
Ayudante: Identifying Undesired Variable Interactions

Irfan Ul Haq Juan Caballero
IMDEA Software Institute, Spain

{irfanul.haq, juan.caballero}@imdea.org

Michael D. Ernst
University of Washington, USA
mernst@cs.washington.edu

Abstract
A common programming mistake is for incompatible vari-
ables to interact, e.g., storing euros in a variable that should
hold dollars, or using an array index with the wrong array.
This paper proposes a novel approach for identifying unde-
sired interactions between program variables. Our approach
uses two different mechanisms to identify related variables.
Natural language processing (NLP) identifies variables with
related names that may have related semantics. Abstract type
inference (ATI) identifies variables that interact with each
other. Any discrepancies between these two mechanisms may
indicate a programming error.

We have implemented our approach in a tool called Ayu-
dante. We evaluated Ayudante using two open-source pro-
grams: the Exim mail server and grep. Although these pro-
grams have been extensively tested and in deployment for
years, Ayudante’s first report for grep revealed a program-
ming mistake.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging

Keywords Undesired variable interactions, NLP, natural
language processing, testing

1. Introduction
Sometimes programmers incorrectly use variables together
that should not interact. For example, a programmer may
store euros in a variable that should hold dollars, or add
distance variables in miles and kilometers, or accidentally
use a file descriptor as an index into an array.

Identifying such undesired variable interactions is the fo-
cus of this work. If two variables have different types, the
compiler can catch undesired interactions between them stati-
cally through type checking. The compiler finds a bug by iden-

tifying a discrepancy between a variable specification (the
programmer-written type) and how the variable is used. How-
ever, the compiler cannot detect all undesired interactions be-
tween variables. Sometimes a programmer uses the same type
for variables with different semantics, e.g., integers holding
costs in different currencies, or distances in different metrics,
or regular expressions that apply to different string data.

Programmers often choose variable names that indi-
cate the intended semantics of the variable. For example,
a programmer may define integer variables totalMiles,
remainingKms, and dollars; although these may have the
same programming-language type (int), the programmer
thinks of them as distinct subtypes of integer. The intuition
behind our work is that we can use variable names as a type
of specification; any mismatch between that specification and
how variables are used may indicate a program defect.

This work proposes a novel approach for identifying
undesired variable interactions. At a high level, our approach
uses two different clusterings to identify related variables: (1)
natural language processing (NLP) clusters variables with
related names and therefore possibly related semantics, and
(2) abstract type inference (ATI) [8, 16, 20] clusters variables
that interact with each other during a program’s execution.
A discrepancy between the two clusterings may indicate
incorrect source code, poorly-named variables, or both. For
example, consider an ATI cluster of variables that interact
with one another by means of +, =, ==, and < operators. It
is suspicious if such a cluster contains variable names with
unrelated semantics.

A direct implementation of the above intuition would
yield poor results; for example, it would not indicate which
suspicious clusters are most worthy of a user’s attention. Our
tool, Ayudante, operates as follows. First, Ayudante clusters
variables according to ATI; each cluster contains variables
that interact during the program execution. Next, Ayudante
measures the semantic cohesiveness of variable names within
each cluster. It does so using a function we designed for
measuring the natural-language similarity between two vari-
able names. Finally, Ayudante outputs the clusters with the
least-coherent variable names and also shows the location in
the code where these semantically-dissimilar variable names
interact.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

WODA’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3909-4/15/10...$15.00
http://dx.doi.org/10.1145/2823363.2823366

8

Figure 1: Ayudante architecture. Section 4 defines the variable name similarity function, and Section 5 explains the “Identifying
Undesired Interactions” part of the figure.

We evaluated Ayudante using two popular open-source
programs: the Exim mail server and grep. For both programs,
we analyzed the top five ATI clusters reported by Ayudante.
Although these programs have been heavily tested and have
been in deployment for years, we found an undesired variable
interaction in grep (see Section 7.2).

This paper makes the following contributions:

• We proposed a novel approach for automatically identify-
ing undesired variable interactions by combining natural
language processing (NLP) and abstract type inference
(ATI) techniques.

• We designed a technique to identify incompatible vari-
ables based on the semantics embedded in their variable
names. Applying this technique on clusters of variables
that interact with each other enables detecting undesired
variable interactions.

• We implemented Ayudante, a tool that implements our
approach, and evaluated Ayudante on the Exim and grep
programs, finding one undesired interaction in grep.

The remainder of the paper is structured as follows. Sec-
tion 2 overviews our approach. Section 3 reviews abstract
type inference. Section 4 defines our variable name similarity
function. Section 5 details how our approach combines ATI
and NLP. Section 6 provides implementation details, and
Section 7 evaluates our approach. Sections 8 and 9 present
related work and conclude.

2. Approach Overview
Figure 1 gives the architecture of Ayudante. Ayudante is
comprised of the following steps:

1. The ATI module groups variables that interact with each
other into ATI clusters. ATI can be computed statically [5,
16] or dynamically [8]. While our approach is independent
of the ATI technique used, the Ayudante implementation
uses dynamic ATI due to higher precision. Ayudante runs
the program on user-supplied inputs, such as a test suite,
and uses dynamic information flow techniques to compute
ATI clusters.

2. Ayudante partitions each ATI cluster into 2 sub-clusters,
using a novel distance metric based on variable name se-

mantic similarity described in Section 4. The sub-clusters
are chosen to maximize the following properties: within a
sub-cluster, all the variable names are semantically similar,
and between sub-clusters, the variable names are semanti-
cally different.

3. Ayudante computes the separation of the sub-clusters
obtained in the partitioning step. It uses this separation as
a measurement of the cohesiveness of each ATI cluster.
ATI clusters with well-separated sub-clusters have low
cohesiveness in terms of name semantics. They are more
likely to contain an undesired interaction.

4. Ayudante sorts ATI clusters based on cohesiveness and se-
lects those clusters with cohesiveness less than a threshold.
For variables that directly interact, Ayudante also outputs
the code location for the interaction. Recall that within an
ATI cluster, every pair of variables (transitively) interacts
during program execution.

A user runs Ayudante, reads its reports, investigates the
reported suspicious variable interactions, and for each report
decides whether to change the source code logic and/or the
variable names.

3. Abstract Type Inference
A program’s declared types only partially capture the similar-
ities among variable values. For example, a programmer may
use the int type to represent array indices, sensor measure-
ments, the current time, file descriptors, etc. Abstract type
inference (ATI) aims to infer these finer-grained groupings
of variables. ATI can be performed statically [5, 16], but in
order to achieve higher precision, Ayudante performs ATI
dynamically by running the DynComp tool [8].

At run time, DynComp assigns each value a unique
abstract type. If two values interact, then DynComp merges
their abstract types. For example, if the program executes
x+y or x<y, then the programmer considered x and y to have
the same abstract type. Ayudante uses DynComp’s default
settings, in which all arithmetic and bitwise operators are
considered interactions among the operands and the result.

9

4. Variable Name Similarity
This section describes our variable name similarity function
varsim(v1, v2, dl, da, se) → [0, 1] that outputs a value be-
tween 0 and 1 capturing the semantic similarity between vari-
ables names v1 and v2, where 1 represents completely similar
and 0 represents completely dissimilar. In addition to the two
variable names, it takes as input: a language dictionary (dl),
e.g., an English dictionary; an abbreviation dictionary (da)
that contains common abbreviations used in programming,
e.g., acc for accumulator or arr for array; and a stoplist (se)
that contains frequent words that are unlikely to contribute
to a variable name’s semantics, e.g., prepositions and con-
junctions such as from and where. We use WordNet [15] as
our language dictionary because its definitions feature multi-
ple senses (meanings) for most words. For brevity, we may
refer to the variable similarity function as varsim(v1, v2) re-
moving the other parameters. The variable name similarity
computation is comprised of 3 phases.

1. Tokenize each variable name into a sequence of dictionary
words, i.e., words appearing in the language dictionary
(Section 4.1).

2. Compute the word similarity wordsim(wi, wj) of all
pairs of dictionary words wi, wj where wi belongs to v1
and wj belongs to v2 (Section 4.2). The word similarity
function uses WordNet [15] to extract the meanings of
each dictionary word and computes the semantic similarity
between those meanings.

3. Compute the variable name similarity varsim(v1, v2)
from the word similarity results (Section 4.3).

Throughout this section we use as running example
the computation of the variable name similarity between
‘in_authskey15’ and ‘maxDepth’.

4.1 Tokenization
Tokenization takes as input one variable name and outputs
a list of dictionary words contained in the variable name.
Variable names often consist of multiple (possibly abbre-
viated) dictionary words, concatenated using capitalization
(e.g., CamelCase notation), special separator characters (e.g.,
underscore), and/or no clear demarcation (e.g., ‘authskey’).

Tokenization is comprised of 3 steps:

1. Tokenize the variable name based on lexical structure
induced by capitalization and separator characters (Sec-
tion 4.1.1). These initial tokens may or may not be dictio-
nary words.

2. For any word that does not appear in the language dictio-
nary, the abbreviation dictionary, or the stoplist, attempt
to further tokenize it by partitioning it into multiple dic-
tionary words and abbreviations (Section 4.1.2). This step
handles tokens that correspond to multiple concatenated
dictionary words or abbreviations, without capitalization
marking their boundaries.

3. Expand abbreviations into dictionary words so that they
can be looked up using WordNet (Section 4.1.3).

4.1.1 Lexical Tokenization
A variable name is first tokenized based on its lexical structure
induced by capitalization and separator characters. These
initial tokens are not necessarily dictionary words. We use
the following two rules to identify token boundaries.

• A separator character ends the previous token and
starts a new token after the separator character. For
variable ‘in_authskey15’, this rule produces tokens
[‘in’,‘authskey’]. The separators ‘_’, ‘1’, and ‘5’ are
discarded. Ayudante considers the following separators:
‘_’,‘-’,‘+’,‘*’, [0-9].

• A capital letter marks the start of a new token, unless
preceded and followed by another capital letter. This
rule handles CamelCase notation and avoids breaking up
acronyms and all-caps variable names. For example, vari-
able ‘useLLVMWorkarounds’ in Valgrind 3.10.1 would
be split into tokens [‘use’,‘LLVM’,‘Workarounds’] rather
than [‘use’,‘L’,‘L’,‘V’,‘M’, ‘Workarounds’]. For variable
‘maxDepth’ in our running example, this rule produces
tokens [‘max’,‘Depth’].

In our running example, lexical tokenization yields tokens
[‘in’,‘authskey’] for variable ‘in_authskey15’ and tokens
[‘max’,‘Depth’] for variable ‘maxDepth’.

4.1.2 Dictionary Tokenization
Lexical tokenization does not split variable names that are
concatenations of words and abbreviations without distin-
guishable boundaries marked by capitalization or separators
(such as ‘authskey’). Dictionary tokenization further splits
tokens that are not dictionary words or abbreviations into
multiple dictionary words and abbreviations.

1. Partition the string into substrings, each one of which
is a dictionary word. Our implementation does this by
partitioning the token into all possible substrings, then
removing partitionings in which any substring is not a
dictionary word or an abbreviation.
For ‘authskey’, the output is: [[‘au’, ’ths’, ‘key’], [‘auth’,
‘s’, ‘key’], [‘au, ‘t’, ‘hs’, ‘key’], [‘auth’, ‘s’, ‘k’, ‘e’, ‘y’],
. . . , [‘a’, ‘u’, ‘t’, ‘h’, ‘s’, ‘k’, ‘e’, ‘y’]]

2. Choose the partitioning with greatest average word
length (awl). Break ties using average English word fre-
quency [10]. For further ties, choose the first partitioning
in lexical order. Two special-case rules are:
• If the top-ranked partitioning does not contain a dic-

tionary word (or an abbreviation) with at least 3 char-
acters, skip the dictionary tokenization step. This rule
is designed to avoid overly small tokens. The running
example does not trigger this rule because both of the
top-ranked partitionings have dictionary word ‘key’
with length = 3.

10

• Handle abbreviation plurals by concatenating an ab-
breviation followed by a single letter ‘s’ to generate a
plural abbreviation. In our running example, plural con-
catenation transforms [‘auth’, ‘s’, ‘key’] into [‘auths’,
‘key’].

For ‘authskey’, the top 3 partitionings according to awl
are:
awl ([‘auths’, ‘key’]) = 5+3

2 = 4
awl ([‘au’, ’ths’, ‘key’]) = 2+3+3

3 = 2.6
awl ([‘auths’, ‘k’, ‘e’, ‘y’]) = 5+1+1+1

4 = 2
Since there is not an awl tie, the selected partitioning is
[‘auths’, ‘key’].

To summarize, after this step ‘in_authskey15’ has been
split into [‘in’, ‘auths’, ‘key’] and ‘maxDepth’ has been split
into [‘max’, ‘Depth’].

4.1.3 Expand Abbreviations
The last step in tokenization is to expand abbreviations into
dictionary words using the abbreviation dictionary. This
enables the next phase to compute the similarity between
the tokens using a dictionary such as WordNet.

In our running example, ‘auths’ is expanded to ‘authen-
tications’ and ‘max’ to ‘maximum’. The final output of the
tokenization phase is that variable ‘in_authskey15’ has been
split into dictionary words [‘in’, ‘authentications’, ‘key’] and
variable ‘maxDepth’ into [‘maximum’, ‘Depth’].

4.2 Dictionary Word Similarity
This section explains how to calculate the dictionary word
similarity wordsim(wi, wj) between two dictionary words
wi and wj . If wi or wj does not appear in WordNet, their
similarity is defined instead as one minus their normalized
edit distance1 [13].

The first step is to use WordNet to extract the (possibly
multiple) meanings of a dictionary word, with each mean-
ing being called a synset in WordNet. Then, it uses Wu and
Parmer’s similarity metric [19] that computes the seman-
tic similarity between two synsets (synsetsim). To calculate
wordsim , it computes synsetsim of all pairs of meanings
between the two words and chooses the highest similarity
among them. For example, there are 6 synsets for ‘authentica-
tions’ and 2 synsets for ‘Depth’, so to compute wordsim (‘au-
thentications’, ‘Depth’) it computes synsetsim for the 12
combinations, and outputs the highest value. In our running
example, the dictionary word similarities are:

wordsim(‘in’, ‘maximum’) = 0.09
wordsim(‘in’, ‘Depth’) = 0.11
wordsim(‘authentications’, ‘maximum’) = 0.31
wordsim(‘authentications’, ‘Depth’) = 0.36
wordsim(‘key’, ‘maximum’) = 0.53
wordsim(‘key’, ‘Depth’) = 0.62

1 Normalized into [0, 1] by dividing by the maximum length of wi or wj .

4.3 Variable Name Similarity
Finally, the variable name similarity varsim(v1, v2) is com-
puted from the word similarity results in Section 4.2. For
each word output after dictionary tokenization, it first com-
putes maxwordsim, the maximum wordsim for that word.
The variable name similarity is the average of maxwordsim
values. We have evaluated other combinations of wordsim to
compute varsim , in particular maximum of maxwordsim,
and the average and maximum of avgwordsim (i.e., the av-
erage wordsim for a word). The average of maxwordsim
worked best.

In our running example, the maximum wordsim are:
maxwordsim(‘in’) = 0.11
maxwordsim(‘authentications’) = 0.36
maxwordsim(‘key’) = 0.62
maxwordsim(‘maximum’) = 0.53
maxwordsim(‘Depth’) = 0.62

and the variable similarity is:
varsim(‘in_authskey15’, ‘maxDepth’)
= 0.11+0.36+0.62+0.53+0.62

5 = 0.45

5. Identifying Undesired Interactions
This phase takes as input a list of ATI clusters and a variable
similarity function such as that defined in Section 4. It
measures the cohesiveness of each ATI cluster. The less
cohesive a cluster is according to the variable similarity
metric, the more likely it contains multiple variable semantics,
and thus an undesired variable interaction. Finally, it ranks
the ATI clusters in increasing order of cohesiveness.

Partitioning. The first step is to partition each ATI cluster
into two sub-clusters. To do so, it computes the variable
similarity between all pairs of variables in the ATI cluster.
This information is represented as a cluster similarity matrix:
an m × m matrix where m is the number of variables in
the cluster and each cell cij contains varsim(vi, vj). It is a
symmetric matrix since varsim(vi, vj) = varsim(vj , vi).

The cluster similarity matrix is passed as input to the k-
means clustering algorithm [14] with k = 2, which finds
the best partitioning of the ATI cluster into two sub-clusters,
according to the variable similarity.

Cohesiveness. To compute cohesiveness of an ATI cluster
we measure the quality of the partitioning of the ATI cluster
into sub-clusters. For this, we use the Dunn validity index [9],
a numerical value that captures simultaneously how compact
each sub-cluster is and how separated the sub-clusters are.
A high Dunn value indicates a good partitioning of the
ATI cluster into sub-clusters. This indicates that the ATI
cluster is not very cohesive and may contain different variable
semantics.

Ranking. ATI clusters are ranked according to decreasing
Dunn index, which corresponds to increasing cohesiveness,
i.e., from most likely to least likely to contain undesired
variable interactions. All ATI clusters having Dunn value

11

higher than a fixed threshold (0.70 by default) are reported as
likely candidates for undesired interactions.

6. Implementation
We have implemented Ayudante using 1,880 lines of Python.
For the k-means partitioning and the Dunn index computation,
Ayudante uses the clustering package of the R project for
statistical computations [2]. We provide other implementation
details below.

ATI. We use DynComp [8] as our ATI module. DynComp
takes as input a program executable compiled with debugging
symbols and input, runs the program on the input, and applies
a dynamic unification-based analysis to infer ATI clusters.
DynComp supports 4 operating modes that capture different
types of interactions: dataflow, dataflow and comparisons,
units, and arithmetic. We use DynComp’s default arithmetic
mode, which considers binary operations (e.g., addition,
subtraction) and comparisons as interactions.

DynComp can output variable interactions at various
program points during program execution, e.g., function entry
and exit. We configure DynComp to output ATI clusters at
function exit points. This enables identifying incompatible
variable semantics for each program function.

Dictionaries. While our approach is language-agnostic,
Ayudante currently only supports English. It uses WordNet
as an English language dictionary, and the abbreviation dic-
tionary and the stoplist are also specific to English. We man-
ually populated the abbreviation dictionary, which contains
96 common and 28 application specific abbreviations (15
for Valgrind, 10 for Exim, 3 for Putty, and none for grep).
To apply Ayudante to programs in other languages, e.g.,
Spanish, the user can supply the global WordNet version
for that language [1], a stoplist (e.g., http://www.ranks.nl/
stopwords/spanish), and optionally an abbreviation dictio-
nary.

7. Evaluation
We have performed a preliminary evaluation of our approach.
Section 7.1 measures the effectiveness of the tokenization
algorithm of Section 4.1 against manually-established ground
truth for 2,500 variable names. Section 7.2 reports end-to-
end results of running Ayudante on two popular open-source
programs, the Exim mail server and grep, and manually
analyzing the 5 top-ranked ATI clusters for undesired variable
interactions.

7.1 Tokenization
This section measures the effectiveness of our tokenization
algorithm (Sections 4.1.1 and 4.1.2). We first manually
tokenized 2,500 randomly-chosen variable names from 4
open-source projects: 700 from the Exim mail server, 500
from Valgrind, 300 from Grep, and 1000 from Putty. We
treated the manual tokenization as the ground truth. Then, we

Table 1: Tokenization accuracy results. It compares the results
of the full tokenization (top row) with the tokenization
without using the abbreviation dictionary (bottom row).

Exim Grep Valgrind Putty
With Abbreviations 95% 87% 81% 76%
Without Abbreviations 91% 75% 77% 66%

compared the output of the tokenizer with the ground truth.
For example, for variable name ‘totsum’ (which stands for
total sum), tokens ‘tot’ and ‘sum’ represent the ground truth.

Table 1 shows the tokenizer accuracy with and without
using the abbreviation dictionary. Good coding style and
use of standard programming abbreviations are the reasons
for high accuracy in Exim. On the other hand, Valgrind and
Putty use many domain-specific and custom abbreviations
and do not comply with CamelCase or underscore for naming
conventions. When removing the abbreviation dictionary, the
accuracy drops by 4% for both Exim and Valgrind, 10% for
Putty, and 12% for Grep.

7.2 Undesired Variable Interactions
This section analyzes the end-to-end results of running Ayu-
dante on Exim and grep. We run grep with −w option on a
single file and Exim is initiated with −t and −d options and
a recipient (To) address. We did not test Valgrind and Putty
because DynComp cannot run those programs. DynComp is
based on Valgrind, and Valgrind cannot be run on Valgrind.
Putty runs slowly under DynComp and we did not have time
to finish that experiment.

The top-ranked ATI cluster in grep indicates a program-
ming mistake. It contains the 4 variable names delta, depth,
tree, and eolbyte. The relevant code for this cluster is in
function treedelta of file kwset.c and looks like:

if (depth < delta[tree->label])
delta[tree->label] = depth;

where delta is an unsigned char pointer and depth is an un-
signed integer. The undesired interaction happens because the
unsigned char variable delta[tree->label] is assigned the
unsigned integer depth and both variables are semantically
dissimilar. Since the unsigned char can only hold 8-bit values,
the top 3 bytes of depth are lost.

This example shows an undesired interaction between
variables of different type. We verified that GCC does not
identify this interaction statically by compiling grep version
2.2.1 from source code using GCC version 4.8.4 on Ubuntu
version 14.04. We used GCC flags -Wall and -Wextra to
force a warning for any error. GCC issues 6 warnings for
this module, but none of the warnings include this code.
This likely happens because the compiler does not flag all
incompatible type interactions, performing casts for some of
them. A compiler for a programming language with more
strict type checking like Java would flag this error.

12

On detailed analysis of the source code, we find that a
guard instruction at a higher level may ensure this code is not
exploitable. But we believe this detection is an encouraging
sign of the potential of our approach.

None of the other clusters among the 5 top-ranked ATI
clusters revealed an undesired variable interaction to us.
These clusters contain variables with poor naming that inter-
act transitively, often through global variables. Due to transi-
tivity, no single location in the code may be responsible for
an interaction, which makes it difficult to analyze the source
code for potential bugs. We plan to modify DynComp to out-
put all the code locations that cause an interaction transitively
to be able to analyze these interactions.

8. Related Work
Prior work has shown that proper code identifiers including
variable names can improve code quality and should be used
consistently [6, 11]. It has also shown that using identical
terms in different contexts may increase the risk of faults, and
used this to find fault-prone methods [4]. Our work differs in
that we combine NLP with ATI techniques to automatically
identify undesired variable interactions.

Some programming languages like F# [3] have support
for defining units for variable names, which can be type
checked by the compiler. This is similar to forbidding as-
signments between Ada’s derived types [18, §5.3.1]. Our
approach operates on program executables and thus can also
support programs written in programming languages like C
and C++. Some identifier naming conventions, e.g., Hungar-
ian notation [17], include a prefix in variable and function
names indicating the functional type of the identifier. Our
approach leverages variable name semantics even when not
intentionally added.

Prior work has proposed tokenization algorithms for code
identifiers including variable names. TRIS [7] and GenTest
[12] are two such algorithms. The tokenization accuracy for
GenTest is 82% and 86% for TRIS [7]. Our tokenization
algorithm achieves 76%–95% depending on the program, but
the ground truth used in both works is different. The source
code for those algorithms is not available and the online
service for GenTest was not working when we tried it. We
plan to reimplement both algorithms and compare them to
our tokenization on the same dataset.

9. Conclusion
A common programming mistake is for incompatible vari-
ables to interact. This paper proposed an automatic approach
for identifying undesired interactions between program vari-
ables. Our approach uses natural language processing (NLP)
to identify variables with related names and therefore possibly
related semantics. It uses abstract type inference (ATI) to clus-
ter variables that interact with each other. Then, it identifies
undesired variable interactions by checking for discrepancies
between the two clustering approaches. Our approach is gen-

eral and can be used with any variable similarity metric, e.g.,
variable names, aliasing information, or types.

We have implemented our approach in a tool called
Ayudante. Our preliminary evaluation of Ayudante on two
popular open-source programs identified a programming
mistake that shows the potential of the approach.

Acknowledgments
This material is based upon work supported by the United States
Air Force under Contract No. FA8750-12-C-0174. This research
was partially supported by the Regional Government of Madrid
through the N-GREENS Software-CM project S2013/ICE-2731
and by the Spanish Government through the StrongSoft Grant
TIN2012-39391-C04-01. All opinions, findings and conclusions, or
recommendations expressed herein are those of the authors and do
not necessarily reflect the views of the sponsors.

References
[1] Wordnets in the World. http://globalwordnet.org/wordnets-

in-the-world/.
[2] The R Project for Statistical Computing. https://www.r-project.

org/.
[3] "Units of Measure (F#)". https://msdn.microsoft.com/en-us/

library/dd233243.aspx.
[4] V. Arnaoudova, L. Eshkevari, R. Oliveto, Y.-G. Gueheneuc, and G. An-

toniol. Physical and Conceptual Identifier Dispersion: Measures and
Relation to Fault Proneness. In ICSM, 2010.

[5] H. Baker. Unify and conquer (garbage, updating, aliasing, ...). In LFP,
pages 218–226, June 1990.

[6] F. Deissenboeck and M. Pizka. Concise and Consistent Naming.
Software Quality Journal, 14(3):261–282, 2006.

[7] L. Guerrouj, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, and M. D.
Penta. Tris: A fast and accurate identifiers splitting and expansion
algorithm. In WCRE, 2012.

[8] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic
Inference of Abstract Types. In ISSTA, 2006.

[9] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation
techniques. J. of Intelligent Information Systems, 17(2):107–145, 2001.

[10] A. Kilgarriff. BNC database and word frequency lists. http://www.
kilgarriff.co.uk/bnc-readme.html.

[11] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Effective Identifier
Names for Comprehension and Memory. Innovations in Systems and
Software Engineering, 3(4), 2007.

[12] D. Lawrie, D. Binkley, and C. Morrell. Normalizing Source Code
Vocabulary. In WCRE, 2010.

[13] V. Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals, 1966.

[14] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proc. of the fifth Berkeley symposium on
mathematical statistics and probability, pages 281–297, 1967.

[15] G. A. Miller. WordNet: a lexical database for English. Communications
of the ACM, 38(11):39–41, 1995.

[16] R. O’Callahan and D. Jackson. Lackwit: A Program Understanding
Tool Based on Type Inference. In ICSE, 1997.

[17] C. Simonyi. Hungarian Notation. https://msdn.microsoft.com/
en-us/library/aa260976%28VS.60%29.aspx.

[18] Software Productivity Consortium. Ada 95 quality and style: Guide-
lines for professional programmers. Technical Report SPC-94093-
CMC, Department of Defense Ada Joint Program Office, Oct. 1995.

[19] Z. Wu and M. Palmer. Verb Semantics and Lexical Selection. In ACL,
1994.

[20] Q. Yan and S. McCamant. Conservative Signed/Unsigned Type
Inference for Binaries Using Minimum Cut. Technical report, Dept. of
Comp. Sci. & Eng., U. of Minnesota, Jan. 2014.

13

