
Tunable Static Inference for
Generic Universe Types

Werner Dietl1, Michael D. Ernst1, and Peter Müller2

1 University of Washington
{wmdietl,mernst}@cs.washington.edu,

2 ETH Zurich
Peter.Mueller@inf.ethz.ch

Abstract. Object ownership is useful for many applications, including
program verification, thread synchronization, and memory management.
However, the annotation overhead of ownership type systems hampers
their widespread application. This paper addresses this issue by presenting
a tunable static type inference for Generic Universe Types. In contrast
to classical type systems, ownership types have no single most general
typing. Our inference chooses among the legal typings via heuristics. Our
inference is tunable: users can indicate a preference for certain typings
by adjusting the heuristics or by supplying partial annotations for the
program. We present how the constraints of Generic Universe Types can
be encoded as a boolean satisfiability (SAT) problem and how a weighted
Max-SAT solver finds a correct Universe typing that optimizes the weights.
We implemented the static inference tool, applied our inference tool to
four real-world applications, and inferred interesting ownership structures.

1 Introduction

Aliasing — multiple references to the same object — makes it hard to build com-
plex object structures correctly and to guarantee invariants about their behavior.
For example, mutation of an object through one reference can be observed
through other references. This leads to problems in many areas of software engi-
neering, including program verification, concurrent programming, and memory
management.

Object ownership [10] structures the heap hierarchically to control aliasing
and access between objects. Ownership type systems express properties of the
heap topology, for instance whether two instances of a list may share node objects.
Such information is needed to show the correctness of a coarse-grained locking
strategy, where the lock of the list protects the state of all its nodes [6]. Ownership
type systems also enforce encapsulation, for instance, by forcing all modifications
of an object to be initiated by its owner. Such guarantees are useful to maintain
invariants that relate the state of multiple objects [33]. To obtain these benefits,
ownership type systems require considerable annotation overhead, which is a
significant burden for software engineers.

Helping software engineers to transition from un-annotated programs to
code that uses an ownership type system is crucial to facilitate the adoption of
ownership type systems. Standard techniques for static type inference [12] are not
applicable. First, there is no need to check for the existence of a correct typing; a
flat ownership structure gives a trivial typing. Second, there is no notion of a best
or most general ownership typing. In realistic implementations, there are many
possible typings and corresponding ownership structures, and the preferred one
depends on the intent of the programmer. Ownership inference needs to support
the developer in finding desirable structures by suggesting possible structures
and allowing the programmer to guide the inference.

This paper presents static inference for Generic Universe Types [14, 13], a
lightweight ownership type system designed to enable program verification [32].
Our static inference builds a constraint system that is solved by a SAT solver.
An important virtue of our approach is that the static inference is tunable; the
SAT solver can be provided with weights that express the preference for certain
solutions. These weights can be determined by general heuristics (for instance,
to prefer deep ownership for fields and general typings for method signatures),
by partial annotations, through a runtime analysis, or through interaction with
the programmer.

The main contributions of this paper are:

Static Inference: an encoding of the Generic Universe Types rules into a
constraint system that can be solved efficiently by a SAT solver to find
possible annotations.

Tunable Inference: use of heuristics and programmer interaction to indicate
which among many legal solutions is preferable; this approach is implemented
by use of a weighted Max-SAT solver.

Evaluation: an implementation of our inference scheme on top of the OpenJDK
compiler, and an illustration of its effectiveness on real programs.

This paper is organized as follows. Sec. 2 gives background on Generic Universe
Types. Sec. 3 overviews the inference system using examples. Sec. 4 formalizes
the static inference, consisting of the core programming language, the constraint
generation rules, the weighting heuristics, and the encoding as a weighted SAT
problem. Sec. 5 describes our implementation and our experience with it. Finally,
Sec. 6 discusses related work, and Sec. 7 concludes.

2 Background on Generic Universe Types

Generic Universe Types (GUT) [14, 13] is an ownership type system that allows
programmers to describe and enforce hierarchical heap topologies and optionally
enforces the owner-as-modifier encapsulation discipline based on the topology.
GUT is integrated into the tool suite of the Java Modeling Language (JML) [23].

public class Person {

peer Person spouse;

rep Account savings;

rep List<peer Person> friends;

int assets() {

any Account a = spouse.savings;

return savings.balance + a.balance;

}

}

(a) Example program. (b) Ownership modifier
type hierarchy.

Fig. 1. (a) A simple example of Generic Universe Types. A Person object owns its
savings account and has the same owner as its spouse. It also owns a List of Person
objects, each of which is its peer. (b) The type hierarchy of the ownership modifiers;
see Sec. 2 for an explanation.

Ownership Topology. GUT organizes the heap hierarchically into contexts and
restricts modifications across context boundaries. As in most other ownership
systems, each object has at most one owner object. The ownership relation is
acyclic. A context is the set of objects sharing an owner.

In GUT, a programmer expresses the ownership topology by writing one
of three ownership modifiers on each reference type. An ownership modifier
expresses ownership relative to the current receiver object this.

peer expresses that the referenced object is in the same context as the current
object this. For example, in Fig. 1a, a Person p has the same owner as
p.spouse.

rep expresses that the referenced object is owned by the current object. For
example, in Fig. 1a, a Person p is the owner of p.savings.

any gives no static information about the relationship of the two objects.

In addition, the formalization uses two internal ownership modifiers, which are
not part of the surface syntax:

lost expresses that the two objects have a relationship, but that relationship
is not expressible as peer or rep. For example, in Fig. 1a, spouse.savings
is a “nephew” of this; GUT cannot express this relationship, so it gives
spouse.savings the ownership modifier lost.

self is used only for the current receiver object this.

Fig. 1b gives the type hierarchy. A self-modified type is a subtype of the
corresponding peer type because self denotes the this object, which is obviously
a peer of this. Types with self, rep, and peer modifiers are subtypes of the
corresponding type with a lost modifier because lost conveys less ownership
information. Similarly, an any-modified type is a supertype of all other versions.

The example in Fig. 1a also illustrates the use of ownership modifiers with
generic types. Field friends has type rep List<peer Person>, which expresses
that the List object is owned by the Person object containing the field, whereas
the elements stored in the list are peers of that object. Note that the ownership
modifier of a type argument is interpreted relative to the client that instantiates
the generic type (here, the Person object), not the object of the generic type.

Compound expressions: viewpoint adaptation and lost. The modifier of a com-
pound expression is determined by combining the ownership modifiers of its
components. For example, consider a field access tony.spouse, where tony is
of type rep Person. This expression traverses first a rep reference and then a
peer reference, so its modifier is the result of adapting tony’s spouse modifier
from the viewpoint of tony (where it is peer) to the viewpoint of this. Here,
this adaptation yields rep because the resulting object has the same owner as
tony, which is this.

In some cases, this viewpoint adaptation leads to a loss of static ownership
information. For example, the expression spouse.savings traverses first a peer
and then a rep field, so the resulting object has a specific relationship to this,
but the relationship cannot be expressed in the type system. GUT uses a special
ownership modifier lost to express this. Two different expressions of lost type
might stand for different unknown relationships, so it would be illegal to assign
one lost expression to another one. GUT remains sound by prohibiting the lost
type on the left-hand side of an assignment. This explains why GUT introduces
lost rather than reusing any to stand for an unknown relationship: it would be
too restrictive to forbid all assignments to left-hand-sides of type any.

Formally, viewpoint adaptation is a function B that takes two ownership
modifiers and yields the adapted modifier. (1) peer B peer = peer; (2) rep B
peer = rep; (3) u B any = any; (4) self B u = u; and (5) for all other
combinations the result is lost. In Fig. 1a, the modifier of spouse.savings
is peer B rep = lost. Since lost Person is a subtype of any Person, the
expression may be assigned to variable a.

In addition to field accesses, viewpoint adaptation also occurs for parameter
passing, result passing, and type variable bound checks.

Encapsulation. Generic Universe Types enforce that programs adhere to the
heap topology described by the ownership modifiers. In addition, they optionally
enforce an encapsulation scheme called the owner-as-modifier discipline [15]: an
object o may be referenced by any other object, but reference chains that do
not pass through o’s owner must not be used to modify o. This allows owner
objects to control state changes of owned objects and thus maintain invariants.
For instance, a Person object can enforce the invariant savings.balance ≥ 0
because the owner-as-modifier discipline prevents aliases to the Account object
savings from modifying its balance field. Therefore, it is sufficient to check that
each method of the Person object maintains the invariant.

The owner-as-modifier discipline is enforced by forbidding field updates and
non-pure (side-effecting) method calls through a lost or any reference. For

Constraint
Variable

Introduction

Constraint
Generation

Annotated
AST

Solver
Interface

AnnotationsConstraints

Max-SAT
Solver

WCNF Formula

Annotation
Insertion

GUT
Checker

Universe Type Inference

Solution

Type-Correct
Source Code

Inspection/Modification

Modified
Source Code

Modified
Heuristics

Compiler
Source Code

Potentially
Annotated AST

Modified
Source Code

Fig. 2. Overview of the inference approach. See Sec. 3 for a detailed discussion.

instance, the call spouse.savings.withdraw(1000) is rejected by the type
system because the viewpoint-adapted modifier of the receiver, spouse.savings,
is lost. A lost or any reference can still be used for field accesses and to call
pure (side-effect-free) methods. For instance, method assets in Fig. 1a may read
the balance field via the any reference a.

Because the default modifier is peer3, an un-annotated Java program is a
legally-typed program in GUT. This typing describes a flat ownership structure —
no object is owned by any other object — and so it imposes no constraints on,
nor guarantees about, the program’s operation. Therefore, inference is needed to
automatically produce annotations that express a deeper ownership structure.

3 Inference Approach and Example

Given a Java program as input, which may be partially annotated with ownership
modifiers, the static inference determines a legal GUT typing. Fig. 3 shows an
example input program and four inferred typings. Fig. 2 overviews the process.
Sec. 3.1 discusses the type inference process (the dotted rectangle of Fig. 2),
which is the focus of this paper. Sec. 3.2 explains how a user can iteratively use
our toolset (the rest of Fig. 2).

3.1 Inference Approach

Type inference has three main steps: creating constraint variables, creating
constraints over those variables, and solving the constraints to infer a typing.

The inference first creates a constraint variable for each possible occurrence
of an ownership modifier or of viewpoint adaptation in the source code. Recall
that GUT allows ownership modifiers for all reference types. Primitive types and
type variable declarations/uses do not take ownership modifiers, and therefore
no constraint variables are created for them. However, the upper bound of a
type variable takes ownership modifiers. In the example in Fig. 3, a total of 14
3 There are a few exceptions. For instance, subtypes of Throwable have the any modifier

by default to allow the propagation of exceptions across ownership contexts.

class Person {

Person1 spouse;

Account2 savings;

List3<Person4>12 friends;

void marry(Person5 p) {

spouse = p;

}

void befriend(Person6 p) {

friends.add(p);

}

int assets() {

Account7 a = spouse.savings13;

return savings.balance + a.balance;

}

void demo() {

Person8 o1 = new Person9();

Person10 o2 = new Person11();

this.marry(o1);

o1.befriend(o2)14;
}

}

Solution α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

no weights peer peer peer peer peer peer peer peer peer peer peer any peer peer

default any rep rep any any any any rep rep rep rep any lost any

alternative rep rep rep peer rep peer any rep rep rep rep any lost rep

manual peer rep rep any peer any any peer peer rep rep any lost any

Fig. 3. An example un-annotated program and typings. Our algorithm creates constraint
variables α1–α11 corresponding to locations 1–11 of type uses, and creates α12–α14

corresponding to the viewpoint adaptations induced by the expressions at locations
12–14. The figure also shows four inference solutions that are inferred by our tool,
depending on the heuristics used and whether the programmer provides a partial
annotation. In the last solution, the italic peer modifier for α1 was manually added to
the source code before inferring the solution.

constraint variables are introduced: α1–α11 correspond to the locations where
ownership annotations may appear in the source code and α12–α14 are constraint
variables for viewpoint adaptation. For example, a constraint variable α1 is
introduced for the ownership modifier in the spouse field type, and constraint
variable α9 is introduced for the ownership modifier in the new expression. One
generic type contains multiple constraint variables corresponding to the main and
type argument modifiers; for the type of field friends, α3 is introduced for the
main modifier and α4 is introduced for the type argument. Viewpoint adaptation
introduces additional constraint variables, for example, α12 represents the result
of adapting the declared upper bound of the type variable of class List (assumed
to be any Object) from the point-of-view of friends to this.

The inference generates constraints over the constraint variables by traversing
the AST. These constraints correspond one-to-one to the type rules of GUT
[13]. Additional, weighted, breakable constraints express preferences regarding
the solution, obtained by applying a heuristic. For Fig. 3, the tool generates a
total of 35 constraints. For example, the assignment spouse = p results in a
subtype constraint between constraint variables α5 and α1. Constraints are also
generated to connect the constraint variables involved in viewpoint adaptation.
For example, the field access spouse.savings has to adapt the declared type
of field savings from the point-of-view of spouse to this. To model the result

of this adaptation, the additional constraint variable α13 was introduced. The
constraint α1 B α2 = α13 is generated to encode the dependency between the
involved variables. The assignment to local variable a then induces a subtype
constraint between α13 and α7.

The constraints are translated into a weighted SAT formula. A weighted Max-
SAT solver [5] finds a solution that satisfies all of the type system constraints and
the breakable constraints resulting in the maximum weight. The SAT solution
is translated into a typing for the program: a concrete ownership modifier for
each constraint variable in the program. Any such typing is guaranteed to be
correct, as all type rules are encoded as mandatory constraints; our experiments
also confirm this.

3.2 Iterative Usage

As explained in the introduction, the best typing in an ownership type system
depends on the programmer’s intent and how the annotations will be used by
downstream tools. Therefore, we expect the inference tool to be used iteratively.

Using the inference without heuristics results in the first solution presented
in Fig. 3: all modifiers are assigned peer, except for α12 which is the result of
adapting the declared any upper bound. This flat assignment is usually not the
desired solution.

By using our tool’s built-in heuristics (see Sec. 4.3), we get the second result
in Fig. 3. This heuristic prefers a deep ownership structure and broadly applicable
methods. For example, this heuristic prefers α5 and α6 to be any, making the
methods callable with arbitrary arguments, even though this solution requires α1

and α4 to be any, reducing the encapsulation guarantees of these fields. α2 and
α3 are inferred to be rep, as they are not dependent on parameter types.

If the inferred annotations do not reflect the programmer’s design intent,
the programmer can improve the result in three ways: customize the heuristics,
manually add annotations, or fix defects in the source code.

(1) The programmer may customize the heuristics to encourage certain results.
For instance, the programmer might select heuristics that favor general types for
a library in order to make the library as widely applicable as possible. By contrast,
when the whole program is available, the programmer might select heuristics
that favor restrictive modifiers to facilitate subsequent use of the ownership
information, for instance by a program verifier. In our example, the third solution
was inferred using a heuristic that prefers rep as annotation for fields and has no
other weights. Note how in this solution α4 is inferred to be peer. A rep solution
is not possible in this location, as it would result in α6 to be rep, which would
make the call o1.befriend(o2) impossible. On the other hand, α5 was inferred
to be rep; this was possible, because the only call of marry is on a this receiver.
Calls of marry with a receiver other than this are impossible in this solution.
This changed heuristic provides stronger encapsulation, but limits the future use
of fields and methods. In Sec. 4.3 we will discuss weighting in more detail.

(2) The programmer can write ownership modifiers in the input program.
The inference system always respects such annotations, even if the program text

would have permitted another solution. In our example, the fourth solution is the
result of manually adding a peer annotation to field spouse, fixing constraint
variable α1 to peer. Using our default heuristics again, this would result in the
parameter to marry also becoming peer. Also the type of o1 needs to be inferred
to be peer in order for this and o1 to be peers in the call of marry.

(3) The programmer might fix defects in the source code. One variety of
defect is programmer-written type annotations that are incompatible with one
another or with usage by the source code. The inference system points out such
errors (currently by providing no inference result; improved error messages are
future work). In our example, assume the programmer manually adds a peer
annotation to field spouse and a rep annotation to parameter p of method marry;
no assignment to the remaining constraint variables could resolve the mismatch
of modifiers in the assignment spouse = p.

A more subtle defect is one that prevents inference of the programmer’s
intended ownership structure, even though the system outputs some legal typing
of the program. For example, suppose that a programmer designed a layered
system in which lower layers do not call non-pure methods of higher layers. A
violation of this property would cause the inference to produce a flatter-than-
desired ownership structure. The programmer could correct the source code so
that it implements the design.

Once the programmer is satisfied with the results, our tool inserts the owner-
ship modifiers into the source code to improve the documentation of the code,
to encourage that the heap topology and encapsulation are considered during
program maintenance, and to make them available to downstream tools such
as a program verifier. The GUT type checker can be used to ensure that the
annotations remain consistent.

4 Tunable Static Inference

This section formalizes our inference approach. Sec. 4.1 presents a core calculus
for a Java-like programming language, which is used by the rest of the formalism.
Sec. 4.2 gives syntax-directed type inference rules: each programming language
construct gives rise to a set of constraint variables and to a set of constraints
over the variables. We introduce a constraint variable for each location in the
source program where a concrete ownership modifier may be written and for each
expression that requires viewpoint adaptation. Any solution to the constraints is a
legal assignment of a concrete ownership modifier to each source location. Sec. 4.3
describes how to add additional constraints that express preferences among the
possible solutions. Finally, Sec. 4.4 shows how to encode all the constraints as a
weighted SAT problem, and to transform a weighted Max-SAT solver’s output
into a set of concrete ownership modifiers for the program.

4.1 Programming Language

Fig. 4 summarizes the syntax of the language and the naming conventions.

P ::= Cls

Cls ::= class Cid〈TP〉 extends C〈T 〉 { fd md } C ::= Cid | Object
TP ::= X extends N fd ::= T f ;

md ::= p 〈TP〉 Tr m(T pid) { e } p ::= pure | impure
e ::= null | x | new N() | e.f | e0.f :=e1 | T ::= N | X

e0.〈T 〉m(e) | (N) e N ::= u C〈T 〉
u ::= α | peer | rep | any | lost | self x ::= pid | this

pid parameter identifier f field identifier
m method identifier Cid class identifier
α constraint variable identifier X type variable identifier

Fig. 4. Syntax of our programming language. A sequence of A elements is denoted
as A. The surface syntax (written by the programmer) does not include ownership
modifiers α, lost, or self, and allows omitting ownership modifiers. The only difference
from previous formalizations of GUT [13] is the addition of constraint variables α as a
placeholder for a concrete ownership modifier.

A program P consists of a sequence of class declarations; P is implicitly
available in all judgments. A class declaration Cls names the class and its
superclass, along with their type parameters and type arguments, respectively,
and gives field and method declarations. A field declaration is a simple pair of
a type and an identifier. A method declaration consists of the method purity,
method type parameters if any, return type, method name, formal parameter
declarations, and an expression for the method body. An expression e can be the
null literal, a method parameter access, object creation, field read, field update,
method call, or cast.

A type T is either a non-variable type N or a type variable X. A non-
variable type N consists of an ownership modifier u and a possibly-parameterized
class C. The definition of the ownership modifiers is the only deviation from
previous formalizations of GUT. Ownership or Universe modifiers u include
the concrete ownership modifiers peer, rep, any, lost, and self, as well as
constraint variables α. Constraint variables α are used as placeholders for the
concrete ownership modifiers that the system will infer. The surface syntax does
not include α, lost, or self and allows omitting ownership modifiers; constraint
variables are introduced for all omitted ownership modifiers.

4.2 Building the Constraints

This section introduces constraint variables (Sec. 4.2.1), the kinds of constraints
(Sec. 4.2.2), and the syntax-directed rules that build the constraints (Sec. 4.2.3).

4.2.1 Constraint variables. A constraint variable represents the ownership
modifier for the occurrence of a reference type or a particular expression.

For each position where a concrete ownership modifier may occur in the
solution — that is, for each use of a type — our tool introduces a constraint

variable α that represents the ownership modifier for that position. Our inference
will later assign one of the concrete ownership modifier rep, peer, or any to each
of these constraint variables. The tool also introduces a constraint variable for
each expression that induces viewpoint adaptation; these will be assigned to rep,
peer, any, or lost. self is used only as the type of the this literal and never
inferred.

To infer the ownership modifiers for the program of Fig. 3, our tool would
introduce a constraint variable for each numbered location.

If the programmer has partially annotated the program, then the generated
constraints use the programmer-written modifier instead of creating a constraint
variable.

4.2.2 Constraints. The inference rules (Sec. 4.2.3) create five kinds of con-
straints over the ownership modifiers, in particular, over the constraint variables.

Subtype (u1 <: u2): A subtype constraint enforces that u1 will be assigned an
ownership modifier that is a subtype of the ownership modifier assigned to
u2. Subtype constraints are used for assignments and for pseudo-assignments
(parameter passing, result passing, type variable bound checks).

Adaptation (u1 B u2 = α3): An adaptation constraint ensures that the view-
point adaptation of variable u2 from the viewpoint expressed by u1 results
in α3.

Equality (u1 = u2): An equality constraint ensures that two modifiers are the
same. They are used to handle method overriding and type argument sub-
typing, which are both invariant.

Inequality (u1 6= u2): An inequality constraint ensures that two modifiers differ.
For example, the type system forbids the lost modifier on the left-hand
side of an assignment. The type system also forbids the any modifier for the
receiver of field updates, if the owner-as-modifier discipline is enforced.

Comparable (u1 <:> u2): A comparable constraint expresses that two owner-
ship modifiers are not incompatible, that is, one could be a subtype of the
other. These constraints are used for casts.

Fig. 6 in Sec. 4.2.3 defines helper judgments that lift these constraints from
ownership modifiers to types.

4.2.3 Constraint generation. Our system takes as input a program and
creates a set Σ of the kinds of constraints defined in Sec. 4.2.2. The constraints
in Σ are satisfied by any correct GUT typing for the program. The constraints
correspond to the type rules [13] expressed abstractly over the ownership modifiers.

Fig. 5 contains the rules for extracting constraints from a program. It defines
judgments over class, field, and method declarations, as well as over expressions.
Our inference is a type-based analysis [36] that runs only on valid Java programs.
Therefore, our rules do not encode all Java type rules, but give only constraints
for the additional checks for Generic Universe Types. To simplify the notation,

the rules use helper judgments and functions that lift constraints from single
ownership modifiers to types; they are defined in Figs. 6 and explained after the
discussion of the main judgments.

An environment Γ maps type variables of the enclosing class and method to
their upper bounds and variables to their types. We use the notation Γ (X) and
Γ (x) to look-up the upper bound of a type variable and the type of a variable,
respectively. Helper function env (defined in Fig. 6) defines the environment
necessary for checking class and method declarations.

We now discuss the rules of Fig. 5.
The constraints for a class, field, method parameter, and method declaration

consist of the constraints for their components. The well-formedness of types
is ensured using the well-formed type (OK) judgment defined in Fig. 6. For a
method declaration, note that the environment is extended with the method type
variables and the method parameters. Function overriding requires that, if the
current method is overriding a method in a superclass, the parameter and return
types are consistent. The resulting constraint set Σ2 defines equality constraints
between the types in the current method signature and a directly overridden
method signature. For space reasons, we do not show the formal definition of
overriding; it follows directly from the GUT formalization [13].

Finally, there are eight judgments for expressions, which are also mostly
standard. We discuss casts immediately below. For an object creation expression
the main ownership modifier has to be different from lost and any to ensure that
either peer or rep is inferred, giving the new object a specific location in the
ownership topology. Helper functions fType and mType, discussed below, yield
the field type, respectively the method signature, after viewpoint adaptation,
and additional constraints that encode the necessary adaptations of modifiers. To
ensure soundness of the inferred results, lost has to be forbidden for all types
involved in pseudo-assignments: the adapted field type, and the adapted method
parameter types and method type variable bounds. These constraints ensure that
modifications are only possible if the ownership is known statically. The rules
for a field update and for an impure method call generate additional constraints
only when the owner-as-modifier discipline is enforced: the main modifier of the
receiver expression has to be different from lost and any to ensure that the
owner of the modified object is statically known.

The Γ ` N <:> T0 : Σc clause of the cast rule requires explanation. Recall
that a cast is a type loophole that indicates that the program’s behavior is beyond
the reasoning capabilities of the type system. If the un-annotated input program
contains a cast, then the corresponding runtime check might fail at run time.
Generic Universe Types also support casts: downcasts that specialize ownership
information (that is, casts from any to peer or rep) and require a runtime check.
Our inference never inserts a new cast; to do so would defeat the purpose of
static ownership type checking. However, the inference is permitted to choose
arbitrary4 ownership modifiers at existing casts, and therefore an existing cast

4 Actually, the choice is not arbitrary. The <:> constraint requires the two types are
comparable — otherwise, the cast is guaranteed to fail.

Environment: Γ = {X 7→ N ; x 7→ T}

Class declaration: ` Cls : Σ env(Cid ,TP) = Γ Γ ` fd : Σf Γ ` md : Σm

Γ ` self C〈T 〉, bounds(TP) OK : Σt

Σ = Σf ∪Σm ∪Σt

` class Cid〈TP〉 extends C〈T 〉 { fd md } : Σ

Field and method parameter declaration: Γ ` T f : Σ , Γ ` T pid : Σ

Γ ` T OK : Σ
Γ ` T f : Σ

Γ ` T OK : Σ
Γ ` T pid : Σ

Method declaration: Γ ` md : Σ env(Γ,TP ,T pid) = Γ ′ Γ ′ ` T pid : Σ0

Γ ′ ` e : T,Σ1 overriding(Γ ′,m) = Σ2

Γ ′ ` bounds(TP), Tr OK : Σ3

Γ ′ ` T <: Tr : Σ4

Γ ` p 〈TP〉 Tr m(T pid) { e } :
Si=4

i=0Σi

Expressions: Γ ` e : T,Σ

Γ ` e : T0 : Σ0

Γ ` T0 <: T : Σ1

Γ ` e : T,Σ0 ∪Σ1 Γ ` null : T, ∅ Γ ` x : Γ (x), ∅

Γ ` e0 : T0, Σ0

Γ ` N OK : Σt

Γ ` N <:> T0 : Σc

Σ = Σ0 ∪Σt ∪Σc

Γ ` (N) e0 : N,Σ

Γ ` N OK : Σ0

Σ1 = {om(N) 6= {lost, any}}
Γ ` new N() : N,Σ0 ∪Σ1

Γ ` e0 : N0, Σ0 Γ ` e1 : T1, Σ1

fType(N0, f) = T2, Σ2 Γ ` T1 <: T2 : Σ3

Σ4 = {lost 6∈ T2}
Σ5 = { om(N0) 6= {lost, any} }

Γ ` e0.f :=e1 : T2,
Si=5

i=0Σi

Γ ` e : N0, Σ0

fType(N0, f) = T,Σ1

Γ ` e.f : T,Σ0 ∪Σ1

Γ ` e0 : N0, Σ0 Γ ` ea : Ta, Σ1

mType(N0,m,T) = p 〈TP〉 Tr m(Tp pid), Σ2

Γ ` Ta <: Tp : Σ3

Σ4 = {lost 6∈ (Tp, bounds(TP))}
Γ ` T OK : Σ5 Γ ` T <: bounds(TP) : Σ6

p = impure⇒ Σ7 = { om(N0) 6= {lost, any} }
p = pure⇒ Σ7 = ∅

Γ ` e0.〈T 〉m(ea) : Tr,
Si=7

i=0Σi

Fig. 5. Constraint generation rules. Helper judgments and functions are defined in
Figs. 6. The generated constraint set Σ encodes all constraints that need to be fulfilled
to give a valid GUT program. The two framed constraints only need to be generated if
the owner-as-modifier discipline should be enforced.

might fail either because of the base language check, or because of the ownership
check. For instance, if the inferred modifier of variables x and o are peer and
any, respectively, then the constraint for the expression x = (Person) o infers
peer as ownership modifier for the cast to make the assignment type-correct. Our
choice is a natural extension of the base language behavior. An alternative would
be for the static inference to choose modifiers in such a way as to guarantee that
the runtime ownership check at each cast succeeds. This can be accomplished by
simply changing “<:>” to “=”. Subsumption of the expression type could then
still be used to cast to a supertype, which is guaranteed to succeed.

Helper judgments and functions. Fig. 6 defines additional judgments and functions
that support the main ones of Fig. 5.

Function om gives the main ownership modifier for a non-variable type.
Function bounds gives the upper bound types from type parameter declarations.
We compact the notation to compare one ownership modifier against a set of
ownership modifiers and to ensure that an ownership modifier does not appear
in a type. Function env defines the environment depending on the surrounding
class and method declarations.

For space reasons, we omit showing how each judgment is also lifted to
sequences of elements by applying the judgment to the individual elements and
combining the results.

Viewpoint adaptation is lifted from single modifiers (defined in Sec. 4.2.2)
to types using two judgments: (1) adapting a type from an ownership modifier
and (2) adapting a type from the viewpoint of a non-variable type. A type is
adapted from the viewpoint of an ownership modifier to this, giving an adapted
type and a constraint set. There are two cases. No constraint is generated to
adapt type variables X, as they do not need to be adapted. The constraints to
adapt a non-variable type u′ C〈T 〉 from viewpoint u consist of the constraint for
combining u with the main modifier u′, resulting in a fresh constraint variable
α, and recursively adapting the type arguments. A type is adapted from the
viewpoint of a non-variable type to this, by first adapting the type using the main
modifier u and then substituting the type arguments T for the type variables
X. Function typeVars gives the type variables defined by a class. The notation
T [T/X] is used to substitute type arguments T for occurrences of type variables
X in T .

The subtyping judgment between two types determines a constraint set that
has to hold in order for the two types to be subtypes. The most interesting
subtyping rule is the second one, which derives a subtyping relationship from
a subclassing relationship by adapting the type arguments from the superclass
to the particular subtype instantiation. The subclassing relationship v is the
reflexive and transitive closure of the extends relationship of the classes; it is
defined over instantiated classes C〈T 〉, as defined in GUT [13].

Fig. 6 does not show the lifted versions of equality and comparable constraints.
The equality constraint is lifted to types by simple recursion. A comparable
constraint is applied to two non-variable types by first going to a common

Notation:
om(u C〈T 〉) ≡ u (u 6= {u1, u2, . . .}) ≡ (u 6= u1, u 6= u2, . . .)

bounds(X extends N) ≡ N (u 6∈ u′ C〈T 〉) ≡ (u 6= u′ ∧ u 6∈ T)

Environment definitions:

env(Cid,X extends N) = {X 7→ N ; this 7→ self Cid〈X〉}
env({Xc 7→ Nc;x 7→ T}, X extends N,Tp pid) = {Xc 7→ Nc, X 7→ N ; x 7→ T , pid 7→ Tp}

Ownership modifier - type adaptation: u B T = T ′ : Σ

u B X = X : ∅
Σ0 = {u B u′ = α} fresh(α) u B T = T ′ : Σ1

u B u′ C〈T 〉 = α C〈T ′〉 : Σ0 ∪Σ1

Type - type adaptation: Γ ` N B T = T ′ : Σ

u B T = T1 : Σ
T1

ˆ
T/X

˜
= T ′ typeVars(C) = X

u C〈T 〉 B T = T ′ : Σ

Subtyping: Γ ` T <: T ′ : Σ

Σ = {u <: u′,T = T
′}

Γ ` u C〈T 〉 <: u′ C〈T ′〉 : Σ

C〈X〉 v C′〈T1〉
u C〈T 〉 B T1 = T ′, Σ

Γ ` u C〈T 〉 <: u C′〈T ′〉 : Σ

Γ ` X <: X : ∅ Γ ` X <: Γ (X) : ∅

Γ ` T <: T1 : Σ1

Γ ` T1 <: T ′ : Σ2

Γ ` T <: T ′ : Σ1 ∪Σ2

Well-formed type: Γ ` T OK : Σ

Γ ` T OK : Σ0

typeBounds(u C〈T 〉) = T ′, Σ1 Γ ` T <: T ′ : Σ2

Γ ` u C〈T 〉 OK :
Si=2

i=0Σi

X ∈ Γ

Γ ` X OK : ∅

Adaptation of a field type: fType(N, f) = T,Σ

fType(u C〈T 〉, f) = T ′, Σ where fType(C, f) = T

u C〈T 〉 B T = T ′ : Σ

Adaptation of a method signature: mType(N,m,T) = p TP Tr m(Tp pid), Σ

mType(N,m, T ′) = p 〈X extends N ′〉 T ′
r m(T ′

p pid), Σb ∪Σr ∪Σp

where N = u C〈T 〉
mType(C,m) = p 〈X extends Nb〉 Tr m(Tp pid)

N B Nb = N0 : Σb N B Tr = Tr0 : Σr N B Tp = Tp0 : Σp

N0[T ′/X] = N ′ Tr0[T ′/X] = T ′
r Tp0[T ′/X] = T ′

p

Adaptation of type bounds: typeBounds(N) = N ′, Σ

typeBounds(u C〈T 〉) = N ′, Σ where class C 〈X extends N〉 . . . ∈ P
u C〈T 〉 B N = N ′, Σ

Look-up of class type variables: typeVars(N) = X

typeVars(u C〈T 〉) = X where class C〈X extends N〉 . . . ∈ P

Fig. 6. Helper judgments and functions for the constraint generation rules of Fig. 5.

superclass and then generating a comparable constraint for the two main modifiers
and equality constraints for the type arguments.

The well-formed type (OK) judgment defines when a type T is well-formed
in an environment Γ giving the constraints Σ. We omit judgments for well-
formedness of environments, which are basically just well-formedness for all
involved types.

The overloaded helper functions fType, mType, and typeBounds are defined
as follows. Function fType(C, f) yields the declared field type of field f in class
C or a superclass of C. It yields only a type, but no constraints. The overloaded
function fType(N, f) (taking a non-variable type rather than a class as first
argument) determines the type of field f adapted from viewpoint N to this. It
results in an adapted field type and constraints on the constraint variables of the
viewpoint and the constraint variables for the declared type.

Function mType(C,m) yields the declared method signature of method m in
class C or a superclass of C. The overloaded function mType(N,m,T) determines
the method signature of method m adapted from viewpoint N to this and
substituting method type arguments for their type variables. It results in an
adapted method signature and constraints on the constraint variables of the
viewpoint and the constraint variables for the declared parameter, return, and
type variable bound types, respectively.

Function typeBounds(u C〈T 〉) yields the upper bounds of the type variables
of class C adapted from the non-variable type u C〈T 〉 to this and a set of
constraints.

4.3 Heuristic Choice of a Solution

For a given set of constraints, the solver may return any satisfying assignment.
For completely un-annotated programs, these solutions include the trivial one
that assigns peer to all variables. It is typically not the desired solution because
it corresponds to a completely flat ownership structure.

When choosing among many possibilities to assign ownership modifiers, a
human programmer is influenced by a variety of design considerations.

– A deeper ownership structure gives better encapsulation, so it is generally
preferable, but it limits sharing.

– The types in method signatures influence what clients may call the method,
so it is preferable for method parameters to have the any modifier.

– Other heuristics are possible; for instance, a verification tool based on own-
ership, such as Spec# [24], has different needs for invariants and pre-/post-
conditions.

To reflect these design considerations, we attach weights to some constraints.
All constraints of the type system are mandatory. For each constraint variable, we
use the position of the variable in the AST to encode a preference for a particular
solution by adding an additional breakable, weighted equality constraint.

For variables α that appear in . . . :

– . . . field types, the weight for α = rep is 80.
– . . . parameter types, the weight for α = any is 150.
– . . . return types, the weight for α = rep is 30.
– . . . class and method type variable bounds, the weight for α = any is 200.

This pre-defined heuristic prefers solutions with deep ownership structures and
generally applicable methods. A user may adapt these weights, either globally or
for individual variables. In the example from Fig. 3, the “alternative” solution
was generated using 100 as weight for rep for variables that appear in field types
and using no other weights. As discussed previously, this alternative weighting
results in stronger encapsulation at the cost of the applicability of the methods.
In the rest of this paper we will use the pre-defined heuristics; examining the
effect of alternative weights is interesting future work.

Weights can also be used to handle other guidance, from a user or tool, more
flexibly. Suppose that a user has partially annotated a program. The annotations
are encoded as mandatory equality constraints. If the partial annotations lead to
unsatisfiable constraints, the tool could—after consulting the developer—convert
them from mandatory into breakable constraints. This would give the inference
tool the flexibility to override annotations when necessary. The programmer
would then inspect what annotations needed to be changed.

4.4 Encoding for a SAT Solver

Once the constraint system Σ is generated, it needs to be solved. We encode Σ
as a weighted Max-SAT problem and use an existing solver [5] for three reasons.
First, Generic Universe Types allow only a fixed number of ownership modifiers;
thus, constraints can easily be encoded as boolean formulas. Second, the weights
allow us to encode heuristics that direct the SAT solver to produce good solutions.
Third, reusing a solver allows us to benefit from all the optimizations that went
into existing solvers.

This section explains how to encode the constraints Σ as boolean formulas.
These formulas are then converted to conjunctive normal form, which is the
input format of the SAT solver. The SAT solver either returns an assignment
of booleans that satisfies the formula or notifies the user that the formula is
unsatisfiable. The assignment of booleans corresponds to ownership modifiers for
the variables that satisfy all constraints.

We finally turn all the formulas into the CNF format used by the Max-SAT
evaluation benchmarks [27]. This format is supported by different SAT solvers,
and our implementation supports changing the solver.

Encoding of constraint variables. Four boolean variables βpeer
i , βrep

i , βany
i , and

βlost
i represent each ownership variable αi from the constraints. The encoding

expresses that exactly one of these four booleans is assigned true:

(βpeer ∨ βrep ∨ βany ∨ βlost) ∧ ¬(βpeer ∧ βrep) ∧ ¬(βpeer ∧ βany) ∧
¬(βpeer ∧ βlost) ∧ ¬(βrep ∧ βany) ∧ ¬(βrep ∧ βlost) ∧ ¬(βlost ∧ βany)

Constraint Encoding

α1 <: α2
(βany

1 ⇒ βany
2) ∧ (βpeer

2 ⇒ βpeer
1) ∧

(βrep
2 ⇒ βrep

1) ∧ (βlost
1 ⇒ (βlost

2 ∨ βany
2))

α1 B α2 = α3

(βpeer
1 ∧ βpeer

2 ⇒ βpeer
3) ∧ (βrep

1 ∧ βpeer
2 ⇒ βrep

3) ∧
(βany

2 ⇒ βany
3) ∧ (βlost

2 ⇒ βlost
3) ∧ (βany

1 ∧ ¬βany
2 ⇒ βlost

3) ∧
(βlost

1 ∧ ¬βany
2 ⇒ βlost

3) ∧ (βrep
2 ⇒ βlost

3)

α1 = α2
(βpeer

1 ⇒ βpeer
2) ∧ (βrep

1 ⇒ βrep
2) ∧

(βlost
1 ⇒ βlost

2) ∧ (βany
1 ⇒ βany

2)

α1 6= α2
(βpeer

1 ⇒ ¬βpeer
2) ∧ (βrep

1 ⇒ ¬βrep
2) ∧

(βlost
1 ⇒ ¬βlost

2) ∧ (βany
1 ⇒ ¬βany

2)

α1 <:> α2 (βpeer
1 ⇒ ¬βrep

2) ∧ (βrep
1 ⇒ ¬βpeer

2)

Fig. 7. For each kind of constraint (see Sec. 4.2.2), the formula that encodes it. Each
constraint variable αi is encoded by four boolean variables βrep

i , βpeer
i , βany

i , and βlost
i .

For every variable that will be inserted into the program, lost is forbidden and
the encoding of the variable is accordingly simplified.

An alternative encoding would use only two booleans to encode the four
possibilities. Such an encoding would have fewer variables, but more complicated
clauses to encode constraints. Our encoding can be solved more efficiently [17].

Encoding of constraints. Fig. 7 defines the encoding of the constraints from
the constraint set Σ into formulas over the boolean variables and follows the
definitions given in Sec. 2.

We use simpler encodings when the constraint is between a variable and a
concrete ownership modifier. For example, the equality constraint αi = peer is
encoded by the formula βpeer

i .

Encoding of weights. We use the weighting feature of a weighted Max-SAT solver
to encode the weights of Sec. 4.3.

For each mandatory constraint we use the maximum weight, which the SAT
solver treats as infinity; this enforces that all the type rules are fulfilled. For each
breakable constraint we use the determined weight.

5 Implementation and Experience

This section describes the implementation (Sec. 5.1), our experience with it
(Sec. 5.2), and possible future work (Sec. 5.3).

The implementation, experimental setup, and results are publicly available5.

5 http://www.cs.washington.edu/homes/wmdietl/inference/

Benchmark SLOC Constraint Size CNF Size Timing (seconds)
vars constraints vars clauses topol. encap.

topol. encap. topol. encap. gen solve gen solve

1. zip 2611 455 2411 2949 4656 13639 14063 4.5 1.1 4.5 1.1
2. javad 1846 364 2571 3113 4988 14989 15333 3.5 1.0 3.6 1.0
3. jdepend 2460 824 4868 6024 9752 28110 29176 5.1 1.4 5.8 1.5
4. classycle 4658 1548 8726 10242 17756 53062 54380 6.0 1.8 6.2 2.0

Fig. 8. Size and timing results. SLOC gives the number of non-blank, non-comment
lines as determined by the sclc tool. The constraint size columns give the number of
constraint variables and constraints in the program. The CNF size gives the number of
boolean variables and clauses in the CNF encoding. Finally, the timing columns give
the time for generating (gen) and solving (solve) the constraints. We executed each
run three times and report the median. The number of constraints and clauses and the
timing is further sub-divided into whether annotations for only the topology or also for
enforcing the encapsulation discipline should be inferred. This choice does not affect
the number of constraint variables or boolean variables.

5.1 Implementation.

The static inference is implemented on top of the Checker Framework [37], which
is a pluggable type checking framework built on top of the JSR 308 branch of
the OpenJDK compiler [16]. By building our inference tool on the OpenJDK
compiler, the tool supports full Java. The implementation of many language
features is significantly simplified by the Checker Framework, which provides
an abstraction of a basic type checker. The annotations inferred by the tool are
stored in the input format of the Annotation File Utilities (AFU), which can
automatically insert the inferred annotations into the source code. The AFU
format also facilitates the comparison of multiple runs of the inference tool. We
separately implemented a Generic Universe Types checker that handles Java
programs with GUT annotations.

The inference implementation consists of around 4400 non-comment, non-
blank lines of Scala code. The biggest development effort was spent on introducing
unique constraint variables and mapping them to AFU output positions. Con-
straint generation reuses a lot of the existing Checker Framework infrastructure.

Our tool is modular and only generates constraints for the part of the program
that is supplied as input. For the remainder of the program, in particular for the
JDK libraries, the tool currently uses the default modifier peer. The Checker
Framework supports a library annotation mechanism and we plan to use this
feature to provide a version of the JDK that is annotated with Generic Universe
Types.

5.2 Experience.

We applied the tool to four real-world, open source tools developed by external
developers. Fig. 8 presents size and timing information and Fig. 9 presents
statistics of the inferred annotations.

Benchmark Topology Encapsulation
peer rep any % rep % any peer rep any % rep % any

1. zip 306 81 68 18% 15% 322 93 40 20% 9%
2. javad 185 87 92 24% 25% 279 55 30 15% 8%
3. jdepend 529 175 120 21% 15% 600 160 64 19% 8%
4. classycle 1132 193 223 13% 14% 1165 188 195 12% 13%

Fig. 9. Number of inferred annotations, separated into inferring only the topology and
also inferring the owner-as-modifier encapsulation discipline.

The four subjects are: (1) OpenJDK’s implementation of the zip and gzip
compression algorithms, taken from OpenJDK 7 build 138, (2) javad6, a Java
class file disassembler, (3) JDepend7, a quality metrics tool, and (4) Classycle8,
a Java class dependency analyzer.

For each subject, we inferred a solution for the ownership topology and a
solution that also enforces the owner-as-modifier encapsulation discipline. For
this we manually added around 300 purity annotations to the four projects; in
the future we plan to integrate an automated purity analysis.

We evaluated three qualities of our tool implementation:

1. correctness of the inferred annotations,
2. usefulness of the inferred annotations, and
3. scalability with respect to performance.

Correctness. We inserted the inferred annotations into the source code and ran
the GUT type checker on these programs. In each case, the type checker verified
the correctness of the inference results.

The inference and type checker are independent implementations which are
separately implemented on top of the Checker Framework. Each is based on the
proved formalization of GUT [13].

The most notable limitation is related to raw types and local inner classes. Our
tool soundly infers an ownership modifier for the missing type arguments, but the
external annotation tool we use—the Annotation File Utilities—does not support
adding new type arguments to a raw type; code that uses raw types might not
compile. We manually added such annotations in our case studies. Additionally,
local inner classes are not correctly identified by the AFU annotation tool and
fail to insert; we did not encounter this problem in our case studies.

Usefulness. We manually examined the inference results and believe they accu-
rately reflect the ownership properties of the original programs. The relatively
large number of peer annotations in Fig. 9, indicating a flat inferred ownership
structure, is expected. We ran the inference tools on un-modified programs and
did not attempt to improve the structure of the programs. The programs were
6 http://www.bearcave.com/software/java/javad/, downloaded in December 2010.
7 http://www.clarkware.com/software/JDepend.html, version 2.9.1.
8 http://classycle.sourceforge.net/, version 1.3.3.

probably written with an intuitive sense of the desired ownership, but with no
tools to help the programmer achieve that goal. Another limitation that causes a
flat ownership structure is using the peer default modifier for libraries. Method
parameters and upper bounds of type variables that were defaulted to peer
force structures to be flatter than desired. It will be interesting future work to
allow changing both the structure of the programs and improving the library
annotations. Considering this, 10–20% inferred rep annotations is promising.

The number of any annotations consistently decreases when enforcing the
owner-as-modifier discipline. It is interesting to observe that the number of rep
references increased or decreased, depending on the application. Our explanation
for this is that modifications that can be performed with an any receiver without
enforcing an encapsulation discipline need to use a peer or rep receiver when an
encapsulation discipline is enforced.

Performance. Parsing the Java files took the bulk of the inference time. Encoding
the constraints into CNF, waiting for the SAT solver, and decoding the results
used only around a quarter of the total time.

To experiment with scalability we applied the inference tool to JabRef9, a
bibliography management tool consisting of around 74000 SLOC. The inference
generated 24402 variables and 248858 constraints, which were then translated to
521152 boolean variables and 1606319 CNF clauses. Generation of the constraint
system took a total of 41 seconds and solving the system took a total of 66
seconds, of which 42 seconds were spent in the SAT solver. Unfortunately, the
Annotation File Utilities crash when inserting the annotations, so we cannot use
the GUT type checker to verify the results.

The used hardware was a desktop machine with two CPUs, each a 4 core
Intel Xeon E5405 CPU at 2.00 GHz running Fedora 13 Linux 32 bit and using
OpenJDK 7 build 138. The total main memory available is 8 GB, but the
Java heap space is limited to 1 GB. The maximum observed pre-GC memory
consumption during constraint generation for our four case studies was around
160MB; when run on JabRef, the maximum pre-GC consumption was 510 MB.
All our software is single threaded.

5.3 Future Work.

Usability. We have shown initial results that our tool scales and produces correct
results, but this is not enough: it must also be usable by and useful to real
programmers. We plan to perform case studies and experiments to evaluate the
quality of the inferred typings, to investigate what ownership structures occur in
real programs, and to see how our tool is used in practice.

At the moment, the tool provides no information about an unsatisfied con-
straint system. We plan to exploit the ability of Max-SAT solvers to return a
partially-fulfilling assignment, to direct the programmer towards conflicts in the
system.

9 http://jabref.sourceforge.net, version 2.6.

Other ownership systems. We expect that our inference approach can be adapted
to other ownership type systems.

First, we plan to extend our inference to support ownership transfer [11, 34],
which requires inference of the uniqueness of variables and coping with dynamic
changes of ownership information.

Second, we plan to investigate how our approach can be adapted to ownership-
parametric type systems [3, 10, 39]. We are confident that by combining static
and runtime inference, we can effectively determine the minimum number of
ownership parameters required to type a class.

Third, we plan to explore how we can infer ownership annotations for more
complex topologies such as ownership domains [2] or multiple ownership [8].

Performance. Our inference tool seems to be fast enough for its expected use
case. We have made no attempt to optimize performance, so there are many
opportunities to speed up the tool, if performance becomes a problem.

Integration into an IDE would give access to the internal AST. This would
cut the cost of the AST generation and allow for immediate interaction with the
developer.

The SAT solver is invoked as a separate process and the input CNF is written
to a file and the output from the solver needs to be parsed and interpreted.
The advantage of this design is that we can use an arbitrary Max-SAT solver
that supports the Max-SAT evaluation format [27]. We currently use the Sat4j
solver [5] and plan to experiment with tighter integration, cutting out the file
generation and parsing overheads.

6 Related Work

We discuss related work on ownership inference and on other inference.
SafeJava [6, 7] provides intra-procedural ownership type inference for local

variables to reduce the annotation overhead. Agarwal and Stoller [1] describe
a runtime technique that infers further annotations. In contrast, we provide a
static analysis that infers all necessary annotations in a program.

AliasJava [3] combines ownership and aliasing. It uses a constraint system
to infer alias annotations. A key difference to our work is that the inference
for AliasJava needs to introduce ownership parameters for classes, whereas
GUT expresses ownership via ownership modifiers. The inference for AliasJava
potentially results in classes with many more ownership parameters than what
would have been used by a programmer. The system does not support partial
annotations to fix the number of ownership parameters. In contrast, GUT allows
one to associate ownership modifiers with type arguments for existing type
parameters, but the inference never needs to introduce additional type parameters.

The box model [38] separates the program into module interfaces and imple-
mentations. Ownership annotations are still required for the module interface,
but are automatically inferred for the implementations.

Pedigree types [25] present an intricate ownership type system similar to
Universe types with polymorphic type inference for annotations. It builds a
constraint system that is reduced to a set of linear equations. The inference
does not help with finding good ownership structures, but only helps propagate
existing annotations. We believe that our approach to type inference is easier to
understand and better supports the programmer in finding the desired ownership
structure. Our approach also handles generic types.

Milanova [28] presented a static inference of ownership annotations, then
together with Vitek extended the work to the owner-as-dominator system [29,
30]. Their tool constructs a static approximation to the object graph via an
alias analysis and then computes dominators to obtain candidates for owners.
Milanova et al.’s work differs from ours in five major aspects. (1) They do not
use one of the extant ownership type systems, nor do they formally define the
meaning of the inferred annotations. This makes it difficult to compare the
precision of the tools. Moreover, the correctness of the inferred annotations can
only be checked manually. Our work is based on the formalization of GUT,
which has been proved sound, and we used the GUT type checker to confirm the
correctness of the inferred annotations. (2) Their tool infers only annotations
for field declarations and new expressions, whereas we infer all annotations
required by Generic Universe Types. For example, for the zip/gzip programs,
their tool outputs 81 annotations whereas ours outputs 455. (3) Milanova et
al. use a whole-program pointer analysis, whereas our approach is modular and
thus applicable to libraries and single classes. (4) Even though Milanova et al.’s
analysis is asymptotically faster (O(n2) versus the NP-completeness of SAT), our
tool seems to outperform theirs in practice. For example, their tool took 27 and
28 seconds to analyze the gzip and zip programs, respectively, whereas ours took
only 5.6 seconds for both programs together (for comparison, their experiments
were performed on a MacBook Pro with unspecified CPU). (5) Milanova et al.’s
analysis does not handle generics, whereas ours does.

Ma and Foster [26] present a static analysis that combines an intraprocedural
points-to analysis and an interprocedural predicate inference to infer uniqueness
and ownership properties. Their system uses a strict definition of ownership and
found less than 2% of parameters to be owned; it also does not map the results
to a type system.

Kacheck/J [20] infers package-level encapsulation properties. The system
extracts a set of boolean constraints from a bytecode program. These constraints
encode that a class is not confined (that is, its objects may be accessed outside
the package that contains the class), that a method is not anynomous (that is, it
potentially assigns this to a non-confined type), and implications between these
properties. The constraint system is a set of ground Horn clauses, which is solved
in linear time. The solution indicates which classes are confined. Kacheck/J and
our system share the goal of inferring encapsulation properties via constraint
solving, but differ in three important aspects. (1) For confined types, there is a best
solution, namely the one with the largest set of confined types, whereas our system
uses weights and a Max-SAT solver to compute desirable solutions. (2) Confined

types support a non-hierarchical topology of static contexts, whereas GUT offers
hierarchies of contexts that can be created dynamically. The enforcement of an
encapsulation policy is optional in our system. (3) Confined types do not support
generics, but our inference does.

Moelius and Souter’s static analysis for ownership types resulted in a large
number of ownership parameters [31].

Baker [4] observes that Hindley-Milner type inference uses distinct datatype
nodes to represent disjoint runtime values. Therefore, the information computed
by this inference can be used to infer aliasing information. O’Callahan and
Jackson’s Lackwit tool [35] uses this idea to compute aliasing information for C
programs. Lackwit associates a tag with each type constructor in a program and
then uses Hindley-Milner type inference to compute equalities between these tags.
Variables whose types have different tags cannot be aliases. The alias information
computed by Lackwit is useful for various software engineering tasks, but not
sufficient to infer ownership. In particular, Lackwit cannot distinguish several
instances of the same data structure, for instance, to infer whether the nodes of
two list instances may be shared. Guo et al. [21] show how to perform a similar
analysis dynamically, increasing precision.

General type qualifier inference [9, 19] infers any solution that satisfies all
constraints, which is not useful for ownership types, where a trivial solution
always exists.

Transitioning from a non-generic to a generic program [22] also deals with
an under-constrained type inference problem that uses heuristics to determine a
good solution.

The system whose implementation is most similar to ours is a type inference
system against races [18]. It builds a constraint system, uses a SAT solver to
find solutions, and exploits a Max-SAT encoding to produce good error reports,
in cases where the constraint system is unsatisfiable. However, they are not
concerned with finding an optimal structure for their system, since any valid
locking strategy is acceptable. We use the weighting mechanism to find a desirable
ownership structure among satisfiable solutions.

7 Conclusion

We presented a novel approach to static ownership inference. To the best of our
knowledge, each of the following points is unique to our system. (1) Our system
accommodates preferences among multiple legal typings; the preferences can
come from sources such as heuristics and partial annotations. (2) It uses a Max-
SAT solver to encode programmer preferences and produce a desirable inference
result. (3) Our system infers ownership types for an existing, formally-defined
type system that supports generic types. (4) It infers complete ownership type
annotations for realistic programs. (5) The system supports either only inferring
an ownership topology, or also enforcing the owner-as-modifier encapsulation
discipline. (6) Its results are both correct, as verified by a type checker, and
desirable, as verified by manual inspection.

Acknowledgments. We thank the reviewers for their extensive feedback. Werner
Dietl was supported in part by a fellowship from the Swiss National Science
Foundation (SNSF). This work was also supported by NSF grant CNS-0855252.

References

1. R. Agarwal and S. D. Stoller. Type Inference for Parameterized Race-Free Java. In
VMCAI, volume 2937 of LNCS, pages 149–160, 2004.

2. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from
mechanism. In ECOOP, volume 3086 of LNCS, pages 1–25, 2004.

3. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program
understanding. In OOPSLA, pages 311–330, 2002.

4. H. G. Baker. Unify and conquer (garbage, updating, aliasing, ...) in functional
languages. In LISP and functional programming (LFP), pages 218–226, 1990.

5. D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, 2010. Available from http://www.

sat4j.org/.

6. C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
MIT, 2004.

7. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In OOPSLA, pages 211–230, 2002.

8. N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple ownership. In
OOPSLA, pages 441–460, 2007.

9. B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-defined
type qualifiers and qualifier rules. In ESOP, volume 3924 of LNCS, pages 264–278,
2006.

10. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA, 1998.

11. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP,
volume 2743 of LNCS, 2003.

12. L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL,
pages 207–212, 1982.

13. W. Dietl. Universe Types: Topology, Encapsulation, Genericity, and Tools. PhD
thesis, Department of Computer Science, ETH Zurich, 2009.

14. W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In ECOOP,
volume 4609 of LNCS, pages 28–53, 2007.

15. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 4(8):5–32, 2005.

16. M. D. Ernst. Type annotations specification (JSR 308). Available from http:

//types.cs.washington.edu/jsr308/, September 12, 2008.

17. M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic SAT-compilation of
planning problems. In IJCAI, pages 1169–1176, 1997.

18. C. Flanagan and S. N. Freund. Type inference against races. In SAS, pages 116–132,
2004.

19. D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In OOPSLA,
pages 321–336, 2007.

20. C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types.
In OOPSLA, pages 241–253, 2001.

21. P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic inference of
abstract types. In ISSTA, pages 255–265, 2006.

22. A. Kieżun, M. D. Ernst, F. Tip, and R. M. Fuhrer. Refactoring for parameterizing
Java classes. In ICSE, pages 437–446, 2007.

23. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. JML reference manual. Available
from http://www.jmlspecs.org/, 2008.

24. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP,
volume 3086 of LNCS, pages 491–516, 2004.

25. Y. D. Liu and S. Smith. Pedigree types. In IWACO, 2008.
26. K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java. In

OOPSLA, pages 423–440, 2007.
27. Max-SAT evaluation input and output format, February 2010. Available from

http://www.maxsat.udl.cat/10/requirements/.
28. A. Milanova. Static inference of Universe types. In IWACO, 2008.
29. A. Milanova and Y. Liu. Practical static ownership inference. Technical Report

RPI/DCS-09-04, Rensselaer Polytechnic Institute, March 2010.
30. A. Milanova and J. Vitek. Static dominance inference. In TOOLS, LNCS, 2011.

To appear.
31. S. E. Moelius and A. L. Souter. An object ownership inference algorithm and its

application. In Mid-Atlantic Student Workshop on Programming Languages and
Systems, 2004.

32. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. 2002.

33. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62:253–286, 2006.

34. P. Müller and A. Rudich. Ownership transfer in Universe Types. In OOPSLA,
pages 461–478, 2007.

35. R. O’Callahan and D. Jackson. Lackwit: A program understanding tool based on
type inference. In ICSE, pages 338–348, 1997.

36. J. Palsberg. Type-based analysis and applications. In PASTE, pages 20–27, 2001.
37. M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst. Practical

pluggable types for Java. In ISSTA, pages 201–212, 2008.
38. A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer. Infering ownership types for

encapsulated object-oriented program components. In Program Analysis and Com-
pilation, Theory and Practice, volume 4444 of LNCS, pages 120–144, 2007.

39. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic Java.
In OOPSLA, pages 311–324, 2006.

