Specification Coverage as a Measure of Test Suite Quality

Michael Harder

Benjamin Morse

Michael D. Ernst

MIT Lab for Computer Science
545 Technology Square
Cambridge, MA 02139 USA
{mharder,scruffy,mernst}@Ics.mit.edu
http://sdg.lcs.mit.edu/daikon/

Abstract

This paper introduces specification coverage, a measure of
test suite quality that indicates how much of a program’s be-
havior is exercised by a set of executions. Specification cov-
erage complements code-based coverage metrics and may be
better for certain tasks. Specification coverage is also com-
plementary to specification-based test suite generation: it
can be computed for any test suite and can be used without
a priori knowledge of the program’s specification.

This paper presents results from experiments that derive
relationships between test suite size, specification coverage,
code coverage (of various sorts), and bug detection. Rel-
atively small test suites achieve high levels of specification
coverage. Specification coverage is correlated with bug de-
tection (when controlling for test suite size and code cover-
age). Specification coverage is correlated with code coverage
(when controlling for test suite size). Finally, the paper dis-
cusses techniques for automatically producing specification-
coverage-complete test suites.

1. Introduction

This paper proposes a new notion of specification cover-
age that measures specifications induced from program ex-
ecutions. Previous work on specification based testing has
concentrated on using a specification to generate a test suite.
In contrast, we concentrate on using a specification to eval-
uate a test suite. In addition, we provide an experimental
evaluation of our technique.

We show that specification coverage is a practical measure
of test suite quality. It is possible for a test suite to have
near-perfect specification coverage. Even small test suites
can have good specification coverage.

We show that specification coverage is a valuable measure
of test suite quality. It is a good predictor of bug detection,
even when controlling for size and code coverage. As a con-
sequence, specification coverage can be used to improve the
quality of test suites with complete code coverage.

Permission to make digital or hard copies of all or part of this work for

Specification coverage can be leveraged for practical pro-
gramming tasks. A small test suite can be improved by
adding cases that improve its specification coverage. A large
test suite can be safely shrunk by removing tests that don’t
contribute to specification coverage.

Specification based testing has not seen widespread use,
due in part to lack of tool support. Previous techniques have
required a specification, which is rarely present in produc-
tion code. Our technique does not require a specification.
We assume a specification for the purpose of evaluating our
results in this paper, but practical uses do not need one.

Without a goal specification, it is not possible to mea-
sure the absolute coverage of a suite. It is possible, though,
to measure the relative difference in coverage between two
suites, by comparing the specifications generated by each
suite. We use the Daikon invariant detector to generate a
specification from a test suite.

Section 2 introduces the concept of specification cover-
age and explains the process of specification-based testing.
Section 3 outlines our technique for automatically generat-
ing a specification, so that specification-based testing can
be carried out on a program without a formal specification.
We then give a formal definition of specification coverage
as a metric. Section 4 contains experimental methodology
and overview, and Sections 5-7 describe the experimental
results. Section 8 discusses the results and implications of
these experiments. Section 9 discusses other work in this
area, and other notions of coverage proposed by other re-
searchers that are akin to our definition of specification cov-
erage. Section 10 describes ways in which our research can
be extended, and addresses the question of how to create
test suites that have the quality of specification coverage.

2. Specification-based testing

Program specifications are useful in many aspects of pro-
gram development, including design, coding, formal verifi-
cation, testing, optimization, and maintenance. Specifica-
tions serve these purposes largely by documenting program
behavior; this documentation is used by humans and, when
formalized, by other programs. Specifications abstract away
irrelevant details about program implementation while pre-
serving important properties about the behavior. In addi-

personal or classroom use is granted without fee provided that copies aretion to making those properties more apparent, this permits
not made or distributed for profit or commercial advantage and that copies reasoning about them by humans or machines.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Specifications play a valuable role in dynamic analyses
such as software testing [GG75b, ROT89, CRS96, OL99].
Whereas structural (implementation-based) testing exam-

ines the actual functionality and structure of the implemen-
tation, specification-based testing considers intended behav-
ior. Specification-based testing can complement structural
testing. For example, it can detect errors (such as missing
paths and omitted functionality) that may not be detected
by implementation-based testing. Specification-based test-
ing can be performed independently of the details of any par-
ticular implementation. The specification is at a higher level
than the code, so software engineers may notice problems
with requirements, design, or functionality that would oth-
erwise be detected much later or overlooked entirely. Speci-
fications can also be used as an oracle to check test results,
and can direct selection of test cases.

This paper proposes and evaluates specification coverage,
a metric of test suite quality that measures how much of a
program’s specification is exercised while executing a pro-
gram on the test suite. Coverage is used in two distinct but
related ways in testing: to evaluate test suites and to gener-
ate test suites. To date, specifications have been primarily
used for test suite generation, and users had to provide the
specifications. This paper shows how to use specifications
for evaluation, without the need to provide them a priori.

Any coverage criterion defines a set of events or condi-
tions. For example, for statement coverage, each event is
the execution of a particular line of code, and the complete
set includes all such events. A test suite covers the crite-
rion if execution of the suite causes all the events to occur
or all the conditions to become true. A test suite can be
evaluated by computing its coverage, which is the percent-
age of the conditions in the set that are satisfied. Any test
suite, no matter how it was constructed, can be evaluated
according to any criterion.

A test suite can be generated so as to cover a specific
criterion. The criterion may be formally stated and measur-
able, or it may be implicit and informal, in which case the
notion of coverage is meant to be evocative of the intuition
above: more coverage gives a greater likelihood of detect-
ing errors. If test suite generation is systematic, then it
guarantees coverage of the criterion, and there is no need to
evaluate the resulting test suite. Another common approach
is to repeatedly add tests to a suite and measure coverage
(perhaps choosing the tests to add according to the cover-
age results of the previous round) until the suite covers the
criterion.

To date, specification-based test generation has typically
not been evaluated, in part because the criterion is not oper-
ationalized and in part because tests are systematically gen-
erated. This lack of evaluability limits the applicability of
specifications to testing and other dynamic analyses. Just as
specification-based test suite generation complements other
generation strategies, specification-based test suite evalua-
tion can complement other evaluation strategies.

3. Automatically generating
specifications

Lack of specifications is a serious obstacle to specification-
based test suite evaluation. Very few programs are for-
mally specified, and often even assert statements and doc-
umentation are absent. Time pressures may prevent pro-
grammers from writing such documentation; few program-
mers enjoy the task of writing specifications or are even
trained to do so; specifications can be as large and diffi-

cult to write as the original program (85% as large, in one
evaluation of specification-based testing [CR99]); and rela-
tively small measurable benefits make writing specifications
cost-ineffective in many domains.

Our technique automatically generates and evaluates a
specification capable of being used to measure test suite
quality. This both lowers the cost of generating specifica-
tions and increases the utility of those specifications.

To generate the specification, we use the Daikon system
for dynamically detecting likely program invariants [ECGNO1,
Ern00]. An invariant is a property that is true at some point
or points in the program, such as a method precondition or
postcondition, an object invariant, or the condition of an
assert statement. A set of invariants is a lightweight, in-
complete, but useful form of specification.

Briefly, a dynamic invariant detector discovers likely in-
variants from program executions by running the program,
examining the values that it computes, and detecting pat-
terns and relationships among those values. The system
reports properties that hold over execution of an entire test
suite (which is provided by the user).

The potential invariants are generated by instantiating,
at each procedure entry and exit, each of a set of invariant
templates. The templates are filled in with each possible
subset of variables that are in scope at the program point,
plus certain expressions over those variables. Although there
are many potential invariants, testing is efficient because
most potential invariants are falsified quickly and need not
be tested thereafter.

The output of the invariant detector is improved by sup-
pressing invariants that are not statistically justified, that
involve variables that can be statically proved to be unre-
lated, or that satisfy certain other conditions [ECGNO00]. As
an example of a statistical test, x # y should not be reported
on the basis of just a few executions, but may be justified
if x and y are never equal over many executions. As an-
other example, every variable x takes on a maximum value
on any set of executions. The invariant x < 22 should not
be reported if x takes on the value 22 just once, but may
be reported if that maximal value is encountered repeatedly.
Each variety of invariant has an associated confidence (es-
sentially, a test against the null hypothesis that the invariant
does not hold); when this confidence exceeds a user-settable
parameter, the invariant may be reported.

As with other dynamic approaches such as testing and
profiling, the accuracy of the inferred invariants depends in
part on the quality and completeness of the test cases. When
a reported invariant is not universally true for all possible
executions, then it indicates a property of the program’s
context or environment or a deficiency of the test suite,
which can then be corrected. The Daikon invariant detec-
tor is language independent, and currently includes instru-
menters for the C [KR88], IOA [GL00], and Java [AGHO00]
languages. Daikon is available from http://sdg.lcs.mit.
edu/daikon/. While our our experiments rely on the Daikon
tool, the ideas generalize beyond any particular implemen-
tation of specification generation.

3.1 Comparing specifications

Given a coverage criterion (a set of conditions to satisfy),
a test suite’s coverage is a ratio between 0 and 1 — the frac-
tion of the conditions that are satisfied by execution of the
suite. This measurement requires that the set of conditions

be known in advance.

‘We measure specification coverage slightly differently, be-
cause our technique generates the coverage conditions (the
specification) as well as checking coverage; indeed, the ap-
proach could be called specification generation coverage. As
described in Section 3, each invariant (each part of the spec-
ification) is reported only if there is adequate statistical ev-
idence for it [ECGNO00]. Some conditions that hold over the
entire test suite are not reported if they are insufficiently
supported by the program’s executions. A single test case
may not guarantee coverage of any particular invariant, and
it is even possible for adding a test case to degrade the result.

Because our approach generates as well as checks speci-
fications, the set of invariants induced by a test suite may
not only omit invariants that appear in the goal set, but
may also contain extra (undesired) invariants that do not
appear in the goal set. Thus, a simple ratio of detected to
goal invariants is not an appropriate measure of specification
accuracy. We use the following formulas instead.

.. correct
precision = ———
reported
correct
recall =
goal
precision + recall
coverage = ——————

2

In these formulas, “goal” is the number of invariants in the
goal set, “reported” is the number of invariants induced by
the test suite, and “correct” is the number of reported in-
variants that are also in the goal set. Precision is a standard
measure of correctness, and recall is a standard measure of
completeness (recall corresponds to ordinary test suite cov-
erage). Specification coverage is the average of precision and
recall. Like other coverage measures, it is a value between 0
and 1 inclusive, is 0 for an empty test suite, and is 1 for an
ideal test suite.

A separate issue is the need for goal invariants to compare
against. Our technique works regardless of how the goal set
is selected — for instance, by hand, by static analysis, or by
dynamic analysis. While we use a specification derived from
a goal set of invariants to evaluate the techniques proposed
in this paper, users need not have a perfect specification, or
any at all, in order to apply the techniques in practice. (The
results of Section 5 suggest that users can easily produce a
nearly-perfect specification, with respect to the particular
set of invariants that the tools generate.)

For our purposes, a program’s “perfect” specification is all
the invariants in Daikon’s grammar that are true. The goal
invariants are exactly what the Daikon invariant detector
would output if it were given a good enough test suite for the
program. (In the extreme, the test suite containing all valid
inputs to the program would surely be good enough.) The
programs in our experimental evaluation have sufficiently
good test suites: we believe that adding additional tests
would not change the specifications appreciably and might
not change them at all. We use the specification produced
by Daikon on the full test suite as the goal specification.

4. Evaluation overview

This section outlines our experiments to evaluate speci-
fication coverage. We related four measures over each test
suite: size, code coverage, specification coverage, and bug

Independent | Dependent
Section variables variables Notes
85 size spec. cov.
stmt. cov.
bug detect.
86 size spec. cov.
spec. cov. stmt. cov.
stmt. cov. bug detect.
87 size bug detect. | suites with
Spec. cov. code coverage

Figure 1: Summary of experiments. For each row of the ta-
ble, the listed section reports how (all combinations of) the
independent variables affect the dependent variables. The
variables are size (test cases and function calls), statement
coverage, specification coverage, and bug detection. Sec-
tion 7 treats each of statement, edge, and def-use coverage
as a binary quantity.

detection. Figure 1 summarizes the experiments. The tar-
get programs and test suites are described in Section 4.2.

Section 5 measures how specification coverage, statement
coverage, and bug detection increase as test suite size in-
creases for random test suites. These measurements relate
specification coverage to other frequently measured quanti-
ties and permit comparing our programs and test suites to
those used in other research. Additionally, these measure-
ments indicate what test suite size ranges are sensible for
further measurements.

Section 6 measures how the same factors— specification
coverage, statement coverage, and bug detection —are af-
fected by changes in test suite size, specification coverage,
and statement coverage. We performed a multiple regres-
sion of all three predictors against each criterion variable.
This regression indicates how each predictor affected each
result, while holding all other factors constant; for exam-
ple, it avoids conflating the effect of size and coverage, even
though (as shown in Section 5) larger suites tend to have
more coverage. (There is no significant interaction effect
among the predictor variables at the p = .10 level.)

Section 7 measures similar effects as Section 6, using the
same multiple regression technique, but only considering
test suites with complete code coverage. Rather than mea-
suring coverage as a fraction of conditions satisfied, it only
considers whether a suite has complete coverage. Such mea-
surements are interesting because testers are frequently coun-
seled to achieve or attempt complete coverage; Section 7
reveals properties of such suites.

4.1 Measurement details

This section describes how each of the measurements —
test suite size, statement coverage, specification coverage,
and bug detection —was performed.

We have two versions of every program: the original ver-
sion and a slightly modified version (see Section 4.2.2) that
can be instrumented by the Daikon front end for C. The
instrumented version behaves identically to the uninstru-
mented version, except that it writes trace data to a file and
checks for memory errors (and runs slightly slower as a re-
sult). We measured statement coverage and bug detection
using the original program. We measured specification cov-
erage, number of calls executed, and lines of code using the

modified program.

Lines of Code. We measured the total lines of code in
the programs, after we modified them as described in Sec-
tion 4.2.2. We used the Unix wc command to count the
number of lines in the C source file and any non-system
header files it included.

To compute non-comment non-blank lines of code, we re-
moved all comments from the programs using a Perl script,
then removed all blank lines with the Unix grep command.
We used the Unix we command to count the number of lines
in the resulting files.

Test suite size. We measured test suite size in terms of
test cases and function calls. Our primary motivation for
measuring these quantities is to control for them to avoid
conflating them with other effects.

Each test case is an invocation of the program under test.
This measure of size is most readily apparent to the tester:
in our case, it is the number of lines in the script that runs
the suite.

The number of test cases is an incomplete measure of test
suite size, because a single case might execute only a few
machine instructions or might run for hours. Therefore, we
also measured the number of non-library function calls per-
formed during execution of the test suite. This is a more
accurate measure of how much the test suite exercises the
program, and it is an approximation of the runtime required
to execute the test suite. We measured the number of calls
by counting the number of function entry lines in Daikon’s
data trace file [Ern00].

Code coverage. We considered three different varieties of
code coverage: statement coverage, branch coverage, and
definition-use (def-use or du) coverage. The experiments of
Section 7 use suites generated so as to achieve 100% cov-
erage on each of the three criteria. (See Section 4.2 for an
explanation and a caveat.)

We also measured statement coverage for each suite us-
ing the GCC gcov tool. Unreachable code in the programs
prevents gcov from ever reporting 100% statement cover-
age. We normalized all statement coverage measurements
by dividing by the number of reachable statements, which
we computed by running gcov on a pool of tests designed
to cover all reachable statements (see Figure 2).

We did not measure branch or def-use coverage. (We could
not use gcov to measure branch coverage, because gcov cal-
culates branch coverage of the assembly code, not the source
code.)

Specification coverage. We measured specification cover-
age via the procedure of Section 3.1. The goal specification
is the set of invariants produced by Daikon using the entire
test pool. Figure 2 gives the sizes of these specifications.

Bug Detection. A test suite detects a fault (actually, de-
tects a faulty version of a program) if the output of the faulty
version differs from the output of the correct version, when
both are run over the test suite. The bug detection rate of
a test suite is the ratio of the number of faulty versions de-
tected to the number of faulty program versions. Section 4.2
describes how faulty versions were selected.

4.2 Subject programs

Our experiments analyze seven C programs that were cre-
ated by Siemens Research [HFGO94] and subsequently mod-

ified by Rothermel and Harrold [RH98]. The programs come
with test suites and faulty versions.

Each program is associated with a pool of tests. The
Siemens researchers generated tests automatically from test
specification scripts, then augmented those with manually-
constructed white-box tests such that each feasible state-
ment, branch, and def-use pair was covered by at least 30
test cases. Figure 2 shows the size of the test pools.

The Siemens researchers created faulty versions of the pro-
grams by introducing errors they considered realistic. Each
faulty version differs from the canonical version by 1 to 5
lines of code. They discarded faulty versions that were de-
tected by more than 350 or fewer than 3 test cases; they
considered the discarded faults too easy or too hard to de-
tect. (A test suite detects a fault if the outputs of the faulty
and correct versions differ.) Figure 2 indicates how many
faulty versions remained.

Some of our experiments use test suites randomly gen-
erated by selecting cases from the test pool. Other exper-
iments use statement, branch, and def-use coverage suites
generated by Rothermel and Harrold [RH98]. These suites
were generated by picking tests from the pool at random
and adding them to the suite if they added any coverage,
until all the coverage conditions were satisfied. There were
1000 test suites for each type of coverage.

4.2.1 Problems with the coverage suites

Not all of the statement coverage suites actually achieved
100% statement coverage as measured by gcov, even when
normalized by the universe. We verified this behavior by
adding abort statements at certain locations that were trig-
gered by some statement coverage suites but not by others.
When normalized by the universe, the mean statement cov-
erage of the statement coverage suites was greater than 99%
for each program. The minimum statement coverage by a
statement coverage suite was 90% (for a tcas test suite).
86% of the statement coverage suites actually had statement
coverage.

Additionally, we found array-overrun bugs in three of the
programs (print_tokens2, replace, and tcas). These er-
rors had not been noticed in previous research using the
programs. When the coverage test suites were originally
created, the erroneous programs had read or written an el-
ement beyond the bounds of an array without inducing a
fault. However, in our environment, the array bounds errors
caused the programs to crash. (Actually, they corrupted the
Daikon runtime’s data structures and triggered an assertion
failure, so we added runtime checks for such memory errors
to the Daikon runtime.) This program crash is legal be-
havior in C: accessing beyond the bounds of an array may
cause unspecified behavior, including the program continu-
ing without error, crashing, or changing the value of unre-
lated variables. As a result of the crashes, coverage may be
lower in our environment than that in which the tests were
generated. If a test case covered a condition only after an
array overrun when the test suites were generated, then the
condition would not be covered when the case is run in our
environment.

To determine the severity of this second problem, we as-
certained the branch coverage in our environment of the
“branch coverage” suites for each of the 3 programs. For
print_tokens2, 6 out of 1000 test suites failed to achieve
coverage. For replace, 900 of 1000 test suites failed to

Program size Faulty Test pool Description
Program Functions | LOC | NCNB | versions | cases [calls [stmt. cov. [spec. size | of program
print_tokens 18 703 452 7 4130 619424 931 97 lexical analyzer
print_tokens2 19 549 379 10 4115 723937 .980 173 lexical analyzer
replace 21 506 456 32 5542 | 1163810 953 252 pattern replacement
schedule 18 394 276 9 2650 | 442175 977 283 priority scheduler
schedule? 16 363 280 9 2710 954221 .968 161 priority scheduler
tcas 9 175 136 41 1608 12613 973 328 altitude separation
tot_info 7 556 334 23 1052 13208 .952 156 information measure

| Average [15 [464 [330 [19 [3115] 561341 [962 [207 | |

Figure 2: Subject programs used in experiments. “LOC” is the total lines of code; “NCNB” is the number of non-comment,
non-blank lines of code. Test suite size is measured in number of test cases (invocations of the subject program) and number of
non-library function calls at runtime. Statement coverage is percentage of total statements, including unreachable statements;
all subsequently reported statement coverage values are normalized by dividing by the numbers in this column. Specification
size is the number of invariants generated by the Daikon invariant detector when run over the program and the full test pool.

achieve coverage. For tcas, 73 of 1000 test suites failed
to achieve coverage.

Unfortunately, we did not have the tools or resources to
generate new suites that would provide coverage in our en-
vironment. Thus, we used the test suites provided to us,
with the knowledge that some of the claims made about the
suites cannot be relied upon.

4.2.2 Changes to the programs

This section lists the changes we made to the programs
we were provided.

The Daikon front end for C accepts as input the subset
of ANSI C that is also C++, and it produces C++ as out-
put. Since the Siemens programs are K&R C, we converted
them to ANSI C. First, we processed each program with
the GCC utility protoize. Then, we removed typedefs for
bool, which is a reserved word in C++, from the replace,
tcas, and tot_info programs. We also removed definitions
of NULL that conflicted with the C++ system include files,
and we renamed one variable that had the same name as a
type.

To work around a limitation of the Daikon front end for C,
we added forward declarations of each global variable at the
beginning of each program. The original programs declared
global variables at various points throughout each program.

We reintroduced faults into three “faulty” versions of re-
place that were provided to us in a corrected state. Those
faults had been corrected because previous research used
tools that could not process certain source code structures.

We fixed a typographical error in print_tokens2 where a
parameter variable to the procedure unget_error was mis-
takenly declared as the wrong type. The static typechecking
in C++4 would not allow us to compile until the error was
remedied.

We eliminated one faulty version (version 9 for schedule2)
that was not detected by its test pool; a hand analysis re-
vealed that the faulty version could never behave differently
than the original version.

The values we calculated for lines of code in Figure 2
do not agree with previously reported numbers [RH98]. We
were unable to reproduce those results, which were presented
without explanation of how they were computed.

5. Effect of test suite size

i O
o 06}
[=))
©
[
3
S 04 f
statment coverage
E statement coverage knee A
0.2 i specification coverage -
; specification coverage knee O
bug detection -
0 ‘ ‘ ‘ ‘ _bug detection knee O ‘
50 100 150 200 250 300 350 400 450 500
Suite size (cases)
i m
o 06 |
[=2]
o
[
3
S 04/
statment coverage
; statement coverage knee = A
0.2 specification coverage -
i specification coverage knee O
: bug detection -
0] ‘ ‘ ‘ bug detection knee O
0 20000 40000 60000 80000 100000 120000

Suite size (calls)
Figure 3: Effect of test suite size (measured in both test
cases and function calls) on statement coverage, specifica-
tion coverage, and bug detection of randomly-generated test
suites. These data are for the replace program, but plots
for the other programs had similar shapes.

cases knee calls knee
cases | value | calls | value
stmt. cov. 8 0.97 873 | 0.92
spec. cov. 11 0.85 1222 | 0.86
bug detection 60 0.74 | 10655 | 0.74

Figure 4: Table of knee locations, averaged across seven
programs. These numbers indicate where plots of statement
coverage, specification coverage, and bug detection against
time switch from one nearly-linear component to another;
they indicate average positions of the knees plotted for one
program in Figure 3. The first two columns show the x and
y coordinates (the number of cases and the height on the
graph) of the knee on the cases graph, and last two columns
show these values for the calls graph.

Our first investigation measured the specification cover-
age, statement coverage, and bug detection of randomly
generated test suites. This experiment verifies that specifi-
cation coverage is achievable and gives an idea of how large
specification coverage suites might be.

For each program, we generated a total of 1475 test suites
of case sizes 1-500 (with more suites of smaller sizes, where
coverage measurements change most rapidly), picked ran-
domly from the test pool. Larger test suites are not neces-
sarily supersets of the smaller suites. The suites had cases
sizes of 1-5, 10, 15, and 20 (100 suites each); 25, 50, and 75
(75 cases each); and each multiple of 50 from 100 to 500 (50
suites each).

Figure 3 plots average statement coverage, specification
coverage, and bug detection for each suite size, for the re-
place program from the Siemens suite.

In the plots for all seven programs, all measured values
rise sharply as suite size increases, then level off to a nearly
linear approach towards the asymptote. Figure 3 plots the
knee of each curve. We computed the knee by finding the
point that minimizes the summed mean square error of two
lines regressed to the sets of points to its left and right. The
knee is the intersection of the pair of lines that fit best.

Figure 4 gives the average positions of all the knees across
all programs. For these programs, statement coverage grows
quickest, reaching nearly complete coverage after an average
of only 8 tests. Specification coverage levels off only slightly
later, but at a lower coverage value. Bug detection takes the
longest to reach its knee, and even thereafter continues to
rise appreciably even as test suites are made very large.

These results differ from those of a previous paper, which
suggested that specification coverage would reach an asymp-
tote between 500 and 1000 test cases and that invariant sets
would contain thousands of elements [ECGNO1]. Our results
show that the knee occurs at a much smaller size of suite and
output. The differences are explained by a new implemen-
tation of dynamic invariant detection. The most significant
change is a collection of relevance improvements [ECGNQOQ]
that eliminate output that is not statistically justified, is im-
plied by other output, or relates incomparable values. For
example, the Daikon front end for C now uses the Lack-
wit static analysis tool [0J97] to determine which variables
should be compared to one another. One other change is
that (as of the time of these experiments) the Daikon front
end for C does not output fields of structs, so invariants
over them do not appear.

Finding the shape of the coverage curves is important for
multiple reasons. Firstly, for our benefit, it allows us to go
on with the rest of the experiments in this paper. Knowing
that specification coverage is achievable in general, and that
it increases with the size of a randomly generated test suite,
makes measurements of it valid. In addition, knowing that
there is a knee below which specification coverage has a wide
range gives us an idea of the domain of test suite sizes in
which to study changes in specification coverage.

Discovery of a sharp, evident knee in the specification
coverage curve indicates what size random test suite will
achieve good specification coverage. We can then iteratively
increase the size of a random test suite and look for the
knee. Knowledge of the relative positions of the specifica-
tion coverage, statement coverage, and bug detection knees
is quite useful —since the specification coverage knee ap-
pears at roughly the same size random test suite as the
statement coverage knee, one can iteratively add random
cases to a test suite until statement coverage is achieved,
and be assured of moderately good specification coverage.

Continuing to grow this test suite to 7.5 times its size when
it first reached specification coverage suggests that good bug
detection can be achieved, as 7.5 is the ratio of the location
of the bug detection knee to the statement coverage knee.

Knowing that the slope of the specification coverage curve
changes sharply after the knee suggests a better and more
reliable method for generating specifications: iteratively add
to a test suite until the changes in the invariants slow down
noticeably. At that point, the specification coverage knee
has been reached.

The height of the specification coverage knee demonstrates
a valuable property of specification coverage. Though the
inflection point is reached early, similarly to statement cov-
erage, there’s still room for improvement. Incremental im-
provements in specification coverage can still be attained,
even when statement coverage has reached its maximum.

6. Correlation between specification
coverage and bug detection

Software testers want their test suites to detect as many
bugs as possible. Since it is impossible to directly predict
how many bugs a suite will detect, other measures are used
to predict bug detection, such as code coverage. This experi-
ment shows that specification coverage is as good a predictor
of bug detection as code coverage. Holding all other factors
constant, test suites with more specification coverage detect
more bugs.

We analyzed 1000 test suites for each of the seven pro-
grams. The suite sizes, in cases, were uniformly distributed
between 1 and the number of cases at the bug detection knee
(Section 5). The cases in each suite were chosen at random.

For each test suite, we calculated its size, statement cov-
erage, specification coverage, and bug detection, as previ-
ously described. Then, we performed three multiple regres-
sions for each program. The first regression uses size and
statement coverage as the independent variables, and uses
specification coverage as the dependent variable. The sec-
ond regression uses size and specification coverage as the
independent variables, and uses statement coverage as the
dependent variable. The third regression uses size, state-
ment coverage, and specification coverage as the indepen-
dent variables, and bug detection as the dependent variable.

Independent Dependent variable
variable spec. cov. | stmt. cov. | bug detect.
cases .00200 .00038 .00309
calls .00007 —.00002 .00027
calls-adjusted .00057 —.00004 .00531
spec. cov. - 444 .340
stmt. cov. 1.057 - 378

Figure 5: Multiple regression coefficients, averaged across
seven programs. The coefficients can be compared across a
row, but not down a column. The parameters for cases and
calls adjusted can be compared, as can the parameters for
specification coverage and statement coverage. Each column
presents the results from a separate multiple regression.

Independent Dependent variable
variable spec. cov. | stmt. cov. | bug detect.
cases .285 .037 .250
calls .068 —.005 .337
spec. cov. - 741 .130
stmt. cov. .593 - .167

Figure 6: Standardized multiple regression coefficients, av-
eraged across seven programs. Standardized coefficients are
the coefficients that would be produced if the data analyzed
were in standard score form. “Standard score” form means
that the variables have been standardized so that each has
a mean of zero and a standard deviation of 1. Thus, stan-
dardized coefficients reflect the relative importance of the
predictor variables. Each column presents the results from
a separate multiple regression.

The results are presented in Figure 5 and Figure 6.

The coefficients indicate the direction and magnitude of
correlation between the independent and dependent vari-
ables. For example, when specification coverage is used to
predict bug detection, the coefficient is .340. This means
that if specification coverage is increased by 1 percent, and
all other predictors are held constant, bug detection in-
creases by .340 percent.

The coefficient for “calls-adjusted” has been multiplied
by the average number of calls per case before performing
the regression. This makes the coefficients for cases and
calls-adjusted comparable. The coefficient for calls adjusted
indicates how much the dependent variable will change if
you add a test case with an average number of calls for
that program. It indicates whether more of the benefit from
such a test case comes from the case itself or from the calls
performed by the case. (For coverage, most of the benefit
comes from the case, but for bug detection, two thirds of
the benefit comes from the calls.)

The coefficients can be compared across a row, but in gen-
eral cannot be compared down a column. The coefficients
for cases and calls adjusted are comparable, as are the co-
efficients for specification coverage and statement coverage.
However, the coefficients cannot be compared any other way.
For example, the coefficients for cases and specification cov-
erage cannot be compared.

We analyzed the results by examining each dependent
variable separately.

Specification Coverage. Statement coverage has a large
effect on specification coverage. If a statement in the pro-

statement | branch def-use
Program cases | calls | cases | calls | cases | calls
print_tokens | 15.1 |6369| 16.2 | 6546 | 38.4 | 17856
print_tokens2| 11.8 |2661| 11.9 | 2686 | 34.9 | 8905
replace 17.9 | 4088 | 18.7 | 4340 | 64.4 | 23528
schedule 5.9 | 751| 8.3 |1100| 23.9 | 3294
schedule2 7.1|1989| 7.9|2215|25.8 | 6758
tcas 5.1 48| 5.8 50| 5.6 48
tot_info 6.8 | 109 7.2| 115]|15.0 235
Average 10.0 | 2288 10.9 | 2436 | 29.7 | 8661

Figure 7: Average number of cases and calls in the coverage
suites.

gram is never executed, there is no way to see its effect on
the specification. Cases and calls have small positive effects
on statement coverage.

Statement Coverage. Specification coverage has a sub-
stantial effect on statement coverage. If a specification is
covered well, every statement that contributes to the speci-
fication must be covered. Number of cases has a small effect
on statement coverage, and number of calls has almost no
effect.

Bug Detection. Specification coverage and statement cov-
erage have approximately the same effect on bug detection.
Holding all other predictors constant, an increase in state-
ment coverage has about the same effect as an identical in-
crease in specification coverage. Cases and calls both have
a positive effect on bug detection.

There are two important conclusions to draw from this
experiment. First, specification coverage is a good predictor
of bug detection. Test suites with more specification cover-
age detect bugs better. Second, specification coverage is as
good a predictor of bug detection as statement coverage.

7. The effect of 100% code coverage

A final experiment further demonstrates the value of spec-
ification coverage as a test suite quality metric that is inde-
pendent of the code coverage metric.

For each program, we analyzed 1000 suites with state-
ment coverage, 1000 suites with branch coverage, and 1000
suites with def-use coverage. Section 4.2 describes these test
suites. Figure 7 presents the average number of cases in the
test suites. The statement and branch coverage suites have
about the same number of cases, while the def-use coverage
suites are three times as large.

We calculated the size, specification coverage, and bug
detection rate of each test suite. For each type of coverage
and each program, we performed a multiple regression, with
size and specification coverage as the independent variables
and bug detection as the dependent variable. We performed
21 multiple regressions in total (7 programs x 3 coverage
criteria). Figure 8 summarizes the results.

The coefficient describes the relationship between specifi-
cation coverage and bug detection. For example, the coeffi-
cient of .48 for statement coverage suites suggests that if the
specification coverage of a suite were increased by 1 percent,
and all other factors held constant, the bug detection rate
would increase by approximately .48 percent.

The mean specification coverage and bug detection indi-
cate how much improvement is possible, since their maxi-
mum values are 1.

Coverage |Spec. cov.| Mean Mean | Number of
type coefficient |spec. cov.|bug detect | programs
statement 483 877 .396 5
branch .308 .866 461 6
def-use .507 .950 763 2

Figure 8: Multiple regression coefficient for specification
coverage, when regressed against bug detection. The co-
efficient for size was not statistically significant for any of
the programs, and has been omitted from the table. The
coefficient for specification coverage was only statistically
significant for some of the programs—the last column con-
tains this number. Each value was averaged across all pro-
grams for which the specification coverage coefficient was
statistically significant.

These results show that, for test suites with branch or
statement coverage, increasing specification coverage does
increase bug detection. However, for suites with def-use
coverage, bug detection is often independent of specifica-
tion coverage. This might be because specification coverage
is already near perfect.

Further, these results show that specification coverage is
complimentary to code coverage for detecting bugs. Even
when statement or branch coverage is 100%, increasing spec-
ification coverage may increase the bug detection of a test
suite.

8. Discussion

8.1 Specification-free specification coverage

One unusual aspect of our specification-coverage technique
is that it does not require the program’s specification to be
known a priori. Rather, it generates the specification from
the test suite. In other words, this is a black-box cover-
age technique, insofar as it is not assumed that a speci-
fication already exists. Other coverage techniques require
that the coverage criteria— typically, the structure whose
parts should all be touched —be available, because other-
wise there is no way to know that the criteria have been
satisfied. A specification is a valuable end in itself, because
it can be used as documentation and for a variety of software
engineering tasks. Thus, generation of the specification is an
extra benefit of our coverage technique.

Another difference from other coverage notions is that test
cases do not individually guarantee that an invariant is re-
ported; rather, several cases may be required, and adding
cases may even reduce the size of the generated specifica-
tion. (Also see Section 10.1.) This can be seen as a positive
or a negative trait: properties are not reported based on
a single sample, but only after multiple samples have built
confidence. As a result, specification coverage cannot be di-
rectly used for test suite minimization, though the resulting
specification could be used just like any other specification
in structural specification-based test suite evaluation. Spec-
ification coverage also might be disproportionately worse for
smaller test suites.

8.2 Threats to validity

While the results we have presented are suggestive and
promising, they might not generalize to other programs or
test suites. This section discusses some characteristics of our

experiments that might limit the applicability of the results.

The subject programs are quite small, and larger pro-
grams might have different characteristics. However, these
programs were used in previous testing research, permitting
comparison of our results with previous ones. The main rea-
son to choose them is their suite of tests and faulty versions.
We did not have access to other programs with human-
generated tests and faulty versions, and we suspect that
the Siemens programs differ from large programs less than
machine-generated tests and faults differ from real ones.

Our results examine test suites of modest sizes, up to the
knee of the bug detection curve. Very small or very large
test suites probably have different characteristics. However,
almost any augmentation of a small test suite is an improve-
ment, and few augmentations of large test suites have a large
effect. We tried to examine sizes where we can have an im-
pact and where real-world test suites may lie.

The test suites were designed with code coverage in mind,
and the test cases and faults may have been as well. This
may mean that this suite is worse for specification coverage,
and better for code coverage, than typical test suites. The
filtering of faults based on bug detection has an undeter-
mined effect. The small number of faults for certain pro-
grams made it hard to correlate bug detection with other
measures. The combination of few statements —sometimes
only 100 —and high coverage similarly quantized statement
coverage.

As noted in Section 4.2, the coverage suites do not always
cover the code.

The current set of invariants produced by the Daikon in-
variant detection tool may be too simplistic. A realistic
specification might include more complicated invariants, and
specification coverage might be lower (or higher) for such a
set.

Despite these potential problems, we believe that the re-
sults should be of general applicability in other situations.
We intend to evaluate our tools on other programs, test
suites, and faulty versions.

9. Related work

This work builds on research in specification-based test-
ing. For the most part, that research has focused on gener-
ation, not evaluation, of test suites.

Goodenough and Gerhart [GG75b, GG75a] suggest par-
titioning the input domain into equivalence classes and se-
lecting test data from each class. Specification-based test-
ing was formalized by Richardson et al. [ROT89], who ex-
tended implementation-based test generation techniques to
formal specification languages. They derive test cases (each
of which is a precondition—postcondition pair) from specifi-
cations. The test cases can then be used as test adequacy
metrics.

Offut et al. generate tests from constraints that describe
path conditions and erroneous state [Off91] and from SOFL
specifications [OL99]. Other researchers have extended work
on generating test cases from specifications [DF93, Don97,
Meu98].

The research most closely related to ours evaluates test
suites based on programmer-supplied specifications. Chang
and Richardson [CR99] convert specifications written in ADL
[HS94] into a series of checks in the code called coverage
condition functions [CRS96]. Once the specification is con-
verted into code, code coverage techniques can be applied

directly: they run the test suite and count how many of the
checks are covered.

9.1 Related coverage criteria

Several researchers have proposed notions of coverage that
are similar to our definition of specification coverage.

Burton [Bur99] uses the term “specification coverage” to
refer to coverage of statements in a specification by an ex-
ecution; this concept was introduced, but not named, by
Chang and Richardson [CR99].

Hoffman et al. [HSW99, HS00] present techniques for gen-
erating test suites that include tests with (combinations of)
extremal values; these suites are said to have boundary value
coverage, a variety of data coverage. Ernst [Ern00] uses the
term value coverage to refer to covering all of a variable’s
values (including boundary values). Hamlet’s probable cor-
rectness theory [Ham87] calls for uniformly sampling the
possible values of all values.

Chang and Richardson’s operator coverage [CR99] con-
cerns the creation of mutant (faulty) versions of programs, in
order to assess test suite comprehensiveness. Operator cov-
erage is achieved if every operator in the program is changed
in some mutant version.

10. Future work

This research was performed on programs with a spec-
ification (generated from a universe of all possible tests).
In a production environment, a universe test suite is rarely
available, so calculating specification coverage by compar-
ing the set of invariants produced with a small test suite to
an ideal set of invariants may not be possible. However, we
have outlined methods by which someone could iteratively
generate a test suite. This technique requires experimental
evaluation.

We were unable to relate specification coverage to branch
coverage, as the gcov tool did not measure the sense of
branch coverage that we were interested in. Using a dif-
ferent tool, the branch coverage of the suites we used could
be calculated, and then related to specification coverage ac-
cordingly.

We also did not measure which specific bugs were detected
by each individual suite. It is possible that increasing speci-
fication coverage helps to detect a different set of bugs than
are detected by increasing statement coverage.

We have demonstrated that both statement coverage and
specification coverage have roughly the same correlation to
bug detection, but to provide a deeper analysis, it would be
interesting to assess how much work it is to the programmer
to increase specification coverage, relative to the work it
takes to achieve a similar gain in statement coverage. The
last few percent of statement coverage are the hardest to
achieve; is specification coverage similar?

10.1 Creating specification-covering suites

The utility of specification coverage for testing and the
value of simply having an accurate specification make pro-
ducing specification-covering suits attractive. They cannot
be constructed in the same way as code-covering suites for
two reasons. First, each test case either satisfies or does not
satisfy each code coverage criterion; with specification cov-
erage, many cases may add confidence to an invariant, but
no one case may alone justify the invariant. Second, adding
a case to a test suite can reduce coverage, for instance by

justifying an undesirable invariant.

We have begun preliminary investigations into creating
specification-covering suites. We have solved the first prob-
lem by making justification vary continuously from 0 to 1
and scoring test suites based on partial satisfaction of a spec-
ification coverage criterion. (An alternative solution would
be to add cases several at a time.) This change made it
possible to create specification-covering suites for all seven
programs. However, these suites are very large, averaging
478 cases. We are investigating further improvements to our
technique and whether large suites are always necessary for
our implementation of specification coverage.

Acknowledgments

We are grateful for the assistance of Gregg Rothermel, who
generously provided us the Siemens programs and his test
suites for them, re-measured branch coverage at our request,
and answered questions. We also thank the other members
of the Daikon project, notably Jeremy Nimmer, for their as-
sistance with our research and tools. Steve Wolfman made
helpful comments on a draft of this paper, and Vibha Saza-
wal provided statistical consulting. This research was sup-
ported by NTT, Raytheon, an NSF ITR grant, and a gift
from Edison Design Group.

References

[AGHO00] Ken Arnold, James Gosling, and David Holmes.
The Java Programming Language. Addison Wesley,
Boston, MA, third edition, 2000.

[Bur99] Simon Burton. Towards automated unit testing
of statechart implementations. Technical report, Depart-
ment of Computer Science, University of York, UK, 1999.

[CR99] Juei Chang and Debra J. Richardson. Structural
specification-based testing: Automated support and ex-
perimental evaluation. In ESEC/FSE, pages 285-302,
September 6-10, 1999.

[CRS96] Juei Chang, Debra J. Richardson, and Sriram
Sankar. Structural specification-based testing with ADL.
In ISSTA, pages 62-70, 1996.

[DF93] J. Dick and A. Faivre. Automating the generating
and sequencing of test cases from model-based specifica-
tions. In Formal Methods Europe, pages 268-284, 1993.

[Don97] Michael R. Donat. Automating formal specifi-
cation-based testing. In TAPSOFT ’97, pages 833-847.
Springer-Verlag, April 1997.

[ECGNO00] Michael D. Ernst, Adam Czeisler, William G.
Griswold, and David Notkin. Quickly detecting relevant
program invariants. In ICSE, pages 449-458, June 2000.

[ECGNO1] Michael D. Ernst, Jake Cockrell, William G.
Griswold, and David Notkin. Dynamically discovering
likely program invariants to support program evolution.
IEEE TSE, 27(2):1-25, February 2001. A previous ver-
sion appeared in ICSE, pages 213-224, Los Angeles, CA,
USA, May 1999.

[Ern00] Michael D. Ernst. Dynamically discovering likely
program invariants. PhD thesis, University of Washington
Department of Computer Science and Engineering, Seat-
tle, Washington, August 2000.

[GGT75a] John B. Goodenough and Susan L. Gerhart. Cor-
rection to “Toward a theory of test data selection”. IEEE
Transactions on Software Engineering, 1(4):425, Decem-
ber 1975.

[GG75b] John B. Goodenough and Susan L. Gerhart. To-
ward a theory of test data selection. IEEE Transactions
on Software Engineering, 1(2):156-173, June 1975.

[GLOO] Stephen J. Garland and Nancy A. Lynch. Using
I/O automata for developing distributed systems. In
Gary T. Leavens and Murali Sitaraman, editors, Founda-
tions of Component-Based Systems, pages 285-312. Cam-
bridge University Press, 2000.

[Ham87] Richard G. Hamlet. Probable correctness the-
ory. Information Processing Letters, 25(1):17-25, April 20,
1987.

[HFGO94] Monica Hutchins, Herb Foster, Tarak Goradia,
and Thomas Ostrand. Experiments on the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In
ICSE, pages 191-200, May 1994.

[HS94] Roger Hayes and Sriram Sankar. Specifying and test-
ing software components using ADL. Technical Report
TR-94-23, Sun Microsystems Research, Palo Alto, CA,
USA, April 1994.

[HS00] Daniel Hoffman and Paul Strooper. Tools and tech-
niques for Java API testing. In Proceedings of the 2000
Australian Software Engineering Conference, pages 235—
245, 2000.

[HSW99] Daniel Hoffman, Paul Strooper, and Lee White.
Boundary values and automated component testing. Soft-
ware Testing, Verification, and Reliability, 9(1):3-26,
March 1999.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice-Hall, Englewood Cliffs,
New Jersey, second edition, 1988.

[Meu98] Christophe Meudec. Automatic Generation of Soft-
ware Test Cases From Formal Specifications. PhD thesis,
Queen’s University of Belfast, 1998.

[Off91] A. Jefferson Offutt. An integrated automatic test
data generation system. Journal of Systems Integration,
1(3):391-409, November 1991.

[0J97] Robert O’Callahan and Daniel Jackson. Lackwit: A
program understanding tool based on type inference. In
ICSE, pages 338-348, May 1997.

[OL99] A. Jefferson Offutt and Shaoying Liu. Generating
test data from SOFL specifications. The Journal of Sys-
tems and Software, 49(1):49-62, December 1999.

[RHI98] Gregg Rothermel and Mary Jean Harrold. Empirical
studies of a safe regression test selection technique. IEEFE
TSE, 24(6):401-419, June 1998.

[ROT89] Debra J. Richardson, Owen O’Malley, and Cindy
Tittle. Approaches to specification-based testing. In
Richard A. Kemmerer, editor, Proceedings of the ACM
SIGSOFT 89 Third Symposium on Testing, Analysis, and
Verification (TAV3), pages 86-96, December 1989.

10

