing (section 6), and slicing optimized

code (section 7).

3 Expression-oriented slicing

Our slicing algorithm works at the expression level for input, computation, and output. Slicing criteria

can represent any value computed by the program, including those which are not, or cannot be, named

by variables. Slices, which are de�ned in terms of the VDG rather than a textual representation, can

include partial statements. Finally, our closure slices accurately convey information to the user and our

executable slices (discussed in section 6) do not include extraneous computations.

3.1 Slicing criteria

A traditional slicing criterion is a statement and a set of variables it references. We extend slicing

criteria to include any expression in the program (including those computing values undenotable in

the programming language) and variable references which do not appear explicitly in an expression or

statement. The slicing criterion always represents a single value rather than a whole computation, which

may compute multiple values.

Allowing intermediate results (subexpressions) as slicing criteria permits users to slice on components

of a computation that are not assigned to separate variables. This feature enables programmers to

restrict attention to the parts of statements or expressions. Values not assigned to variables are more

likely to appear in code using complicated coding constructs, for which slicing is especially needed to

untangle the computation. Examples from real programs include components of aggregate values, values
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Figure 2: Slicing the VDG of �gure 1 with slicing criterion sum in the call to printf. The slice indicates which

computations can a�ect the slicing criterion's run-time value. In the VDG, the edges and nodes in the slice are

shown thicker and shaded, respectively, and the slicing criterion is not a whole node but the indicated edge (value).

Given the VDG slice, communicating it to the user is a user interface issue. The screen dump on the right shows

how our system highlights, in the programmer's editor, the computations contained in the slice; see section 3.3 for

discussion.

addressed indirectly through pointers, expressions that use values computed earlier in the expression's

evaluation, very large expressions, and expressions that set, then overwrite, a variable. Rewriting code

to accommodate variable-based slicing criteria is an inconvenient (sometimes impossible) and error-prone

alternative to slicing on arbitrary expressions.

Values that cannot be assigned to variables are inexpressible in terms of variable references. For

determining which computations can a�ect the output produced by a program up to a particular point, the

slicing criterion is the output stream, which is not denotable in most programming languages. Similarly,

slicing on the state of the heap or stack reveals where allocations and deallocations occur.

Our slicer supports these queries because all computations are explicitly represented in the VDG.

Slicing on an expression that produces multiple values produces a menu of the expression's results, one

of which is selected as the slicing criterion. This mechanism also permits slicing on variables that are not

referenced at a program point, which is not supported by other slicers (except [Wei84]). Since the global

store is represented explicitly in the graph, any live component of it can be sliced upon.

There are two complications to slicing on arbitrary variable references. First, optimization (see

section 7) can reorder, eliminate, duplicate, and coalesce computations. In serialized code, zero, one, or

more locations in the intermediate representation may correspond to a source location, and frequently

there will be no point at which all computations preceding a program point, but no computations following

it, have been performed. Second, the VDG routes values only where they are demanded: in �gure 1, the

I/O stream is not passed into the loop, and the global store has been eliminated entirely. As a result,

not all program values are slicable at a particular expression, though they could be in a serialized VDG

which threaded all values through every computation. Any expression appearing in the program can be

used in a slicing criterion, however, and any value computed by the expression is slicable.
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Figure 3: Comparison of statement-oriented and expression-oriented slices for slicing criterion b in e = b;. The

call to baz is assumed not to set b.

Figure 4: Comparison of statement-oriented and expression-oriented display of slices. In the program from which

this fragment is taken, bar modi�es b, but foo does not. For slicing criterion b in e = b;, the slice includes the

call to bar but not the call to foo. Portions of the body of bar (not shown) are also highlighted.

3.2 Computing slices

When constructing a slice, our slicer includes individual computations rather than whole statements.

If expressions can have side e�ects or statements can have multiple e�ects, this �ner-grained approach,

which uses the computation's true granularity rather than that of the programming language, improves

slice precision.

Figure 3 compares statement-oriented and expression-oriented slices for slicing criterion b in e =

b;. The statement-oriented slice includes d = a * b++ * c; because it modi�es b; and because that

statement is included, all the computations it depends on are also included, even though the computations

of a and c are irrelevant to the �nal value of b. The expression-oriented slice e�ectively indicates that

the �nal value of b is one greater than the value of the call to bar.

We de�ne a slice in terms of the intermediate representation on which the slicing algorithm operates.

Unlike historical de�nitions that require a slice to be a set of statements or a syntactically correct program,

our de�nition does not con
ate the slice with its on-screen representation. We do not try to make a

single textual representation serve the di�erent purposes of closure slicing (to provide a programmer with

information about dependences and value 
ow) and executable slicing (to generate an executable whose

behavior subsets that of the original program).

3.3 Displaying closure slices

Given a slice|a VDG subset|how to display it is a user interface issue. Expression-oriented slices can

be displayed in a traditional statement-oriented fashion, but doing so nulli�es some of the advantage of

slicing at a �ner granularity. By default we highlight only the expressions corresponding to computations

in the slice, as shown in �gure 4. The abbreviated output of expression slicing can be a boon, because

it directs attention precisely to the relevant computation and to the 
ow of values in the program rather

than making the user reconstruct that information. When the goal is to aid a programmer, there is little

motivation to include full statements or to make the slice's representation syntactic, so long as the slice

is represented in the context of the full program.

Static slices are frequently criticized for being too large and di�cult to understand. Interesting results

tend to depend directly or indirectly on most of the previous computation, so a full static slice includes

most of a program. Determining relationships among the many included components of a slice, requires

the programmer to manually repeat the slicer's job.

Our implementation uses depth-limited slices to show immediate dependences at the programmer's
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Figure 5: Methods for making dependences explicit in large slices. On the left, arrows link consumers with

producers; on the right, colors show those relationships. We use a di�erent technique, depth-limited slicing, to

provide this information to the programmer on demand.

request. An unlimited slice includes all computations the slicing criterion depends on, anywhere in the

program. A depth limit of d curtails the graph traversal algorithm to pass through only d computations

(selectors (ifs) and weak updates are treated specially). A depth-0 slice a value's de�nition points by

including only the computation's operator. A depth-1 slice includes the operator and (the operators of)

its operands. The slices in �gure 5 have depth 1.

Figure 5 demonstrates two alternate techniques for explicitly showing all dependences in a slice:

drawing arrows and using colors. These techniques can be distracting, however, and usually provide

more information than desired.

4 Slicing with pointers and aggregate values

In order to e�ectively slice code containing pointer operations, our slicing algorithm uses a points-to

analysis [HEGV93, EGH93], which indicates the possible values for each location-valued construct in the

program.

Variable references and pointer dereferences are represented in the VDG by lookup nodes, which take

two arguments|a location and a store|and return the contents of the location in the store. Update

nodes take three arguments|a location, a store, and a value|and return a modi�ed store in which the

location has been set to the value. For ordinary variable references and assignments, the location is

a constant, and in the absence of arbitrary pointer manipulation, VDG construction and optimization

cancel out many update-lookup pairs, improving the graph's sparseness.

When the slicing traversal encounters a lookup node, its location argument is sliced in the usual way.

The slice does not include the lookup node's entire store argument, however, because not all operations

that contribute to the store are relevant to the lookup node's value. Instead, the store is treated as an

aggregate value, each component of which is individually included in (or excluded from) a slice. The slice

traversal proceeds from the store along all the locations that may be looked up|that is, along all of the

locations speci�ed by the points-to analysis for the lookup node's location argument.

We can think of slicing along a store value as occurring individually for each location l in the store.

Each update node encountered falls into one of three categories:

strong update of l: the update node's location argument always returns l. The slice traversal proceeds

to the update node's value and location inputs, but not to its store input.

weak update of l: the update node's location argument may return l. The slice traversal proceeds to

the update node's value and location inputs, and also proceeds along its store input, with respect

to l.

other: the update node's location argument never returns l. The slice traversal proceeds along the

update node's store input only.

The actual algorithm considers all locations simultaneously and takes advantage of pointer equality of

unknown pointers when possible. Figure 6 shows the result of slicing a program containing pointer

manipulations.

The slicing algorithm treats other aggregate values just like the store (see �gure 7 for an example).

Ignoring for the moment VDG nodes with multiple corresponding source texts, a scalar value edge is
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Figure 6: Slicing in the presence of pointer manipulation. Pointer xyn points to either x or y, and yzn points to y

or z. The �nal value pointed to by *xy3 is 1, 4, 6, 7, or 8, depending on the values of four of the calls to rand, the

pseudorandom number generator. The highlighting of int x, y, z indicates that the addresses of those variables

are manipulated.

traversed only once, and its inclusion in the slice implies inclusion of its producer (and its producer's

input values). When an aggregate value edge is traversed, the demanded components are noted, and

the traversal proceeds at the corresponding inputs of the aggregate-producing node. An edge may be

traversed a number of times equal to the number of components of the value on the edge. The algorithm

runs in time linear in the number of values computed by the program instead of the number of nodes in

its VDG. In the worst case, this could raise the cost of the slicing algorithm from linear to quadratic in

the size of the program, but in practice it only adds a small constant factor. The size of the representation

is not increased (beyond the storage requirements of the points-to analysis).

Figure 7: The �rst slot of foo's return value depends directly on the second slot of formal a, and the second slot

of the result value depends indirectly on the �rst slot of formal a and on formal b. Slices on x.slot1 and x.slot2

are shown, with constant folding turned o�. The traditional method includes parts of foo in a slice on x.slot1;

we omit it because there is no dependence on its body.
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Figure 8: An interprocedural slicer must account for calling context to produce precise slices. When slicing on

the one call to abs (as on the left) a naive interprocedural slicer would enter the procedure body, discover that

the formal parameter is demanded, and then add to the slice the actuals of all calls to abs. A more accurate slice

includes the actual parameter only for the call being sliced upon. On the other hand, a slice that starts inside the

function body (as on the right) includes both of the calls to the function, since either of those actual parameters

can a�ect the run-time value of an expression in the function body.

Figure 9: An accurate slice must be able to include di�erent actual parameters at di�erent call sites.

5 Interprocedural slicing

The basic slicing algorithm of section 2 handles interprocedural slicing by following, during the graph

traversal, dependence links from formal parameters to actual parameters and from call results to formal

return values. That algorithm constructs unnecessarily large slices, because it does not account for calling

context. Not all formal-to-actual links should be followed, as illustrated by �gure 8.

The obvious technique is to process each procedure body anew for each call, propagating the results

to just that call site [HDC88]. However, this method does not run in time proportional to the size of the

program, and recursion complicates guaranteeing its termination and correctness.

Our solution to this problem is patterned after Horwitz's [HRB90], but we produce �ner slices by

not including entire calls when only some actuals are demanded, by including only the relevant parts of

aggregate values, and by omitting entire procedure bodies where appropriate. Our algorithm also permits

di�erent call sites to include di�erent actual parameters, as shown in �gure 9. Before slicing, a summary

of the dependences of each procedure return on each formal parameter is computed. Slicing then proceeds

in two stages: one for procedures that may appear in the call chain when the slicing criterion value is

computed, and one for other procedures.

5.1 Summary dependence information

When a slice traversal encounters a procedure call, the slice must include appropriate parts of the proce-

dure body, and it must proceed at the demanded actual parameters of the call. The latter goal does not

require entering the procedure body, if a summary of dependences of procedure return values on formal

parameters (and thus of call results on actual parameters) has been computed ahead of time.

The summary indicates which formal parameters each return value depends on. Additionally, each

dependence is marked as direct or indirect. A direct dependence indicates that the formal is returned
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De�nitions:

summary(ret) = the formals of return node ret 's procedure on which ret depends

formals(v) = the formals of value v's enclosing procedure on which v depends

in(n) = the inputs of node n

out(n) = the outputs of node n

Data
ow equations for node n:

return node: summary(n) = formals(in(n))

formal node: formals(out(n)) = fng

call node:

let p = the called procedure

for each res 2 out(n)

let ret = the formal return in p corresponding to res

let f!a map from formals of p to actuals of n

formals(res) =

[

x2summary(ret)

formals(f!a(x))

otherwise: formals(out(n)) =

[

i2in(n)

formals(i)

Figure 10: Data
ow equations for computing summary dependences of returns on formal parameters, giving

summary(ret) for each return node ret . The equations used by our algorithm also address aggregate values,

multiple callees at a call site, free values of procedures, and nontrivial correspondences with the source program

due to optimization.

unchanged; an indirect dependence indicates that the formal may participate in computation to determine

the return value. When a return value depends directly on a formal, a slice that includes a corresponding

call result need not include any of the procedure body, because there is no dependence on the body.

Figure 7 gives an example of dependences on formals; �gures 7 and 9 show exclusion of procedure bodies

from a slice due to direct dependences.

We compute the formal dependence summary by �nding a �xed point solution for the set of forward


ow equations shown in �gure 10, which can be solved using an iterative worklist algorithm. For arbitrary

call graphs, this information cannot be computed in a single pass.

5.2 Slicing algorithm

After formal dependences have been computed, the interprocedural slicing algorithm proceeds in two

stages. The �rst stage addresses procedures that may be in the current call chain whenever a slicing

criterion value is computed at run-time. When formals are encountered, the graph traversal ascends to

the corresponding actuals at all call sites. When calls are encountered, the slice continues at the formals

indicated by the formal dependence analysis. The procedure bodies are not entered, but the demanded

results are noted on a worklist.

The second stage processes the worklist, slicing the bodies of functions whose return values can a�ect

the slicing criterion. Since the slice has already proceeded at the appropriate actual arguments, no more

work is needed when their formals are encountered. Procedure calls are skipped over and the demanded

return values added to the worklist, as before. This stage proceeds until the worklist is empty; each
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procedure backward-slice(slicing-criterion)

let ascending-worklist = slicing-criterion

let nonascending-worklist = fg

let slice = fg

for each node in ascending-worklist

if node is in slice

done

else add node to slice

if node is a formal

add all corresponding actuals to ascending-worklist

else if node is a call

add all associated returns to nonascending-worklist

add call actuals to ascending-worklist (according to summary dependence)

else add all dependent nodes to ascending-worklist

for each node in nonascending-worklist

if node is in slice

done

else add node to slice

if node is a formal

done

else if node is a call

add all associated returns to nonascending-worklist

add call actuals to nonascending-worklist (according to summary dependence)

else add all dependent nodes to nonascending-worklist

return slice

Figure 11: Pseudocode for the interprocedural backward slicing algorithm. For clarity, it ignores the subtleties of

depth limiting, direct summary dependences, source correspondences, aggregate values, and so forth.

procedure return value is processed at most once (by either stage).

Figure 11 gives pseudocode for the interprocedural slicing algorithm. The complexity of this algorithm

is linear in the number of values computed by the (unoptimized) program; the naive slicing algorithm

which does not account for calling context has the same complexity.

6 Executable slicing

Executable slicing transforms one or more programs into object code, either by eliminating parts of a

program or by combining multiple programs. When used for testing [LW87, KSF90, PC90, FSKG92],

parallelization [Wei83, BW88], or program decomposition [RY88, Bin93], the goal is a smaller, faster

program that computes the same slicing criterion values as the original program, but without computing

other, irrelevant results. When used for integration of compatible versions of a program [RY89, HPR89,

HR90, HRB90, Bin91, Bal93], an executable slice combines all the features of the various versions. A

closure slice, on the other hand, helps a programmer visualize dependences without regard to syntactic

constraints.

A single type of slice, consisting of VDG nodes and sources, can serve both closure and executable

slicing, and can produce smaller, faster object code than compilable slices (traditional executable slices).

For closure slicing, the slice directs highlighting of the program, and for executable slicing, code is
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Figure 12: Interprocedural slicing with pointers. Jiang's implementation [JZR91, x3.2.2] of Horwitz's algo-

rithm [HRB90] includes the entire program when slicing on a or sum; our slices are shown above.

generated directly from the slice.

A compiler that uses the VDG as its intermediate representation easily generates code from a slice,

because there is no real di�erence between a slice (a subset of a VDG) and a full VDG. Integrating the

slicer with a compiler obviates the need to write a separate front end. The slicer can take advantage of

the compiler's analyses and transformations, leading to signi�cantly better dependence information than

available from the raw program text (see section 7). Existing back end mechanisms can deal with dead

code, arity raising and lowering, procedure specialization, and so forth, and the slice provides the back

end precise liveness information.

Our executable slices preserve only program behavior related to the slicing criterion. Computations

in the original program that loop forever or raise an exception are not included in the slice unless

they contribute to the computation of the slicing criterion values. Therefore, the executable slice may

terminate or produce an answer even when the original program would not have. On the other hand, if

the executable slice fails to terminate or terminates exceptionally, then the original program would have

done the same. The same conditions apply to optimized programs in general.

6.1 Compilable slicing

The traditional approach to executable slicing has been to produce a compilable slice, which is a syn-

tactically correct program subset, then to compile it. Syntactic constraints complicate the construction

of compilable slices and force the inclusion of extraneous program components [Bin93]. For instance, an

compilable slice unnecessarily includes the entire program for �gures 3, 4, 5, 7, 9, 12, and 13 (left side).

Compilable slicing spends much e�ort determining which extra portions of the program (besides

the truly demanded computations) to include in order to make the resulting text syntactically and

semantically correct. If the slice contains a particular parameter in any call of a function, then every

call in the slice must include that parameter. If an expression's side e�ects force its inclusion in a slice,

then any containing expressions and statements must appear in the slice. If a value is named by a

particular variable at a statement in the slice, then the statement assigning the value to that variable

must be included in the slice. Including the proper control-
ow statements (such as goto) requires special

care [JZR91, BH92, Bal93, CF93, Agr94]. Only a limited class of optimizations can be handled [Tip94],

since optimized programs can be inexpressible in the original programming language. An optimizing

compiler cannot remove all of the extra constructs added by compilable slicing without knowledge of which

constructs are essential (part of the slice) and which are incidental (added for the sake of compilability)

and without extra analyses that may be more complicated than slicing itself.
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Figure 13: Slices on unoptimized code include all the text in these code fragments. On the left, an expression-

oriented slice of optimized code shows that the subtraction's value is the same as that of a. On the right, if analysis

can determine that the call to not true returns false, the slice can show the actual arguments to the multiplication.

(The right-hand screen dump was generated with constant folding disabled; with constant folding enabled, the user

is informed, \The value is 1000." A history mechanism can indicate how this fact was determined.)

7 Slicing optimized code

The quality of a slice depends directly on the accuracy of the dependences discovered in the program.

The original program, however, is a poor guide to the dependences inherent in its computation, since the

source code may contain false dependences, dead code, and nonoptimal computations. Slicing optimized

(analyzed and transformed) code eliminates these problems|but the results should be communicated to

the user in terms of the original program text.

Compiler analyses discover information about the program, from resolving possibly aliased pointers to

determining run-time values. Compiler transformations (such as constant folding, dead code elimination,

and elimination of partial redundancies) update the program structure to re
ect knowledge gleaned from

analyses. Analysis and transformation remove and simplify dependence relations, making them a better

approximation to the true dependences of the underlying computations, so slicing after optimization pro-

duces more precise and informative slices. Figure 13 demonstrates some advantages of slicing optimized

code.

Optimization also improves liveness information. When a slicing criterion includes dead code, our

implementation so indicates rather than showing the slice of that code with respect to the unoptimized

program.

Slicing optimized code is especially powerful in the presence of abstractions such as high-level con-

structs and object-oriented features. Such abstractions insulate the programmer from low-level details,

but manually tracing or verifying value 
ow through multiple layers of abstraction is tedious and error-

prone.

Finally, the hardware usually runs optimized code, so the programmer must understand its behavior.

The optimized code's behavior is consistent with that of the unoptimized version, though the optimized

code better models the program's underlying computation.

7.1 Correspondences between source and optimized program

The most e�ective medium for specifying slicing criteria and displaying slices is the original program,

which was used to specify the slicing criterion, with which the user may be familiar, and which contains

comments, formatting, and context. However, the program text does not correspond directly to the

optimized VDG.

We maintain, throughout the optimization process, a correspondence between the VDG and a source

code graph. The two graphs are initially isomorphic, but transformations modify them so that the

correspondence between their nodes becomes a many-to-many relation. A separate paper will describe

the engineering challenges of maintaining this correspondence and manipulating the resulting graphs.

Maintaining the correspondence also enables a history mechanism to explain which transformations

occurred and, therefore, why the slice may be di�erent (often more precise) than the user expected. It
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also permits slices to be displayed as if no transformations occurred, even if the VDG has been optimized,

when the naive view is desired.

Inclusion of a VDG node in a slice does not imply inclusion of all the corresponding sources. The

VDG slice in �gure 2 contains the constant zero, represented by a single VDG node, but when the slice is

displayed, only the �rst and third `0' tokens are highlighted. We modify our slicing algorithm to visit each

node at most once for each associated source text instead of visiting each node at most once. The slicing

algorithm traverses the VDG and the source graph in concert, starting at the VDG and source nodes

corresponding to each slicing criterion expression. This modi�cation increases the algorithm's complexity

from linear in the size of the VDG to linear in the size of the source code graph, which is approximately

the size of the original program.

8 Related work

Weiser introduced the concept of slicing [Wei79, Wei84] and showed its application to debugging [Wei82,

LW86, LW87] and parallelization [Wei83, BW88]. His slicing criteria consist of a statement and a set of

variables not necessarily referenced in the statement, and his slices are syntactically correct subsets of

the original program with the same termination behavior. Weiser treats slicing as a data
ow problem

and provides an O(ne log e) algorithm which includes every call site of a function if any call is included.

Ottenstein and Ottenstein's linear-time slicing algorithm based on graph reachability [OO84] demon-

strates the appropriateness of the program dependence graph (PDG) [FOW87, HPR88] for slicing. Slicing

criteria are slightly restricted: variables must appear in the speci�ed statement. Most subsequent research

builds upon this work.

Horwitz et al. [HRB88, HRB90, Bin91, Bin93] extend the PDG algorithm to account for calling con-

text. An interprocedural PDG (called the system dependence graph) summarizing transitive dependences

due to calls is constructed from an attribute grammar that models procedure-call structure and the subor-

dinate characteristic graphs of the grammar's nonterminals. Once the graph is constructed, slicing takes

linear time (but aliasing degrades the performance, and Binkley's analysis [Bin93] assumes the program

contains a constant number of global variables). Constructing a compilable slice requires specialization of

each procedure for each subset of parameters demanded by a call site, so the result is not a subset of the

original program. Livadas and Croll [LC92] build the system dependence graph incrementally, processing

each procedure as it is encountered in a traversal. When a function call is encountered, processing of

the current procedure is suspended and a partial solution is preserved; later re�nements of that solution

require reprocessing of callers. The algorithm processes contents of looping statements twice. Our inter-

procedural algorithm is similar, but constructs the summary by solving a set of data
ow equations and

uses direct dependences to skip over procedure bodies which do not contribute any dependences.

Hwang et al. [HDC88] slice interprocedurally in the presence of self-recursion by computing a series

of slices in which the recursion depth is limited: initially no recursive calls are followed, then one level,

and so forth. The �xed point solution is achieved when increasing the level results in no larger a slice.

The recursive and base cases of recursive procedures are assumed to be identi�able. Such slices are as

accurate as those based on the system dependence graph but cannot be computed as e�ciently [HRB90].

Jiang et al. [JZR91] handle pointers and arrays by means of an alias analysis [Wei80]. They introduce a

dummy variable for each level of dereference of each pointer variable and a dummy literal for each variable

whose address is taken. Modi�cations of the pointer count as modi�cations of these dummy variables,

and pointer uses count as dummy uses. Other authors do not address general pointer manipulation, but

Horwitz et al. [HRB90] give two techniques for dealing with aliasing introduced by call-by-reference func-

tion parameters. The �rst technique (also used by Livadas and Croll [LC92] to solve the same problem)

converts the program into an alias-free one by duplicating each procedure for every possible alias pattern

among its (by-reference) parameters and modifying formal parameters and call sites accordingly. This
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transformation increases the size of the program exponentially in the maximum number of parameters

passed to a procedure|but since a global variable is a parameter to each procedure that might use or

modify it, the blowup can be exponential in the size of the original program. The second technique of

Horwitz et al. gives a less precise slice but has a lower cost: if two variables can be aliased and a de�nition

of one can reach a use of the other, then a dependence is added between them. By contrast to these

techniques, we use a points-to analysis [HEGV93, EGH93] and add support for aggregates such as C's

struct and union types.

Ottenstein and Ottenstein [OO83, OO84] and Tip [Tip94] note that compiler transformations can be

of use to a slicer but give no details. Unlike their schemes, our optimizations are unconstrained by the

syntax of the original program.

Livadas and Croll [LC92] independently suggest slicing on a parse tree to improve statement-based

slicers. Unlike our implementation, their algorithm includes irrelevant operations (such as the assignment

to sum in �gure 7 of their paper), and they communicate the slice to the user in terms of whole statements.

Jackson and Rollins [JR94] note the drawbacks of using an entire PDG node as a slicing criterion: slicing

criteria should stand for particular values, not whole computations, and demand on part of a computation

does not imply demand on all its inputs. Their \chopping" technique, similar to the intersection of

forward and backward slices, is the only technique besides ours to permit non-variables (such as the

output stream) as slicing criteria; we also permit arbitrary expressions and arbitrary variable references,

like Weiser [Wei84].

For further references to the extensive slicing literature, see Tip's survey [Tip94].
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