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Abstract
A multi-mode software system contains several distinct modes of
operation and a controller for deciding when to switch between
modes. Even when developers rigorously test a multi-mode sys-
tem before deployment, they cannot foresee and test for every pos-
sible usage scenario. As a result, unexpected situations in which
the program fails or underperforms (for example, by choosing a
non-optimal mode) may arise. This research aims to mitigate such
problems by creating a new mode selector that examines the cur-
rent situation, then chooses a mode that has been successful in the
past, in situations like the current one. The technique, called pro-
gram steering, creates a new mode selector via machine learning
from good behavior in testing or in successful operation. Such a
strategy, which generalizes the knowledge that a programmer has
built into the system, may select an appropriate mode even when
the original controller cannot. We have performed experiments
on robot control programs written in a month-long programming
competition. Augmenting these programs via our program steering
technique had a substantial positive effect on their performance in
new environments.

Categories & Subject Descriptors: D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.4 [Software Engineering]:
Software/Program Verification
General Terms: performance, design, reliability, experimentation
Keywords: program steering, mode selection, multi-mode sys-
tems, adaptability

1. INTRODUCTION
Software failures often result from the use of software in unex-

pected or untested situations, in which it does not behave as in-
tended or desired [18]. Software cannot be tested in every situation
in which it might be used. Even if exhaustive testing were possi-
ble, it is impossible to foresee every situation to test. This research
takes a step toward enabling software systems to react appropriately
to unanticipated circumstances.

Our research focuses on multi-mode software systems. A multi-
mode system contains multiple distinct behaviors or input–output
relationships, and the program operates in different modes depend-
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ing on characteristics of its environment or its own operation. For
example, web servers switch between handling interrupts and polling
to avoid thrashing when load is high. Network routers trade off la-
tency and throughput to maintain service, depending on queue sta-
tus, load, and traffic patterns. Real-time graphical simulations and
video games select which model of an object to render: detailed
models when the object is close to the point of view, and coarser
models for distant objects. Software-controlled radios, such as cell
phones, optimize power dissipation and signal quality, depending
on factors such as signal strength, interference, and the number of
paths induced by reflections. Compilers select which optimizations
to perform based on the estimated run-time costs and benefits of
the transformation.

In each of these examples, a programmer first decided upon a
set of possible behaviors or modalities, then wrote code that selects
among modalities. The mechanism for selecting modes is fixed
when the program is coded. We hypothesize that, for the most part,
programmers effectively and accurately select modalities for situa-
tions that they anticipate. However, the selection mechanism may
perform poorly in unforeseen circumstances. In an unexpected en-
vironment, the built-in rules for selecting a modality may be inad-
equate. No appropriate test may have been coded, even if one of
the existing behaviors is appropriate (or is best among the avail-
able choices). For instance, a robot control program may examine
the environment, determine whether the robot is in a building, on
a road, or on open terrain, and select an appropriate navigation al-
gorithm. But which algorithm is most appropriate when the robot
is on a street that is under construction or in a damaged building?
The designer may not have considered such scenarios. As another
example of applicability, if a software system relies on only a few
sources of information, then a single sensor failure may destabilize
the system, even if correlated information is available. Alternately,
correlations assumed by the domain expert may not always hold.

We aim to provide flexible and automatic ways to select among
modalities. Our approach, called program steering, is to first train
the system, correlating modes with program inputs and internal
state, and then to use the resulting models to select modes at run
time. We select an operating mode by comparing the system’s cur-
rent behavior to the system’s observed behavior in representative
runs for each of the modes, and by steering the system to the most
similar mode. The effect is to extend the programmer’s built-in
knowledge to analogous situations and improve upon sub-optimal
or overspecialized built-in decisions.

This paper is organized as follows. Section 2 gives a simple,
concrete example of the program steering process. Section 3 de-
scribes program steering in detail, including policies for the parts
of a program steering tool. Section 4 presents our experimental
methodology and results. The paper concludes with related work
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Current Program State Standard Mode Power Saver Mode Sleep Mode
brightness: 8 brightness > 0 brightness > 0 brightness = 0

brightness ≤ 10 brightness ≤ 4
battery : 0.1 battery > 0.2 battery > 0.0 battery > 0.0

battery ≤ 1.0 battery ≤ 0.2 battery ≤ 1.0
DCPower : true DCPower = false
Score 75% 60% 66%

Current Program State Standard Mode Power Saver Mode Sleep Mode
brightness: 8 brightness > 0 brightness > 0 brightness = 0

brightness ≤ 10 brightness ≤ 4
battery : 0.1 battery > 0.2 battery > 0.0 battery > 0.0

battery ≤ 1.0 battery ≤ 0.2 battery ≤ 1.0
DCPower : false DCPower = false
Score 75% 80% 66%

Figure 1: Similarity scores for the three possible modes of the laptop display program, given two different input program states. Properties
in boldface are true in the current program state and contribute to the similarity score.

(Section 5), future work (Section 6), and a summary of contribu-
tions (Section 7).

2. EXAMPLE
This section presents a simple example of program steering. Pro-

gram steering starts from a multi-mode program. We illustrate
the four steps in applying program steering — training, modeling,
creating a mode selector, and integrating it with the original pro-
gram — and show how the augmented program performs.

As an example of a multi-mode system, we use a hypotheti-
cal laptop display controller that contains three modes: standard
mode, power saver mode, and sleep mode. Suppose that three
data sources are available to the controller program: battery charge
(which ranges from 0 to 1 inclusive), availability of DC power (true
or false), and brightness of the display (which ranges from 0 to 10
inclusive). The original mode selection code need not necessarily
make use of all (or any) of these variables.

The first step collects training data by running the program and
observing its operation in a variety of scenarios. Suppose that the
training runs are selected from among successful runs of test cases;
the test harness ensures that the system is performing as desired, so
these are good runs to generalize from.

The second step generalizes from the training runs, producing a
model of the operation of each mode. Suppose that the model is
an operational abstraction (see Section 4.1.2), a set of mathemati-
cal statements about program variables that was satisfied by all the
observed executions. The resulting models might be:

Standard Mode Power Saver Mode Sleep Mode
brightness > 0 brightness > 0 brightness = 0
brightness ≤ 10 brightness ≤ 4
battery > 0.2 battery > 0.0 battery > 0.0
battery ≤ 1.0 battery ≤ 0.2 battery ≤ 1.0

DCPower = false

The third step builds a mode selector from the models, which
characterize the program when it is operating as desired. At run
time, the mode selector examines the current state of the program
and its environment and determines which model most closely matches
current conditions. One simple metric is the percentage of proper-
ties in the model that currently hold. Figure 1 illustrates the use
of this metric in two situations. When the brightness is 8, the bat-
tery charge is 0.1, and DC power is available, the mode selector
chooses standard mode. In a similar situation when DC power is
not available, the mode selector chooses power saver mode.

The fourth step is to integrate the mode selector into the target
system. As two examples, the new mode selector might replace the
old one (possibly after being inspected by a human), or it might be
invoked when the old one throws an error or selects a default mode.

After the target system has been given a controller with the ca-
pability to invoke the new mode selector, the system can be used
just as before. Hopefully, the new controller performs better than
the old one, particularly in circumstances that were not anticipated
by the designer of the old one.

In this example, thebattery andDCPower variables are inputs,
while brightness is an internal or output variable. Our technique
utilizes both types of variables. Examining the inputs indicates
how the original controller handled such a situation, and the in-
ternal/output variables indicate whether the mode is operating as
expected. For example, if the laptop were to become damaged so
that brightness could never be turned above 4, then there is more
reason to prefer Power Saver Mode to Standard Mode.

3. PROGRAM STEERING
Program steering is a technique for helping a software controller

select the most appropriate modality for a software system in a
novel situation, even when the software was not written with that
situation in mind. Our approach is to develop models based on
representative runs of the original program and use the models to
create a mode selector that assigns program states to modes. We
then augment the original program with a new controller that uti-
lizes the mode selector.

Figure 2 diagrams the four-stage program steering process:

1. Collect training runs of the original program in which the
program behaved as desired.

2. Use dynamic program analysis or machine learning to build a
model that captures properties of each mode during the train-
ing runs.

3. Build a mode selector that takes as input a program state and
chooses a mode based on similarity to the models.

4. Augment the original program with a new controller that uti-
lizes the new mode selector.

This section describes, in turn, policies for each of the steps of
the program steering process. It concludes by exploring several
potential applications and discussing limits to the applicability of
program steering.
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Figure 2: The program steering process consists of four steps: ex-
ecuting the original program to produce training data; generalizing
from the executions to a model for each mode; creating a new mode
selector based on the models; and augmenting the program’s con-
troller to utilize the new mode selector.

3.1 Training
The modeling step generalizes from the training data, and the

mode selector bases its decisions on the models. Therefore, bet-
ter training runs yield better overall performance. If the training
runs exercise bugs in the original program, then the resulting mod-
els will faithfully capture the erroneous behavior. Therefore, the
training runs should exhibit correct behavior. High quality perfor-
mance over the test suite aids the construction of good models, so
we believe it is at least as important as code coverage.

The user might supply canonical inputs that represent the sit-
uations for which that mode was designed, tested, or optimized.
Alternately, the training runs can be collected from executions of a
test suite; passing the tests indicates proper behavior, by definition.

Sometimes a test suite or specification is not available, particu-
larly for non-functional requirements. (For example, module-level
specifications may guarantee that each part of a system performs in
a particular way, but not that the overall system achieves its goals.)
In this case, the program can be run and its performance observed.
This process can be performed manually by a domain expert, or it
can be automated if there is an objective function for evaluating the
quality of a run. There is a danger in evaluating end-to-end system
performance: even though the overall system may have performed
well on a particular run, certain mode behaviors and transitions may
have been sub-optimal. (The reverse situation may also occur.) Al-
ternately, the mode transitions may have been perfect, but because
of bad luck the overall performance failed to meet the acceptance
threshold.

3.1.1 Counterexamples
The training runs can also include counterexamples, or instances

where specific modes were inappropriate. This information may
help at runtime to indicate when the program has made (or is about
to make) a poor mode selection. Additionally, many machine learn-
ers require, or perform better when supplied with, counterexam-
ples. However, depending on the target system, useful counterex-
amples may be difficult to produce. If a programmer or tester thinks
of a counterexample, the code is likely to be updated to correct
the oversight; counterexamples by definition come from unforeseen
circumstances. And as noted above, good (respectively, bad) over-
all system performance does not indicate that every mode choice

was good (respectively, bad).
When counterexamples are used, they can be incorporated into

the model, or additional models can be created from bad executions
of a mode. In the latter case, the additional models describe the pro-
gram’s environment and behavior when the program is operating in
one mode, but should be operating in another one.

3.2 Modeling
The modeling step is performed independently on each mode.

Training data is grouped according to what mode the system was in
at the moment the data was collected, and a separate model is built
from each group of training data. The result is one model per mode.
Use of multiple models is not a requirement of our technique — we
could use a single complicated model that indicates properties of
each mode — but creating smaller and simpler models plays to the
strengths of machine learners.

Each model represents the behavior of the target system in a par-
ticular mode; it abstracts away from details of the specific runs to
indicate properties that hold in general. More specialized models
could indicate properties not just of a mode, but of a mode when it
is switched into from a specific other mode.

The program steering technique does not dictate how models
should be represented. Any representation is permitted so long as
the models permit evaluation of run-time program states to indicate
whether the state satisfies the model, or (preferably) how nearly the
state satisfies the model.

The modeling step may be sound or approximate. A sound gen-
eralization reports properties that were true of all observed execu-
tions. (The soundness is with respect to the learner’s input data,
not with respect to possible future executions.) An approximate, or
statistical, generalization additionally reports properties that were
usually true, were true of most observed executions, or were nearly
true. For example, a statistical generalization may be able to deal
with noisy observations or occasional anomalies. A model may
also indicate the incidence or characteristics of deviations from its
typical case. These techniques can help in handling base cases,
special cases, exceptions, or errors.

3.3 Mode selection
The mode selector compares the current program state and envi-

ronment (inputs) to each model. It selects the mode whose model
is most similar to the current state. The mode selector does not
explicitly prepare for unanticipated situations, but it can operate in
any situation to determine the most appropriate mode. Program
steering works because it generalizes the knowledge built into the
program by the programmer, possibly eliminating programmer as-
sumptions or noting unrecognized relationships.

Some machine learners have an evaluation function, such as in-
dicating how far a particular execution is from a line (in the model)
that divides good from bad runs. Another approach is to execute
the modeling step at run time (if sufficiently fast) and compare the
run-time model directly to the pre-existing per-mode models. Other
machine learners produce an easily decomposable model. For in-
stance, if the abstraction for a particular mode is a list of logical
formulas, then these can be evaluated, and the similarity score for
the model can be the percentage that are true.

A decomposable model permits assigning different weights to
different parts. As an example, the properties could be weighted
depending on how often they were true during the training runs. As
another example, some properties may be more important than oth-
ers: a non-null constraint may be crucial to avoid a dereferencing
error; a stronger property (such asx = y) may be more significant
than one it subsumes (such asx ≥ y); weakening a property may
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be more important as an indicator of change than strengthening one.
Weights could even be assigned by a second machine learning step.
The first step provides a list of candidate properties, and the sec-
ond uses genetic algorithms or other machine learning techniques
to adjust the weights. Such a step could also find relationships be-
tween properties: perhaps when two properties are simultaneously
present, they are particularly important.

The new mode selector is likely to differ from the original mode
selector in two key ways; one is a way in which the original mode
selector is richer, and the other is a way in which the new mode
selector is richer. First, the original mode selector was written by
a human expert. Humans may use domain knowledge and abstrac-
tions that are not available to a general-purpose machine learner,
and the original mode selector may also express properties that are
beyond the grammar of the model. A machine learner can only
express certain properties, and this set is called the learner’sbias.
A bias is positive in that it limits false positives and irrelevant out-
put, increases understandability, and enables efficient processing.
A bias is negative in that it inevitably omits certain properties. Our
concern is with whether a model enables effective mode selection,
not with what the bias isper seor whether the model would be
effective for other tasks.

Second, the new mode selector may be richer than the original
mode selector. For example, a programmer typically tests a lim-
ited number of quantities, in order to keep the code short and com-
prehensible. By contrast, the training runs can collect information
about arbitrarily many measurable quantities in the target program,
and the automated modeling step can sift through these to find the
ones that are most relevant. As a result, the mode selector may test
variables that the programmer overlooked but that impact the mode
selection decision. Even if the modeling step accesses only the
quantities that the programmer tested, it may note correlations that
the programmer did not, or strengthen tests that the programmer
wrote in too general a fashion [12].

3.4 Controller augmentation
The new mode selector must be integrated into the program by

replacing or modifying the original controller. The controller de-
cides when to invoke the mode selector and how to apply its rec-
ommendations. Some programs intersperse the controller and the
mode selector, but they are conceptually distinct.

One policy for the controller would be to continuously poll the
new mode selector, immediately switching modes when recom-
mended. Such a policy is not necessarily appropriate. As noted
above, the original mode selector and the new mode selector each
have certain advantages. Whereas the new mode selector may cap-
ture implicit properties of the old one, the new one is unlikely to
capture every aspect of the old one’s behavior. Furthermore, we
expect that in anticipated situations the old mode selector probably
performs well.

Another policy is to leave the old controller intact but substitute
the new mode selector for the old mode selector. Mode changes
only occur when the controller has decided that the current mode
had completed or was sub-optimal.

A third policy is to retain the old mode selector and override
it in specific situations. For example, the new mode selector can
be invoked when the original program throws an exception, vio-
lates a requirement or assertion, deadlocks, or times out (spends
too much time attempting to perform some task or waiting for some
event), and also when the old mode selector chooses a passive de-
fault mode, has low confidence in its choice, or is unable to make
a decision. Alternately, anomaly detection, which aims to indicate
when an unexpected event has occurred (but typically does not pro-

vide a recommended course of action), can indicate when to use the
mode selector. The models themselves provide a kind of anomaly
detection.

Finally, a software engineer can use the new mode selector in
verifying or fine-tuning the original system, even if the new mode
selector is never deployed to customers or otherwise used in prac-
tice. For example, the programmer can examine situations in which
the two mode selectors disagree (particularly if the new mode se-
lector outperforms the old one) and find ways to augment the orig-
inal by hand. Disagreements between the mode selectors may also
indicate an inadequate test suite, which causes overfitting in the
modeling step.

3.5 Sample applications
Section 1 noted several domains to which program steering might

be applied. This section describes three application areas — routers,
wireless communications, and graphics — in more detail. Our ex-
periments (Section 4) evaluate another domain: controllers for au-
tonomous robots in a combat simulation.

Routers. A router in an ad hoc wireless network may have
modes that deal with the failure of a neighboring node (by rebuild-
ing its routing table), that respond to congestion (by dropping pack-
ets), that conserve power (by reducing signal strength), or that re-
spond to a denial-of-service attack (by triggering packet filters in
neighboring routers). It can be difficult for a programmer to deter-
mine all situations in which each of these adaptations is appropri-
ate [2], or even to know how to detect when these situations occur
(e.g., when there is an imminent denial-of-service attack). Use of
load and traffic patterns, queue lengths, and similar properties may
help to refine the system’s mode selector.

Wireless communications.Software-controlled radios, such as
cell phones, optimize power dissipation and signal quality by chang-
ing signal strength or selecting encoding algorithms based on the
bit error rate, the amount of interference, the number of multihop
paths induced by reflections, etc. Modern radio software can have
40 or more different modes [6], so machine assistance in select-
ing among these modes will be crucial. Additionally, a radio must
choose from a host of audio compression algorithms. For instance,
some vocoders work best in noiseless environments or for voices
with low pitch; others lock onto a single voice, so they are poor for
conference calls, music, and the like. A software radio may be able
to match observations of its current state against reference obser-
vations made under known operating conditions to detect when it
is operating in a new environment (e.g., a room containing heavy
electrical machinery), being subject to a malicious attack (e.g., jam-
ming), or encountering a program bug (e.g., caused by a supposedly
benign software upgrade).

Graphics. Real-time graphical simulations and video games
must decide whether to render a more detailed but computation-
ally intensive model or a coarser, cheaper model; whether to omit
certain steps such as texture mapping; and which algorithms to use
for rendering and other tasks, such as when to recurse and when to
switch levels of detail. Presently (at least in high-end video games),
these decisions are made statically: the model and other factors are
a simple function of the object’s distance from the viewer, multi-
plied by the processor load. Although the system contains many
complex parameters, typically users are given only a single knob to
turn between the extremes of fast, coarse detail and slow, fine detail.
Program steering might provide finer-grained, but more automatic,
control over algorithm performance — for instance, by correlating
the speed of the (relatively slow) rendering algorithm with metrics
more sophisticated than the number of triangles and the texture.
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3.6 Applicability of the approach
As noted above, the program steering technique is applicable

only to multi-mode software systems, not to all programs, and it
selects among existing modes rather than creating new ones. Here
we note two additional limitations to the technique’s applicabil-
ity — one regarding the type of modes and the other regarding cor-
rectness of the new mode selector. These limitations help indicate
when program steering may be appropriate.

The first limitation is that the steering should effect discrete rather
than continuous adaptation. Our techniques are best at differentiat-
ing among distinct behaviors, and selecting among them based on
the differences. For a system whose output or other behavior varies
continuously with its input (as is the case for many analog sys-
tems), approaches based on techniques such as control theory will
likely perform better, particularly since continuous systems tend to
be much easier to analyze, model, and predict than discrete ones.

The second limitation is that the change to the mode selector
should not affect correctness: it may not violate requirements of
the system or cause erroneous behavior. We note three ways to
satisfy this constraint. First, if the system is supplied with a spec-
ification or with invariants that must be maintained (for instance,
a particular algorithm is valid only if a certain parameter is posi-
tive), then the controller can check those properties at runtime and
reject inappropriate suggestions. If most computation occurs in the
modes themselves, such problems may be relatively rare. Second,
some modes differ only in their performance (power, time, mem-
ory), such as selecting whether to cache or to recompute values, or
selecting what sorting algorithm to use. Third, exact answers are
not always critical, such as selecting what model of an object to ren-
der in a graphics system, or selecting an audio compression algo-
rithm. Put another way, the steering can be treated like a hint — as
in profile-directed optimization, which is similar to our technique
but operates at a lower level of abstraction.

4. DROID WARS EXPERIMENTS
In order to evaluate program steering, we applied it to robot con-

trol programs built as part of a month-long Droid Wars competition
known as MIT 6.370. The competition was run during MIT’s Jan-
uary 2003 Independent Activities Period; 27 teams — about 80 un-
dergraduate and graduate students — competed for $1400 in prizes
and bragging rights until the next year.1

Droid Wars is a real-time strategy game in which teams of vir-
tual robots compete to build a base at a specified goal location on
a game map. The team that first builds a base at the location wins;
failing that, the winner is the team with a base closer to the goal lo-
cation when time runs out. Each team consists of four varieties of
robot; all robots have the same abilities, but to differing degrees, so
different robot types are best suited for communication, scouting,
sentry duty, or transport. Robot abilities include sensing nearby
terrain and robots, sending and receiving radio messages, carry-
ing and unloading raw materials and other robots, attacking other
robots, repairing damage, constructing new robots, traveling, and
rebooting in order to load a different control program. The robots

1A separate paper [13] describes another experiment, which used
solutions to a research assignment in MIT’s Embodied Artificial
Intelligence graduate class. The assignment objective was to pro-
gram simulated fish that could self-organize into a school without
any communication and while avoiding rocks. Program steering,
when applied to the best programs, produced controllers that did
just as well. When applied to low-performing programs (such pro-
grams had no high-level modes), the results of program steering
also performed equally to the original programs, for the modeling
step had been unable to make good generalizations.

Program Total lines NCNB lines Modes Properties
Team04 920 658 9 56
Team10 2055 1275 5 225
Team17 1130 846 11 11
Team20 1876 1255 11 26
Team26 2402 1850 8 14

Figure 3: Statistics about the Droid Wars subject programs. The
Total lines column gives the number of lines of code in the origi-
nal program. The NCNB Lines column gives the number of non-
comment, non-blank lines. The Modes column gives the number of
distinct modes for robots in that team. The Properties column gives
the average number of properties considered by our mode selector
for each mode.

are simulated by a game driver that permits teams of robots to com-
pete with one another in a virtual world.

The robot hardware is fixed, but players supply the software that
controls the robots. The programs were written in a subset of Java
that lacks threads, native methods, and certain other features. Un-
like some other real-time strategy games, human intervention is not
permitted during play: the robots are controlled entirely by the soft-
ware written by the contestants. Furthermore, there is no single
omniscient control program: each robot’s control program knows
only what it can sense about the world or learn from other robots
on its team.

Many participants wrote software with different modes to deal
with different robot types, tasks, and terrain. For instance, a par-
ticular robot might have different modes for searching for raw ma-
terials, collecting raw materials, scouting for enemies, attacking
enemies, relaying messages, and other activities. The organizers
encouraged participants to use the reboot feature (which was also
invoked at the beginning of the game and whenever a robot was
created) to switch from one control program to another. Another
strategy was to write a single large program with different classes
or methods that handled different situations. Some of the programs
had no clearly identifiable modes, or always used the same code
but behaved differently depending on values of local variables.

We augmented the programs of teams 04, 10, 17, 20, and 26
with program steering. Figure 3 gives some details about these
programs. These teams place 7th, 20th, 14th, 22nd, and 1st, re-
spectively, among the 27 teams in a round-robin tournament using
the actual contest map and conditions. We chose these teams ar-
bitrarily among those for which we could identify modes in their
source code, which made both training a new mode selector and
applying it possible.

4.1 Applying program steering
As described in Section 3, applying program steering to the robot

control programs consisted of four steps: training, modeling, cre-
ating a mode selector, and augmenting the controller. Some (one-
time) manual work was required for the training and controller aug-
mentation steps, primarily for refactoring the original programs to
isolate the modes and the mode selector.

4.1.1 Training
Mode selection requires a multi-mode program, and our imple-

mentation of program steering further requires that each mode tran-
sition is represented by calling a distinct method. (Not every method
necessarily represents a mode, however.) We read the programs
to identify the modes. Sometimes this required simply noting the
names of the methods that represented mode shifts. In other cases,
modes were embedded in other code, so we refactored the code
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(without affecting its functionality) in order to make mode tran-
sitions into method calls. A different implementation of program
steering would not have required this refactoring step. We hypoth-
esize that mode identification, and refactoring if necessary, would
have been relatively easy for the original authors of the code. It was
harder for us, but still no more than a few hours of work. The lack
of documentation and the possibility of subtle interactions (each
robot ran in its own virtual machine, so global variables were very
frequently used) forced us to take special care not to affect behav-
ior.

For each program, we collected training data by running approx-
imately 30 matches against a variety of opponents. Training was
performed only once, in the original environment; training did not
take account of any of the environmental changes of Section 4.2,
which were used to evaluate the new mode selectors. We did not
attempt to achieve complete code coverage (nor did we measure
code coverage), but we did ensure that each mode was exercised.

We retained only the runs from matches in which the team ap-
peared to perform properly, according to a human observer. The
purpose of this was to train on good executions of the program; we
did not wish to capture poor behavior or bugs, though it is possible
that some non-optimal choices were made, or some bugs exposed,
during those runs. The human observer did not examine every ac-
tion in detail, but simply watched the match in progress, which
takes well under 5 minutes. An alternative would have been to
train on matches that the team won, or matches where it did better
than expected. Another good alternative is to train on a test suite,
where the program presumably operates as desired; however, none
of the robot programs came with a test suite.

4.1.2 Modeling
In our experiments, the modeling step is carried out completely

automatically, and independently for each mode, producing one
model per mode.

Our current implementation uses the Daikon invariant detector
(http://pag.csail.mit.edu/daikon ) for the modeling (ma-
chine learning) step. The resulting models areoperational abstrac-
tions, which are sets of program properties expressed as logical for-
mulae, each associated with a method call that represents a mode
transition. (Section 2 gives some very simple examples.) An op-
erational abstraction is syntactically identical to a formal specifi-
cation, in that both contain preconditions, postconditions, and ob-
ject invariants; however, an operational abstraction is automatically
generated and characterizes the actual (observed) behavior of the
system. The models included properties over both environmental
inputs and internal state variables, described in Section 2.

Operational abstractions are produced by a process called dy-
namic invariant detection [9]. Briefly, it is a generate-and-check
approach that postulates all properties in a given grammar (the
properties are specified by the invariant detection tool, and the vari-
ables are quantities available at a program point, such as parame-
ters, global variables, and results of method calls), checks each one
over some program executions, and reports all those that were never
falsified. As for any dynamic analysis, the quality of the results de-
pends in part on how well the test suite characterizes the execution
environment. The results soundly characterize the observed runs,
but are not necessarily sound with respect to future executions.

The program steering technique does not depend on use of oper-
ational abstractions or dynamic invariant detection. Program steer-
ing can utilize any method of extracting properties from training
input and any representation of the resulting properties, so long as
a distance metric exists either between the models and a program
state, or among the models themselves. We have had good suc-

int selectMode() {
int bestMode = 0;
double bestModeScore = 0;

// Compute score for mode 1
int mode1Match = 0;
int mode1Total = 4;
if (brightness > 0) mode1Match++;
if (brightness <= 10) mode1Match++;
if (battery > 0.2) mode1Match++;
if (battery <= 1.0) mode1Match++;
double mode1Score =

(double) mode1Match / mode1Total;
if (mode1Score > bestModeScore) {

bestModeScore = mode1Score;
bestMode = 1;

}

// Compute score for other modes
...

// Return the mode with the highest score
return bestMode;

}

Figure 4: Automatically generated mode selector for the laptop dis-
play controller of Section 2. The given section of the mode selector
evaluates the appropriateness of the display’s Standard Mode.

cess with dynamic invariant detection, but it would be worthwhile
to compare the results when using other modeling strategies. Do
all machine learners perform equally well? Are there certain char-
acteristics of dynamic invariant detection that make it particularly
attractive (or not) for program steering?

We made one small program modification before running the
modeling step. A few quantities that were frequently accessed by
the robot control programs were available only through a sequence
of several method calls. This placed them outside the so-called in-
strumentation scope of our tools: they would not have been among
the quantities generalized over by the Daikon tool. Therefore, we
placed these quantities — the number of allies nearby, the amount
of ore carried, and whether the robot was at the base — in variables
to make them accessible to the tools.

4.1.3 Mode selection
Given operational abstractions produced by the modeling step,

our tools automatically created a mode selector that indicates which
of the mode-specific operational abstractions is most similar to the
current situation.

Our tools implement a simple policy for selecting a mode: each
property in each mode’s operational abstraction is evaluated, and
the mode with the largest percentage of satisfied properties is se-
lected. This strategy is illustrated in Figure 1.

Figure 4 shows code for a mode selector that implements our pol-
icy of choosing the mode with the highest percentage of matching
properties.

4.1.4 Controller augmentation
Finally, we inserted the automatically-generated mode selector

in the original program. Determining the appropriate places to in-
sert the selector required some manual effort akin to the refactoring
noted in Section 4.1.1. We did not replace the old mode selector by
our new one, but augmented it with the new one. The new mode
selector was invoked when the program threw an uncaught excep-
tion (which would ordinarily cause a crash and possibly a reboot),
when the program got caught in a loop (that is, when a timeout

211



occurred while waiting for an event, or when the program executed
the same actions repeatedly without effect), and additionally at mo-
ments chosen at random (if the same mode was chosen, execution
was not interrupted, which is a better approach than forcing the
mode to be exited and then re-entered). Identifying these locations
and inserting the proper calls required human effort.

4.2 Environmental changes
We wished to ascertain whether program steering improved the

adaptability of the robot control programs. In particular, we wished
to determine whether robot controllers augmented with our pro-
gram steering mechanism outperformed the original mode selec-
tors, when the robots were exposed to different conditions than
those for which they had been originally designed and tested. (Pro-
gram steering did not affect behavior in the original environment;
the augmented robots performed just as well as the unaugmented
ones.)

We considered the following six environmental changes, listed
in order from least to most disruptive (causing difficulties for more
teams):

1. New maps. The original tournament was run on a single
map that was not provided to participants ahead of time, but
was generated by a program that is part of the original Droid
Wars implementation. We ran that program to create new
maps (that obeyed all contest rules) and ran matches on those
maps. This change simulates a battle at a different location
than where the armies were trained. We augmented all the
environmental changes listed below with this one, to improve
our evaluation: running on the single competition map would
have resulted in near-deterministic outcomes for many of the
teams.

2. Increased resources. The amount of raw material (which
can be used to repair damage and to build new robots) is
tripled. This environmental change simulates a battle that
moves from known terrain into a new territory with different
characteristics.

3. Radio jamming. Each robot in radio range of a given trans-
mission had only a 50% chance of correctly receiving the
message. Other messages were not received, and all deliv-
ered messages contained no errors. (Most of the programs
simply ignored corrupted messages.) This environmental change
simulates reduction of radio connectivity due to jamming, in-
tervening terrain, solar flare activity, or other causes.

4. Radio spoofing. Periodically, the enemy performs a replay
attack, and so at an arbitrary moment a robot receives a du-
plicate of a message sent by its team, either earlier in that
battle or in a different battle. This environmental change
simulates an enemy attack on communications infrastructure.
The spoofing reduces in likelihood as the match progresses,
simulating discovery of the spoofing attack or a change of
encryption keys.

5. Deceptive GPS. Occasionally, a robot trying to calculate its
own position or navigate to another location receives inac-
curate data. This environmental change simulates unreliable
GPS data due to harsh conditions or enemy interference.

6. Hardware failures. On average once every 1000 time units,
the robot suffers a CPU error and the reboot mechanism is in-
voked, without loss of internal state stored in data structures
(which we assume to be held in non-volatile memory). All
robots already support rebooting because it is needed during
initialization and is often used for switching among modes.
A match lasts at most 5000 time units, if neither team has
achieved the objective (but most matches end in less than

half that time). In a single time unit, a robot can perform
computation and move, and can additionally attack, repair
damage, mine resources, load, unload, reboot, or perform
other activities. This environmental change simulates an ad-
verse environment, whether because of overheating, cosmic
rays, unusually heavy wear and tear, enemy action, or any
other circumstance that might make the hardware less reli-
able.

4.3 Evaluation
We evaluated each new program by running a tournament with

the original programs (in the new environment), then running a new
tournament in which we replaced the original program by the aug-
mented version (the other tournament participants were identical).
We compared the rank of the original program with the rank of the
augmented program in their respective tournaments.

We always compare the ranks of the unmodified and modified
robots in a tournament run in the same environment. The rank of
the unmodified robot (that is, without the program steering aug-
mentation) in the new environment is not necessarily the same as
that of the robot in the original environment, because different robots
are affected in different ways by environmental changes. If the
original mode selector’s choices are not appropriate for the new
environment (or the original controller itself fails), then creation of
a new mode selector may be able to improve the situation. If the
modes themselves are not appropriate for the new environment (for
instance, their algorithms no longer achieve their goals), then no
amount of improvement to the mode selector can restore the sys-
tem to good performance.

The Droid Wars competition used a double-elimination tourna-
ment. Our evaluation uses a round-robin tournament. This requires
additional time to run the much larger number of matches, but it
permits more accurate ranking. In particular, we played each team
against each other team approximately 10 times, and determined
which team won the most games. (We played multiple matches per
pair of teams because each match used a randomly-generated map,
as described in Section 4.2.) We used the summary results (one per
pair of teams) to rank all the teams; we ranked teams according to
the number of other teams that the team defeated.

Figure 5 shows the results of each set of tournaments, giving the
original rank of each team and the rank after the program steering
upgrades.

The positive results reported in the Change column of Figure 5
might be attributed to two different sources. They might be a result
of a high-quality mode selector constructed by our technique, or
they might be a result of a high-quality controller, which chooses to
use the new mode selector in exactly the right situations. If the lat-
ter explanation is true, then just getting the robot program unstuck
or out of a bad mode might be the major benefit, and the mode se-
lector’s choice would be of secondary importance. To investigate
this hypothesis, we evaluated another variant of the target programs
that was identical to the upgraded versions, except that instead of
using our mode selector, we used a random mode selector. As in-
dicated in the Change and Rand columns of Figure 5, our mode
selector substantially outperformed the random mode selector.

4.4 Discussion
Overall, program steering aided Team26 least. There were two

reasons for this. First, Team26 already performs very well (it placed
first in the actual tournament), so there is less opportunity for im-
provement. It also uses a very simple control program that leaves
little room for modification or enhancement. Team26’s robots do
not rely on centralized knowledge or decision-making. The robots
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New Maps
Program Original Upgraded Change Rand
Team04 7 7 0 −2
Team10 20 20 0 0
Team17 14 14 0 −3
Team20 23 18 +5 −3
Team26 2 2 0 −1

Increased Resources
Program Original Upgraded Change Rand
Team04 13 10 +3 0
Team10 17 16 +1 +1
Team17 18 16 +2 0
Team20 16 11 +5 −4
Team26 2 3 −1 −1

Radio Jamming
Program Original Upgraded Change Rand
Team04 12 7 +5 + 2
Team10 22 19 +3 + 3
Team17 16 12 +4 − 1
Team20 18 11 +7 0
Team26 6 6 0 −10

Radio Spoofing
Program Original Upgraded Change Rand
Team04 19 12 +7 +7
Team10 23 23 0 −1
Team17 11 9 +2 0
Team20 16 10 +6 0
Team26 26 26 0 −1

Deceptive GPS
Program Original Upgraded Change Rand
Team04 12 9 + 3 −5
Team10 23 8 +15 +5
Team17 20 9 +11 0
Team20 22 7 +15 +1
Team26 16 13 + 3 −4

Hardware Failures
Program Original Upgraded Change Rand
Team04 11 5 + 6 +2
Team10 20 16 + 4 −1
Team17 15 9 + 6 −5
Team20 21 6 +15 −2
Team26 17 13 + 4 −5

Overall Averages
Program Original Upgraded Change Rand
Team04 12.3 8.3 +4.0 +0.7
Team10 20.8 17.0 +3.8 +1.2
Team17 15.7 11.5 +4.2 −1.5
Team20 19.3 10.5 +8.8 −1.3
Team26 11.5 10.5 +1.0 −3.7

Figure 5: Difference in performance between the original programs
and versions upgraded with program steering. The Original column
gives the tournament rank of the original team (smaller is better),
and the Upgraded column gives the rank (in a separate tournament)
of the team when upgraded with program steering. The Change
column shows the improvement in ranking (the difference between
the Original and Upgraded columns). The Rand column gives the
change in ranking (from the Original column) when using the new
controllers with a random mode selector.

initially sweep across the entire map to forage for raw materials
and replicate. Then, the robots self-organize by meeting at a des-
ignated location at a hard-coded time; when enough have arrived,
they mass to attack. No communication is required, because a de-
fault location is hard-coded into the robot’s program. However, if a
robot discovers a more strategic meeting point (such as the location
of the enemy base or an important enemy convoy), then it notifies
the base, which relays the message to the rest of the team.

Team04, Team10, and Team20 use a different architecture. They
implement centralized intelligence: the base collects information,
decides strategy, and issues instructions to the other robots. The
non-base robot control programs are relatively simple, because they
are designed primarily to follow the base’s directives. They are
sometimes unable to react appropriately if an unexpected situation
arises while the robot is out of contact with the base. Program
steering has essentially distilled simple autonomous programs for
them, automatically producing a version consistent with the base’s
control program.

Team17 uses the time elapsed from the beginning of the bat-
tle to determine when to switch modes and how to assign initial
modes. The mode-change times are carefully crafted and over-fit
to the tournament rules which specify 5000 clock ticks per match.
The original developers created a program that only performed well
when specific assumptions about the environment were true. The
program steering mode selector was better equipped for adapting to
changes by extracting and generalizing the hard-coded knowledge
from the training examples.

We now briefly discuss results for each of the new environments
listed in Figure 5.

New maps.The new maps environment differs only marginally
from the original one, yet program steering substantially helps Team20.
While investigating this effect, we discovered a programming error
that can cause its robots to enter an infinite loop. When a robot
discovers two caches of raw materials that are very close to one
another, the robot navigates to one of them but attempts to pick up
the other one. It does not check whether the attempt to pick up the
raw materials was successful, but immediately returns to the base,
where the team maintains a centralized stockpile. At the base, the
robot unloads its cargo (which is nothing, in this case), and then re-
turns to the site of the raw materials (since it knows that some raw
materials remain there), and again unsuccessfully attempts to pick
up some of the raw materials. The new controller eventually times
out of the infinite loop and invokes the new mode selector, which
chooses a different task for the robot, preventing it from continuing
the fruitless repetition. The other upgraded teams were largely un-
affected by the new maps. The new mode selectors usually agreed
with the original mode selectors when invoked.

Increased resources.The original Team04 and Team20 control
programs assign modes to robots based on assumptions about the
size of the army, which is correlated with resources available for
constructing units. The control programs are sub-optimal when the
assumptions are incorrect. For example, too many robots are as-
signed to search for resources rather than to attack or defend. The
Team17 upgrade provides a slight improvement because the hard-
coded times in the original program are worse, given the faster bat-
tle progression.

Radio jamming. Team26’s strategy does not depend on radio
messages, so radio jamming had little effect on the team’s per-
formance. The units use the default rendezvous point to launch
an effective attack. The teams with centralized intelligence suf-
fered significantly when the base could not reliably issue com-
mands to its less intelligent allies. With program steering, the
robots autonomously chose the mode consistent with what the base
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instructed them to do during similar training examples. For this
and the remaining new environments, the the hard-coded original
Team17 strategy copes poorly, while the adaptive mode selector
continues to perform well.

Radio spoofing. The radio spoofing environment had a strong
negative impact on Team26, which program steering was unable to
reverse. The spoofed messages were replay attacks collected from
previous battles, including ones on different maps. The robots did
not authenticate the messages, so different robots received mes-
sages specifying different rendezvous points. The team’s strat-
egy hinged on gathering a large army, which was disrupted by the
spoofing. The new mode selector indicated that something was
wrong, because theAttack Modeusually involved many nearby al-
lies. Unfortunately, the hard-coded meeting time was set late in the
match, and by this time the robots were scattered. There was not
enough time to recover from the mistake, so program steering did
not improve Team26’s overall performance in this environment.

Deceptive GPS.Program steering helped every team, including
Team26, in the Deceptive GPS environment. Robots using the orig-
inal Team26 control program did not all arrive at the rendezvous
point because some navigation systems were inaccurate, resulting
in a weaker army. The misled robots with upgraded controllers no-
ticed a lack of nearby allies and had time to travel to the (relatively
nearby) intended destination. The teams with centralized intelli-
gence had even more serious problems with the deceptive GPS en-
vironment. After completing a task the robots frequently returned
back to the base to await the next instructions. The deceptive GPS
mislead robots into traveling to a different location outside of the
radio transmission range of the base, where they would wait for
messages with no hopes of ever receiving one. The upgraded con-
trollers would trigger a timeout and the mode selector would notice
that the robot should be in theGo Home Mode.

Hardware Failures. Many teams in the tournament, including
the five we upgraded, only expected program reboots while the
base was in radio range or when a nearby ally issued a specific
command. The hardware failures environment caused reboots to
occur in other situations, sometimes causing the hardware to as-
sume a passive state or some other default. Team20 drastically im-
proved with the upgrades because the robots could frequently infer
the correct mode and complete the task at hand. Team26 saw sig-
nificant but less substantial improvement because the attack phase
of its strategy did not take effect until late in the game, requir-
ing the robots to withstand several hardware failures. Team10 did
not improve as much because many of its modes required certain
preconditions to be met or would fail during the course of execut-
ing the mode. For example, there is no reason to enterGo Home
Modewithout knowing the location of home. Those preconditions
were discovered in our modeling step, but the selector sometimes
chose modes without the preconditions satisfied. Our mode selec-
tion weighted each property equally and Team10 models contained
many properties (over 200 per mode). Given some of the refined
mode selection techniques discussed in Section 3.3, the precondi-
tions should carry more weight.

We observed another way in which program steering affected
the operation of the programs. Some of the programs followed a
fixed sequence of modes in a fixed order. As a simple example,
after picking up ore, the robot might always return to base — even
if the robot had the capacity to pick up more ore along the way, or
even if it encountered a vulnerable enemy robot. The new mode
selector sometimes executed one of the modes without executing
the other one; even though both were always executed together in
the training runs, the modeling step discovered additional connec-
tions. This gave the robot with program steering a larger range of

behaviors than the original robot, and some of those behaviors ap-
pear to be valuable ones, even though the original designers had not
anticipated the modes interacting in that way.

Our technique can also create a mode selector that chooses mode
transitions that could never be chosen before. For example, suppose
that the original mode selector for the laptop display example of
Section 2 was as follows:

if (battery <= 0.2 && DCPower == false)
return PowerSaverMode;

else
return StandardMode;

This selector never chooses sleep mode — perhaps that mode is
triggered manually by the user. The new mode selector (Figures 1
and 4) not only tests a variable (brightness) that original did not,
but it can also choose a mode that existed in the system but was
not previously accessible. For instance, the display can sleep when
turned to brightness 0, which might save even more power than
power saver mode would.

5. RELATED WORK
Current approaches to the design of adaptive software make it

difficult and expensive to build systems that adapt flexibly to a
wide variety or range of changes in operating conditions, but that
also operate efficiently under normal operating conditions. Ap-
proaches based on control theory, for example, require designers
to identify important system inputs and outputs, and to model pre-
cisely how changes in input behavior affect output behavior. Sys-
tems built using such approaches generally operate efficiently in
normal or near-to-normal operating conditions, but fail to adapt
to extreme or unanticipated changes in operating conditions. Ap-
proaches used for intrusion detection require designers to distin-
guish between normal and abnormal patterns of use. Systems built
using such approaches deal poorly with unanticipated patterns of
use. Approaches based on fault tolerance require designers to an-
ticipate the kinds and numbers of faults that may occur, although
the designers need not model the precise effects of those faults.
Systems built using such approaches may tolerate a wider range of
changes in operating conditions, but operate less efficiently under
normal conditions because they are always prepared for the worst.

Our technique shares some similarities with profile-directed opti-
mization [1, 5]. Profile-directed, or feedback-guided, optimization
uses information from previous runs. For instance, if a set abstrac-
tion typically contains very few elements, it might be represented
as a list rather than as a hash table. Or, if two pointers are rarely
aliased, it may be worthwhile to check whether they are aliased
and, if not, load them into registers rather than manipulate them in
memory. Such optimizations must be checked at run time unless
they do not affect correctness. Value profiling [3, 4] examines val-
ues returned by load instructions. Our work is at a higher level of
abstraction: we compare relationships between variables and data
structures in the programming language rather than at the level of
machine instructions. For example, if a list is usually sorted, it
may be worthwhile to perform anO(n) sortedness check before
invoking anO(n log n) sorting routine. In this respect, our work
shares similarities with work on specification-based program opti-
mization [17], where a small amount of automated theorem proving
at run time determines whether a precondition is satisfied for using
an efficient, specialized version of a particular procedure.

Most previous work on program steering has addressed inter-
active program steering, which provides humans the capability to
control the execution of running programs by modifying program
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state, managing data output, starting and stalling program execu-
tion, altering resource allocations, and the like [11, 8]. The goal is
typically performance, and human observation, analysis, and intu-
ition is inherent to the approach. By contrast, we are interested in
automatic program steering. Miller et al. [15] discuss how to safely
execute steering operations, by ensuring that they occur between,
not during, program transactions, at a point when the program state
is consistent. Debenham [7] suggests checking properties (similar
to anomaly detection) in order to note when a mode is inappro-
priate; if no solution can be found, a human operator is asked for
assistance.

Reactive systems change their behavior or state in response to
events their environment, but the changes are typically programmed
in from the start. Likewise, much research in the AI field that au-
tomatically chooses among behaviors focuses on low-level control
such as activating a motor rather than selecting a high-level goal;
the latter is typically performed by a less adaptive high-level con-
trol program (if it is explicit at all). Or, a hard-coded hierarchy may
indicate priority levels among modes, but the hierarchy is unlikely
to be appropriate in every circumstance. Liu et al. [14] discuss
the problems of incompatible mode specifications and proposes a
constraint system to solve it; they improved performance of a sim-
ulated power-critical Mars rover application. Ghieth [10] discusses
policies for intercepting object invocation and rerouting the invoca-
tions to a specific implementation. Richter et al. [16] discuss select-
ing among modes of operation during system design and enabling
run-time switching, but do not automatically provide policies for
switching.

6. FUTURE WORK
Our preliminary experiments suggest that, at least in some cir-

cumstances, program steering can generalize training runs to cre-
ate a new mode selector that significantly outperforms the origi-
nal system in new environments. However, additional work is re-
quired before we can conclude that the technique applies to real-
world situations, and future research will also indicate which sorts
of programs and environmental changes the technique is best (and
worst) at handling. We believe that our preliminary results justify
additional investigation, and here outline some directions for future
work.

First, the technique needs to be run on more programs, and pro-
grams of more types, to better indicate its strengths and weak-
nesses. This will address the major threat to external validity that
our current research suffers. Additionally, a survey of application
domains could indicate how much real-world software in each do-
main has (or can easily be refactored to have) modes and a mode
selector, which our technique requires. As noted earlier, we believe
that it can be applied to enough real software to be worthy of further
investigation.

The design space for program steering is large; Section 3 only
partially explores it, and we have evaluated only one point in the
space. That point appears to provide good results, but other points
may be even better. We are eager to try different modeling ap-
proaches (particularly noise-resistant ones), different mode selec-
tion techniques (assigning different weights to different parts of
a model seems particularly promising), and different policies for
when a controller invokes the new mode selector.

One challenge to our methodology is achieving reasonable re-
sponse time. Constructing a model is time-consuming for many
machine learning techniques, but such a process happens only once,
offline. The cost of evaluating a model is much lower, but may be
a limiting factor in resource-constrained environments.

In future work, we would like not only to steer programs among

existing modes, but also to introduce new modes. For instance, if
two situations yield very different models, then perhaps the sys-
tem can be optimized for those two situations, much as in profile-
directed optimization. Such a task will require both recognizing
different states and then introducing optimizations based on them.

7. CONCLUSION
We have proposed an approach to making software more adapt-

able to new situations that its designers and developers may have
neither foreseen nor planned for. The technique, called program
steering, is applicable to multi-mode systems in which a controller
selects an appropriate mode based on its inputs or its own state.
Program steering generalizes from observations of training runs on
which the software behaved well, and produces a new mode selec-
tor that, given a concrete program state, selects the mode whose
past executions were most similar to the given state.

Program steering reduces dependence on developer assumptions
about what the controller should and should not take into account.
Instead, the new mode selector uses all the available information
gathered during the modeling step. The technique requires no do-
main specific knowledge or human direction, only an existing con-
troller that works well in expected situations and a way to determine
which test runs are successful enough to become training runs.

We have implemented program steering and performed prelimi-
nary experiments to evaluate its efficacy. We applied our program
steering tool to five multi-mode robot control programs from a real-
time combat simulation and evaluated the new mode selectors in
six new environments. Use of the new mode selectors substantially
improved robot performance, as measured by ranking in a 27-team
tournament.
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