
David Saff
1

Test Factoring:
Focusing test suites on the task

at hand

David Saff, MIT

ASE 2005

David Saff
2

The problem:
large, general system tests

My test suite

One hour Where I changed code

Where I broke code

How can I get:
Quicker feedback?
Less wasted time?

[Saff, Ernst,
ISSRE 2003]

David Saff
3

The problem:
large, general system tests

My test suite

Test selection

David Saff
4

The problem:
large, general system tests

My test suite

Test selection

Test prioritization

David Saff
5

The problem:
large, general system tests

My test suite

Test selection

Test prioritization

Test factoring

David Saff
6

Test factoring

• Input: large, general system tests

• Output: small, focused unit tests

• Work with Shay Artzi, Jeff Perkins, and
Michael D. Ernst

David Saff
7

A factored test…

• exercises less code than system test

• should be faster if a system test is slow

• can eliminate dependence on expensive
resources or human interaction

• isolates bugs in subsystems

• provides new opportunities for
prioritization and selection

David Saff
8

Test Factoring

• What?
– Breaking up a system test

• How?
– Automatically creating mock objects

• When?
– Integrating test factoring into development

• What next?
– Results, evaluation, and challenges

David Saff
9

System Test
Provided Checked

There’s more than one way to factor a
test!
Basic strategy:
- Capture a subset of behavior beforehand.
- Replay that behavior at test time.

David Saff
10

Tested Code

System Test

Environment

Provided Checked
PayrollCalculator
• Fast
• Is changing

Database Server
• Expensive
• Not changing

Xcapture Xcapture Xcapture XcaptureXcaptureX

David Saff
11

Introduce Mock

Environment

Tested CodeChecked Checked

CheckedProvided

ProvidedProvided

Introduce Mock:

• simulate part of the functionality of the original environment

• validate the unit’s interaction with the environment

Provided Checked

[Saff, Ernst,
PASTE 2004]

David Saff
12

Test Factoring

• What?
– Breaking up a system test

• How?
– Automatically creating mock objects

• When?
– Integrating test factoring into development

• What next?
– Results, evaluation, and challenges

David Saff
13

How? Automating Introduce Mock

PayrollCalculator

ResultSet

Database

addResultsTo(ResultSet)

addResult(String)

getResult()

addResult(String)
addResult(String)

getResult()
getResult()

calculatePayroll()

Tested Code Environment

Xcapture

X
capture

David Saff
14

Interfacing: separate type hierarchy
from inheritance hierarchy

PayrollCalculator

ResultSet

Database

addResultsTo(IResultSet)

addResult(String)

getResult()

addResult(String)
addResult(String)

getResult()
getResult()

calculatePayroll()

Tested Code Environment

IDatabase

IPayrollCalculator

IResultSet

David Saff
15

Capturing: insert recording decorators
where capturing must happen

PayrollCalculator

ResultSet

Database

addResultsTo(IResultSet)

addResult(String)

getResult()

addResult(String)
addResult(String)

getResult()
getResult()

calculatePayroll()

Tested Code Environment

IPayrollCalculator

IResultSet

IDatabase

Callback
ResultSet

Capturing
Database

capture

capture

David Saff
16

Replay: simulate environment’s
behavior

PayrollCalculator

ResultSet

Database

addResultsTo(IResultSet)

addResult(String)

getResult()

addResult(String)
addResult(String)

getResult()
getResult()

calculatePayroll()

Tested Code Environment

IPayrollCalculator

IResultSet

IDatabase

Replaying
Database

replayed

verified

David Saff
17

Test Factoring

• What?
– Breaking up a system test

• How?
– Automatically creating mock objects

• When?
– Integrating test factoring into development

• What next?
– Results, evaluation, and challenges

David Saff
18

When? Test factoring life cycle:
Slow system tests

Transcript

Fast unit tests

Capture

Replay

Developer
changes

tested unit

Run factored tests

Success

Failure

Replay exception

Run system tests
for replay
exceptions

David Saff
19

Time saved:
Slow system tests

Run factored tests

Run system tests
for replay
exceptions

David Saff
20

Time saved:

Slow system tests

Factored tests

Time until first error

Time to complete tests

David Saff
21

Test Factoring

• What?
– Breaking up a system test

• How?
– Automatically creating mock objects

• When?
– Integrating test factoring into development

• What next?
– Results, evaluation, and challenges

David Saff
22

Implementation for Java

• Captures and replays
– Static calls
– Constructor calls
– Calls via reflection
– Explicit class loading

• Allows for shared libraries
– i.e., tested code and environment are free to use

disjoint ArrayLists without verification.

• Preserves behavior on Java programs up to
100KLOC

David Saff
23

Case study

• Daikon: 347 KLOC
– Uses most of Java: reflection, native methods, JDK

callbacks, communication through side effects

• Tests found real developer errors

• Two developers
– Fine-grained compilable changes over two months:

2505

– CVS check-ins over six months (all developers): 104

David Saff
24

Evaluation method

• Retrospective reconstruction of test
factoring’s results during real development
– Test on every change, or every check-in.

• Assume capture happens every night

• If transcript is too large, don’t capture
– just run original test

• If factored test throws a ReplayException,
run original test.

David Saff
25

Measured Quantities

• Test time: total time to find out test results

• Time to failure: If tests fail, how long until
first failure?

• Time to success: If tests pass, how long
until all tests run?

• ReplayExceptions are treated as giving
the developer no information

David Saff
26

Results

.09

(0.8 / 8.8 min)

n/a.09

(0.8 / 8.8 min)

Every
check-in

All
devs.

.77

(11.0 / 14.3 s)

1.28

(64 / 50 s)

.99

(14.1 / 14.3 min)

Every
change

Dev. 2

.59

(5.5 / 9.4 s)

1.56

(14 / 9 s)

.79

(7.4 / 9.4 min)

Every
change

Dev. 1

Time to successTime to
failure

Test timeHow
often?

David Saff
27

Discussion

• Test factoring dramatically reduced testing
time for checked-in code (by 90%)

• Testing on every developer change
catches too many meaningless versions

• Are ReplayExceptions really not helpful?
– When they are surprising, perhaps they are

David Saff
28

Future work: improving the tool

• Generating automated tests from UI bugs
– Factor out the user

• Smaller factored tests
– Use static analysis to distill transcripts to bare

essentials

David Saff
29

Future work: Helping users

• How do I partition my program?
– Should ResultSet be tested or mocked?

• How do I use replay exceptions?
– Is it OK to return null when “” was expected?

• Can I change my program to make it more
factorable?
– Can the tool suggest refactorings?

David Saff
30

Conclusion

• Test factoring uses large, general system
tests to create small, focused unit tests

• Test factoring works now

• How can it work better, and help users
more?

• saff@mit.edu

David Saff
31

David Saff
32

Challenge: Better factored tests

• Allow more code changes
– It’s OK to call toString an additional time.

• Eliminate redundant tests
– Not all 2,000 calls to calculatePayroll are

needed.

David Saff
33

Evaluation strategy

1) Observe: minute-by-minute code
changes from real development projects.

2) Simulate: running the real test factoring
code on the changing code base.

3) Measure:
– Are errors found faster?
– Do tests finish faster?
– Do factored tests remain valid?

4) Distribute: developer case studies

David Saff
34

Conclusion

• Rapid feedback from test execution has
measurable impact on task completion.

• Continuous testing is publicly available.

• Test factoring is working, and will be
available by year’s end.

• To read papers and download:
– Google “continuous testing”

David Saff
35

Case Study

• Four development projects monitored

• Shown here: Perl implementation of delta tools.

• Developed by me using test-first development
methodology. Tests were run often.

• Small code base with small test suite.

lines of code 5714
total time worked (hours) 59
total test runs 266
average time between tests (mins) 5

David Saff
36

We want to reduce wasted time

Test-wait time.

If developers test
often, they spend a lot
of time waiting for
tests to complete.

Regret time:

If developers test
rarely, regression
errors are not found
quickly. Extra time is
spent remembering
and fixing old
changes.

David Saff
37

Results predict: continuous
testing reduces wasted time

Wasted Time Reduction by Continuous Testing

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Observed Best
Reorder

Random Recent
Errors

Without ct With ct

W
as

te
d

 T
im

e

Regret

Test-wait

Best we
can do by
changing
frequency

Best we
can do by
changing

order

Continuous
testing

drastically
cuts regret

time.

David Saff
38

A small catalog of test factorings

• Like refactorings, test factorings can be
catalogued, reasoned about, and
automated

Separate Sequential Code:

Also “Unroll Loop”, “Inline Method”, etc. to produce sequential code

David Saff
39

A small catalog of test factorings

Original test

Mocked Environment

Unit

Mocked Unit

Environment

Introduce Mock:

David Saff
40

Unit

Unit test

Provided Checked

David Saff
41

Always tested:
Continuous Testing and

Test Factoring
David Saff

MIT CSAIL

IBM T J Watson, April 2005

David Saff
42

Overview

• Part I: Continuous testing

Continuous testing runs tests in the
background to provide feedback as
developers code.

• Part II: Test factoring

Test factoring creates small, focused unit
tests from large, general system tests

David Saff
43

Part I: Continuous testing

• Continuous testing runs tests in the
background to provide feedback as
developers code.

• Work with Kevin Chevalier, Michael
Bridge, Michael D. Ernst

David Saff
44

Part I: Continuous testing

• Motivation

• Students with continuous testing:
– Were more likely to complete an assignment

– Took no longer to finish

• A continuous testing plug-in for Eclipse is
publicly available.

• Demo!

David Saff
45

“Traditional” testing during
software maintenance (v2.0 → v2.1)

• Developer has v2.0 test suite

– Changes the code

– Runs the tests

– Waits for completion

– Repeats…

developer
changes
code

computer
runs tests

developer
changes
code

zzz
…

zzz
…

zzz
…

David Saff
46

Continuous Testing

• Continuous testing
uses excess cycles
on a nearby
workstation to
continuously run
regression tests in the
background as the
developer edits code.

• Developer no longer
thinks about what to
test when.

developer
changes
code

system
runs
tests

system
notified
about
changes

system
notifies
about
errors

David Saff
47

Continuous testing:
inspired by continuous compilation

• Continuous compilation, as in Eclipse, notifies
the developer quickly when a syntactic error is
introduced:

• Continuous testing notifies the developer
quickly when a semantic error is introduced:

David Saff
48

Case study

• Single-developer case study [ISSRE 03]

• Maintenance of existing software with
regression test suites

• Test suites took minutes: test prioritization
needed for best results

• Focus: quick discovery of regression
errors to reduce development time (10-
15%)

David Saff
49

Controlled human experiment

• 22 undergraduate students developing Java in
Emacs

• Each subject performed two 1-week class
programming assignments
– Test suites provided in advance

• Initial development: regressions less important

• Test suites took seconds: prioritization
unnecessary

• Focus: “What happens when the computer
thinks about testing for us?”

David Saff
50

Experimental Questions

1. Does continuous testing improve
productivity?

2. Does continuous compilation improve
productivity?

3. Can productivity benefits be
attributed to other factors?

4. Does asynchronous feedback distract
users?

Yes

Yes

No

No

David Saff
51

Productivity measures

• time worked: Time spent editing source
files.

• grade: On each individual problem set.

• correct program: True if the student
solution passed all tests.

• failed tests: Number of tests that the
student submission failed.

David Saff
52

Treatment predicts correctness
(Questions 1 and 2)

78%18Continuous testing

50%10Continuous compilation

27%11No tool

Correct

programs

NTreatment

p < .03

David Saff
53

Can other factors explain this?
(Question 3)

• Frequent testing: no
– Frequent manual testing: 33% success

• Easy testing: no
– All students could test with a keystroke

• Demographics: no
– No significant differences between groups

78%Cont. testing

50%Cont. comp.

27%No tool

correctTreatment

David Saff
54

No significant effect on other
productivity measures

85%2.910.7 hrs18Cont. testing

83%4.110.6 hrs10Cont. comp.

79%7.610.1 hrs11No tool

Grade Failed
tests

Time workedNTreatment

David Saff
55

Did continuous testing win over
users? (Question 4)

90%I would recommend the tool to others

80%…for my own programming

94%…for the rest of the class

YesI would use the tool…

David Saff
56

Eclipse plug-in for continuous
testing

• Upgrades current Eclipse JUnit
integration:
– Remember and display results from several

test suites

– Pluggable test prioritization and selection
strategies.

– Remote test execution

– Associate test suites with projects

David Saff
57

Eclipse plug-in for continuous
testing

• Adds continuous testing:
– Tests run with every compile

– Can run as low-priority process

– Can take advantage of hotswapping JVMs

– Works with plug-in tests, too.

• Demo!

David Saff
58

Future Work: Continuous testing

• Incorporate JUnit and continuous testing
features from plug-in directly into Eclipse

• Encourage test prioritization researchers
to implement JUnit plug-ins

• Industrial case studies

David Saff
59

System Test
Provided Checked

There’s more than one way to factor a
test!
Basic strategy:
- Capture a subset of behavior beforehand.
- Replay that behavior at test time.

Xcapture Xcapture Xcapture

David Saff
60

Separate Sequential
Unit test Unit testUnit testUnit test

Separate Sequential:

• Before each stage, recreate state

• After each stage, confirm state is correct

