
Automatic Trigger Generation for Rule-based Smart Homes

Chandrakana Nandi Michael D. Ernst
University of Washington

{cnandi, mernst}@cs.washington.edu

Abstract
To customize the behavior of a smart home, an end user writes rules.
When an external event satisfies the rule’s trigger, the rule’s action
executes; for example, when the temperature is above a certain
threshold, then window awnings might be extended. End users
often write incorrect rules [16]. This paper presents a technique that
prevents errors due to too few triggers in the rules. The technique
statically analyzes a rule’s actions to determine what triggers are
necessary.

We implemented the technique in a tool called TrigGen and
tested it on 96 end user written rules for openHAB, an open-
source home automation platform. It identified that 80% of the
rules had fewer triggers than required for correct behavior. The
missing triggers could lead to unexpected behavior and security
vulnerabilities in a smart home.

Keywords Security, Home automation, Trigger action program-
ming, Static analysis

1. Introduction
Most home automation platforms support end-user customization:
a user writes rules to determine what actions should be taken by
what device under what conditions [21]. For example, Samsung
SmartThings [8] allows users to create automation rules through the
“SmartApps” feature, while Apple HomeKit [4] allows users to set
conditions that govern when an action should take place.

A rule has two main components: triggers that cause a rule to
be fired, and actions to be executed when a rules fires. This is also
called Trigger Action Programming (TAP) [24]. Listing 1 shows an
example of a rule.

Even though TAP is the most commonly used and practical
approach for home automation [13, 24], end-users often make
errors in writing trigger-action programs [16, 25]. In a smart home
with multiple interacting devices, an error in one rule can cause
unexpected behavior or security vulnerabilities in another part of
the house.

This paper addresses errors in writing triggers. Our approach
eliminates a certain category of error in the rules—errors due to
too few triggers. We have built a static analysis that determines a
necessary and sufficient set of trigger conditions for the rules. These
inferred triggers can be compared to the user-written triggers to
indicate whether there are too few triggers. Other possible uses for

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481.

PLAS’16 October 24, 2016, Vienna, Austria
Copyright © 2016 ACM 978-1-4503-4574-3/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/2993600.2993601

rule "Update max and min temperatures"
when
// trigger block: 1 or more triggers
Item Temperature changed

then
// action block: 1 or more actions
postUpdate(Temp_Max ,

Temperature.maxSince(now.toDateMidnight))
postUpdate(Temp_Min ,

Temperature.minSince(now.toDateMidnight))
end

Listing 1: A rule that updates the maximum and minimum tempera-
ture values for the current day.

the technique are to detect unnecessary triggers or to free users from
the need to write triggers.

We implemented a tool, TrigGen, and ran it on 96 home automa-
tion rules written by end-users for the openHAB framework [6].
Following is a summary of TrigGen’s outputs:
1. TrigGen generated a correct set of event-based triggers for 91

rules (95%). It failed to produce any output for the remaining 5
(5%) rules.

2. For 77 of the 96 rules (80%), the user had written an insufficient
number of event-based triggers, which could lead to inconsistent
behavior.

The contributions of this paper are the following:
1. Identification of end-user written automation rules as a source

of errors and security vulnerabilities, due to too few triggers.
2. A static analysis tool, TrigGen, to determine a necessary and

sufficient set of triggers, based on the actions written by end-
users. TrigGen can be used to

• automatically generate all event-based triggers thereby en-
tirely freeing the user from writing them,

• identify missing triggers, and
• eliminate unnecessary triggers.

3. An evaluation of TrigGen on real end-user written rules for home
automation in the openHAB framework. It 1) generated a correct
set of event-based triggers for 95% of the rules and 2) revealed
that the user-written event-based triggers were insufficient for
80% of the rules.

2. Motivating Examples
The rule in listing 2 was written by an end user [2]. The name of
the rule is Away rule. An Item represents the state of a device in the
house. A rule can read or write to an item in order to interact with
the device. The state of an item can be changed 1) by direct physical
interaction of the end-user with the device (pressing a switch), 2)
by the device sensing a change in the value of some property it
measures (e.g., a thermostat sensing change in temperature), 3) by
the end-user through the UI of the openHAB application on a smart
phone or on a desktop, or 4) as an effect of a rule firing.

rule "Away rule"
when
Item State_Away changed

then
if (State_Away.state == ON) {
if (State_Sleeping.state != OFF) {

postUpdate(State_Sleeping , OFF)
}

}
end

Listing 2: Rule for setting the Away or Sleeping state.

rule "Christmas lamps on"
when
Item State_Sleeping changed from ON to OFF

then
if (Auto_Christmas.state == ON) {

if (State_Sleeping.state == OFF &&
State_Away.state == OFF) {
sendCommand(Socket_Livingroom ,ON)
sendCommand(Socket_Floor ,ON)

}
}

end

Listing 3: Rule for turning on lights during Christmas.

This rule (listing 2) is supposed to ensure that when State Away

is ON, State Sleeping is OFF. If State Away is ON, it indicates that the
home inhabitants are away. If State Sleeping is ON, it indicates that
the inhabitants are sleeping in the house. If the intention of the user
behind this rule is to ensure that State Away and State Sleeping are
not ON simultaneously, then this rule violates the user’s expectation—
the rule fires when State Away changes but not when State Sleeping

changes. This allows both values to be set to ON at the same time,
which deviates from the expected behavior of the rule. The correct
version of the rule should include both State Away and State Sleep-

ing as triggers.
Consider another example of a rule written by an end-user [2]

shown in listing 3. The action block of the rule indicates that the
Christmas lights should be turned ON when both State Away and
State Sleeping are OFF. The rule is only fired when State Sleeping

changes to OFF. Thus, if State Sleeping is already OFF because the
inhabitants are away (i.e. State Away is ON), once they come home,
the lights will not turn on automatically. If the intention of the user
behind writing this rule is to ensure that whenever people are home
and awake during Christmas, the lights must be on, then this rule
deviates from this behavior.

These examples show that even if the action block of a rule
is implemented correctly, inadequate triggers can lead to too few
firings of the rule. This may give rise to security vulnerabilities
(as described in section 3) or unexpected behavior. To solve this
problem, we propose a technique that can automatically generate
event-based triggers and also detect missing ones. It works by
statically analysing the abstract syntax tree (AST) of the code in the
action block.

3. Example attack
Since TrigGen can prevent incorrect behavior due to too few triggers,
it can also help eliminate security loopholes in the house that arise
due to too few triggers. Our approach can prevent any attack that
relies on an incorrect number of rule firings.
Example attack. Smart homes often have a visitor notification system
that sends a message to the owner’s smart phone when someone is
near the house. Consider the rule shown in listing 4 that deactivates
the visitor notification system when everyone is sleeping in the
house and activates it at all other times. This ensures that when

rule "Visitor notification system rule"
when
Item State_Sleeping changed

then
if (State_Sleeping.state == ON) {

postUpdate(Notification_System , OFF)
} else {

postUpdate(Notification_System , ON)
}

end

Listing 4: Rule for activating the visitor notification system in the
house.

binding binding binding

item
repository

 UI

rules

protocols

actual devices

libraries for integrating
devices to the framework

event bus
commands/updates

commands/
updates

Figure 1: openHAB framework.

inhabitants are away, they are aware of any visitors, but at the same
time, they are not woken up while they are sleeping, every time
someone in nearby. If someone is indeed trying to enter while they
are sleeping, a separate burglar alarm in the house goes off to wake
them up. Since the Away rule in listing 2 allows STATE SLEEPING to be
set to ON when STATE AWAY is ON (by any of the four ways described in
section 2), it will wrongly deactivate the visitor notification system
by triggering the rule in Listing 4, when in reality, the inhabitants
are away and not sleeping inside the house. This will prevent the
home inhabitants from knowing if there is a visitor near the house
while they are away.
Threat model. Our approach generates the trigger conditions from
the action block of the rules, so it assumes that the action block
is written correctly. We trust that the devices in the house are not
compromised and once they receive a command, they execute it. We
also trust the rule engine and the home automation OS for which the
rules are written.

4. openHAB background
openHAB [6] is an open-source vendor-agnostic software frame-
work for integrating smart devices in a home. It supports 135 tech-
nologies, including more than 50 devices, cloud services like Twitter,
DropBox, and Google Calendar, and multiple communication proto-
cols [9]. It can be run on Linux, Windows, and MacOS X as well
as on embedded platforms such as Raspberry Pi. It has apps for
Android and iOS. The Android app has about 50,000 downloads in
the Google Play store with a rating of 4.4/5.

Figure 1 shows the main components of the openHAB frame-
work. The item repository stores information about the devices as
explained in section 4.1. It is connected to the UI and the rule base.
As shown in the figure, there are two types of events that are com-
municated by the event bus. 1) Commands cause actions or change
device states. Examples are ON, OFF, UP, and DOWN. 2) Updates inform
the UI component or the rule engine or other devices about changes
in the state of a device. Bindings are libraries that connect physical
devices to the openHAB framework.

End-users can write configuration files to customize the home.
The main configuration files include a rule file containing the
automation rules and an item file containing device information.

<item > ::= <type > <name > ["label"] [<icon>] [(group1,
group2, ..., groupn)] [binding]

Switch DemoSwitch "Switch"
Contact Window_Bedroom "Bedroom" (Bedroom,
Windows)

Listing 5: Syntax of item definitions and two examples.

Group All
Group GF(All)
Group GF_Living(GF)
Group Lights(All)
Dimmer Light_GF_Living(GF_Living ,Lights)

Lights.members.forEach(light|postUpdate(light ,ON))

Listing 6: Code snippet from an items file (above) showing grouping
of items (GF stands for Ground Floor) and use of the group in a rule
(below).

For our research, we required access to the item files and the rule
files.

4.1 Items
An item [3] is a representation of a device installed in the house.
Every item has a type that indicates the values it can hold and
the commands it can receive. Items can also be grouped together—
all lights in the living room can be in one group so that they can
be controlled together. An item may belong to multiple groups.
Listing 5 shows the syntax of an item definition (contents in [] are
optional) and two entries in a sample item file.

4.2 Rules
Listings 1, 2, 3, 4, 7, and 8 show examples of rules. Rules are fired
by a rule engine. For our research, we assume that the rule engine
fires one rule at a time. A rule has two parts: a trigger block and an
action block.

The trigger block can have one or more triggers. There are
three types of triggers: event-based, temporal, and system. Event-
based triggers fire when the state of a device changes. For example:
Item State Away changed. Temporal triggers fire at specific times
and system triggers fire at system startup and shutdown. Event-
based triggers are the focus of this research. TrigGen automatically
generates only event-based triggers, and in the rest of the paper, the
term trigger refers to an event-based trigger.

The action block or script describes what a rule should do when
its triggers are fired. It is written in a Java-like language called
Xbase.

4.3 Actions
Actions are predefined methods that can be used in the action block
of a rule. The openHAB runtime provides a core set of actions [1],
and manufacturers can implement more for specific devices. Two im-
portant core actions for the purpose of our analysis are the event bus
actions: sendCommand(String itemName, String commandName) and
postUpdate(String itemName, String stateValue).

5. Errors due to too few triggers
Problem Definition. An insufficient number of triggers in a rule leads
to fewer firings, which can cause unexpected behavior or security
vulnerabilities.
Goal. Our goal is to prevent end-users from making errors due to
too few event-based triggers.

trigger generator
items

rules

item database

rule database

itemParser

ruleParser

eliminate
redundant
triggers

identify
triggers

user-written triggers

suggested
event-based triggers

missing
event-based triggers

Figure 2: Architecture of the TrigGen tool.

Approach. We developed a static analysis tool—TrigGen—that
automatically generates a set of necessary and sufficient event-based
trigger conditions from the actions written by the end-users. Figure 2
shows the design of our tool. It takes as input a rule file and an item
file. The technique is explained below.

1. By statically analysing the AST of the script, S, TrigGen identi-
fies all the items that appear in the action block of a rule, R. This
is an exhaustive list of all potential event-based triggers. Let this
list be T .

2. Naively adding all t ∈ T as triggers of R would unnecessarily
fire R too many times and make it complicated. Hence, TrigGen
applies an elimination technique to get rid of triggers that are not
required. The following definitions are used in the elimination
algorithm.
Definition 1. An item is live [11] in R if its value may be read
before it is written to in the rule script, S.

Definition 2. An event-based trigger is redundant if inclusion
of the trigger in a rule never changes the state of any item or
the value of any program variable involved in S when the rule is
fired solely due to it. Otherwise, the trigger is non-redundant.

An item d which is not live in R is not included in T because
it is redundant.
Theorem. If d is not live in R, then it is a redundant trigger.

Proof. Let us assume that d is not redundant. That means it must
change the value of some item or program variable in the rule in
some firing. Let this item or variable be a. Since d is not live, its
value is never read before it is written to. The following cases
are possible:

• d is a constant, i.e. it is never assigned to in S. In this case, d
as a trigger does not change the value of a because d’s value
is always the same.

• d is a function of other items, i1, i2, ..., in and program
variables v1,v2, ...,vm in R, i.e. d’s value depends on the
values of i1, i2, ..., in and v1,v2, ...,vm. Let Il ⊆ {i1, i2, ..., in}
be a set which contains all the live items in {i1, i2, ..., in}.
In this case, d as a trigger will still not affect the value of
a because d’s own value depends on the values of items
i1, i2, ..., in — a will change only if the value of some i ∈ Il
changes. Hence, only adding all i ∈ Il as triggers would be
sufficient.

This shows that d never causes the value of a to change. There-
fore, our assumption that d is not redundant is wrong. Hence, d
must be redundant. �

5.1 Enumerating groups
Items can be grouped so that they can be controlled together if
needed—the rule scripts can perform operations on all the member
items of a group. Listing 6 shows examples of groups specified in
an item file and a code snippet from a rule file showing how they are
used in a rule. A group can have multiple items and one item can
belong to one or more groups. Groups can also be contained in other
groups. For such rules, TrigGen generates triggers by enumerating

rule "Air garage"
when
Item Temp_G changed or
Item Humidity_G changed

then
if (Temp_G.state != null &&

Humidity_G.state != null) {
var String msg = Temp_G.state.toString()

+ Humidity_G.state.toString()
if (Air_G_Message.state != msg) {

postUpdate(Air_G_Message ,msg)
}

}
end

Listing 7: Rule for updating the status message for the air quality in
the garage.

All

GF Lights

GF Living

Light GF Living

Figure 3: Graph representing the item grouping shown in listing 6.
The arrows point from a parent group to a child group or a member
item.

all members of a group by converting it to a graph problem. It
performs a depth first search to determine all the groups to which an
item belongs. Figure 3 shows the graph representation of the groups
in listing 6.

5.2 Conflict resolution
We define two or more rules to be conflicting if they modify the
state of the same item. In that case, TrigGen warns the user about
a potential conflict. As an example, consider the rule written by an
end-user in listing 7. Before Air G Message is updated (in postUpdate),
its current value is checked against msg. This rule could conflict
with another rule that writes to Air G Message. TrigGen detects such
conflicts and warns the end-user about the possibility of a conflict.
It is then up to the user to determine the severity of the warning and
whether the rules need to be corrected.

6. Implementation
We implemented TrigGen in ∼3500 LOC of Java. It can be used
directly on a rule file without any pre-processing or annotations
from the end-user. Figure 2 shows the design of TrigGen. Both rules
and items have their own domain specific languages (DSLs)—we
used the respective grammars provided by openHAB and the Xtext
parser generators [10] to generated parsers for them.

TrigGen extracts item information such as item names, types
and groups they belong to, and stores them in an item database.
It uses this information to identify items in the rules—it visits the
nodes in the AST of the rule’s script to extract the names of the items
appearing in assignments, as actual method arguments, conditions in
if-statements, closures and all other language constructs supported
by the rule DSL. It stores this information in a rule database.

The next step is trigger generation where TrigGen first adds all
the items naively to a list of potential triggers. It analyzes this list to

Action Execution time
generate all triggers 6.9 s
detect missing triggers 7.3 s

Table 1: Execution time (in seconds) summary of TrigGen for 96
rules for 1) generating all event-based triggers, and 2) identifying
missing event-based triggers by comparing with user-written trig-
gers.

eliminate the redundant triggers as explained in section 5 to generate
a list of necessary and sufficient triggers.

TrigGen then compares the list of generated triggers to the
triggers written by the end-users to detect the missing/extraneous
ones. As explained in section 5.2, TrigGen also identifies rules which
might conflict with each other due to modifying the state of the same
device.

7. Experimental Evaluation
We evaluated TrigGen on 96 end-user written rules. We obtained
the rules from links provided on the openHAB wiki [2, 7]. We
ran TrigGen on a machine running 64-bit Ubuntu 14.04 LTS with
2.6 GHz quad core processor. Table 1 shows the time taken for
TrigGen to complete executing. For 91 out of the 96 rules (95%),
TrigGen suggested a list of all required event-based triggers. Its
output differed from the user-written event-based triggers for 77
rules (80%). By manual inspection, we found that the event-based
triggers that TrigGen detected as missing were true positives. For 18
rules (19%), TrigGen generated warnings about potential conflicts.
11 out of these (61%) were correct warnings as per our description
of conflict in section 5.2. The other 7 (39%) were false positives.

Figure 5 shows the output of TrigGen for generating a necessary
and sufficient set of triggers. For the majority of the rules, TrigGen
suggested 2 triggers and detected 1 missing trigger. The large
number of triggers which were determined for some rules (as shown
in figure 5) was due to the grouping of items. TrigGen expanded the
groups as explained in section 5.1 to enumerate all the items and
then applied the technique described in section 5 for identifying the
non-redundant triggers.

7.1 Precision and recall
We define the goal set of triggers for a particular rule as the set of all
non-redundant triggers. Precision and recall for TrigGen’s trigger
suggesting feature (ps and rs respectively) are then defined as:

ps =
|{non-redundant triggers}∩{generated triggers}|

|{generated triggers}|

rs =
|{non-redundant triggers}∩{generated triggers}|

|{non-redundant triggers}|
where {generated triggers} is the set of triggers generated by
TrigGen. Precision and recall for user written triggers (pu and ru) are
defined similarly with generated triggers replaced by user-written
triggers. Figure 4 shows the precision and recall values for the user
written triggers. For TrigGen’s missing trigger detection feature, we
define the goal set of triggers as:

{missing non-redundant triggers}=
{non-redundant triggers}−{user-written triggers}

The definitions of pm and rm respectively are:

pm =
|{missing non-redundant triggers}∩{missing triggers}|

|{missing triggers}|

rm =
|{missing non-redundant triggers}∩{missing triggers}|

|{missing non-redundant triggers}|

ps rs frequency
1 1 91
not defined 0 5
pm rm frequency
1 1 77
not defined 0 19

Table 2: Precision and recall of the output of TrigGen for 1) suggest-
ing all event-based triggers, represented by ps and rs respectively,
and 2) detecting missing event-based triggers, represented by pm and
rm respectively. Precision = not defined and recall = 0 indicate
that the output set was empty.

0

5

10

15

20

25

30

35

fr
e

q
u

e
n

cy

(p_u, r_u)

Figure 4: Precision and recall of user written event-based triggers.

rule "Select Radio Station"
when
Item Radio_Station received command

then
if (receivedCommand == 0) {

playStream("http://mp3-live.swr3.de/swr3_m.m3u")
}

end

Listing 8: Example of a rule for which TrigGen failed.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 14 15 16 19 24 25 26 27

n
u

m
b

e
r

o
f

ru
le

s

number of triggers

suggested triggers missing triggers

Figure 5: Summary of the output of TrigGen for suggesting a set
of necessary and sufficient triggers (in blue) and detecting missing
triggers (in orange). The x-axis shows the number of suggested
triggers and the y-axis shows the number of rules.

where {missing triggers} is the set of triggers identified as missing
by TrigGen. Table 2 shows the precision and recall values of the
output of TrigGen.

7.2 Limitations
TrigGen failed to suggest the event-based triggers for 5 rules which
did not have references to the trigger items in the rule script. This
is because TrigGen uses the AST of the rule script to extract items
that can be potential triggers; if there is no reference to an item in
the script, TrigGen cannot detect that trigger. Listing 8 shows an
example of one of these rules.

8. Related work
Security goals and potential vulnerabilities in smart homes have
been investigated in several papers [12, 14, 19, 23]. Denning et
al. [12] identified assets within a home that are susceptible to security
attacks and suggested security goals for smart homes. Ur et al. [23]
conducted a case study of three specific smart devices to analyze the
state of access control for home automation. Mennicken et al. [19]
studied the importance of human-home-collaboration in making
smart homes more accessible.

Recently, Fernandes et al. [15] did a security analysis of several
apps based on Samsung SmartThings and discovered that many of
them unnecessarily granted full access to the devices in the house.
While they aimed at identifying security flaws in the SmartThings
framework itself, our aim is to assist end-users in writing correct
automation rules and we do so by automatically generating the
trigger conditions. Further, instead of analysing apps for home
automation, we analyzed end-user written automation rules.

Some work has been done on detecting conflicts in trigger-
action programs [17, 18, 20, 22]. TrigGen’s main capability is to
automatically generate the correct triggers for a rule although it can
also identify rules which may have potential conflicts. None of the
previous tools can automatically determine trigger conditions.

The usefulness of TAP for customizing smart homes has been
studied by Ur et al. [24] and Dey et al. [13]. Their findings motivated
us to focus on end-user written rules for home automation—they
showed by conducting user studies that about 80% of the automation
requirements of the users could be represented by trigger action pro-
grams [13] and even non-programmers could easily learn TAP [24].

Huang et al. [16] conducted user studies on TAP to identify in-
consistencies in interpreting the behavior of trigger action programs
and errors in writing them and found that often the interpretation of
a rule by a user is different from the semantics of the rule.

Some recent work [16, 24] observed that the IFTTT frame-
work [5] which is also used for writing automation rules only allows
a single trigger and is not sufficient for expressing complex automa-
tion rules for smart homes. This motivated us to evaluate our tool on
the openHAB framework which has a more expressive rule language
allowing multiple triggers.

9. Conclusions
End-users have a major role in home automation—they decide the
automation rules for the devices. Confirming previous work, our
research shows that these end-user written rules are often error-
prone. We observed that a common error made by end-users while
writing the rules is having an insufficient number of triggers, leading
to fewer firings of the rules than necessary. To prevent this problem,
we developed TrigGen, which automatically generates a set of
necessary and sufficient triggers based on the actions in a rule.
TrigGen correctly identified missing triggers in 77 out of the 96
real home automation rules that we analyzed. TrigGen reduces the
burden on end-users by assisting them in writing the rules correctly,
and can reduce the incidence of unexpected behaviors and security
vulnerabilities.

Acknowledgments
John Toman helped with the Xtext language tools. Talia Ringer and
the anonymous reviewers gave helpful feedback on the manuscript.

References
[1] Actions available in scripts and rules. https://github.com/

openhab/openhab/wiki/Actions. Accessed: May 2016.

[2] Configs, Tools & Icons. http://www.intranet-of-things.com/
software/downloads. Accessed: August 2016.

[3] Explanation of items. https://github.com/openhab/openhab/
wiki/Explanation-of-items. Accessed: August 2016.

[4] Homekit Securely control your home. http://www.apple.com/ios/
homekit/?cid=wwa-us-kwg-features. Accessed: May 2016.

[5] IFTTT. https://ifttt.com/recipes. Accessed: June 2016.
[6] openHAB empowering the smart home. http://www.openhab.org/.

Accessed: August 2016.
[7] openhab home. https://github.com/openhab/openhab/wiki. Ac-

cessed: August 2016.
[8] Smart Home. Intelligent Living. https://www.smartthings.com/.

Accessed: May 2016.
[9] Suported technologies. http://www.openhab.org/features/

supported-technologies.html. Accessed: May 2016.
[10] Xtext. Language Engineering For Everyone. https://eclipse.org/

Xtext/. Accessed: August 2016.
[11] F. E. Allen and J. Cocke. A program data flow analysis procedure.

Commun. ACM, 19(3):137–, Mar. 1976.
[12] T. Denning, T. Kohno, and H. M. Levy. Computer security and the

modern home. Commun. ACM, 56(1):94–103, Jan. 2013.
[13] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. icap: Interactive

prototyping of context-aware applications. In Proceedings of the 4th
International Conference on Pervasive Computing, PERVASIVE’06,
pages 254–271, Berlin, Heidelberg, 2006. Springer-Verlag.

[14] N. Dhanjani. Abusing the Internet of Things: Blackouts, Freakouts, and
Stakeouts. O’Reilly Media, Incorporated, 2015.

[15] E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging
Smart Home Applications. In Proceedings of the 37th IEEE Symposium
on Security and Privacy, May 2016.

[16] J. Huang and M. Cakmak. Supporting mental model accuracy in trigger-
action programming. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’15, pages 215–225, New York, NY, USA, 2015. ACM.

[17] H. Luo, R. Wang, and X. Li. A rule verification and resolution
framework in smart building system. In Parallel and Distributed
Systems (ICPADS), 2013 International Conference on, pages 438–439,
Dec 2013.

[18] C. Maternaghan and K. J. Turner. Policy conflicts in home automation.
Comput. Netw., 57(12):2429–2441, Aug. 2013.

[19] S. Mennicken, J. Vermeulen, and E. M. Huang. From today’s aug-
mented houses to tomorrow’s smart homes: New directions for home
automation research. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’14, pages 105–115, New York, NY, USA, 2014. ACM.

[20] M. Nakamura, H. Igaki, and K. ichi Matsumoto. Feature interactions
in integrated services of networked home appliance. In Proc. of Int’l.
Conf. on Feature Interactions in Telecommunication Networks and
Distributed Systems (ICFI’05, pages 236–251. IOS Press, 2005.

[21] M. W. Newman. Now we’re cooking: Recipes for end-user service
composition in the digital home, 2006. Position Paper–CHI 2006
Workshop IT@Home.

[22] Y. L. Sun, X. Wang, H. Luo, and X. Li. Conflict detection scheme
based on formal rule model for smart building systems. IEEE Trans.
Human-Machine Systems, 45(2):215–227, 2015.

[23] B. Ur, J. Jung, and S. Schechter. The current state of access control for
smart devices in homes. In Workshop on Home Usable Privacy and
Security (HUPS). HUPS 2014, July 2013.

[24] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman. Practical
trigger-action programming in the smart home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’14, pages 803–812, New York, NY, USA, 2014. ACM.

[25] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman. Trigger-action programming in the
wild: An analysis of 200,000 ifttt recipes. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, CHI ’16,
pages 3227–3231, New York, NY, USA, 2016. ACM.

