
Early Detection of
Collaboration Conflicts and Risks

Yuriy Brun, Member, IEEE, Reid Holmes, Michael D. Ernst, and David Notkin, Fellow, IEEE

Abstract—Conflicts among developers’ inconsistent copies of a shared project arise in collaborative development and can slow

progress and decrease quality. Identifying and resolving such conflicts early can help. Identifying situations which may lead to conflicts

can prevent some conflicts altogether. By studying nine open-source systems totaling 3.4 million lines of code, we establish that

conflicts are frequent, persistent, and appear not only as overlapping textual edits but also as subsequent build and test failures.

Motivated by this finding, we develop a speculative analysis technique that uses previously unexploited information from version

control operations to precisely diagnose important classes of conflicts. Then, we design and implement Crystal, a publicly available tool

that helps developers identify, manage, and prevent conflicts. Crystal uses speculative analysis to make concrete advice unobtrusively

available to developers.

Index Terms—Collaborative development, collaboration conflicts, developer awareness, speculative analysis, version control, Crystal

Ç

1 INTRODUCTION

EACH member of a collaborative development project
works on an individual copy of the project files

(source code, build files, etc.). Each developer repeatedly
makes changes to his or her local copy of the files, shares
those changes with the team, and incorporates changes
from teammates.

The loose synchronization of these activities permits
rapid development progress, but also allows two devel-
opers to make simultaneous, conflicting changes. Such
conflicts [13], [17], [19], [25], [32], [47] are costly: They delay
the project while the conflict is understood and resolved.
Fear of conflicts is also costly. A developer may choose to
postpone the incorporation of teammates’ work because of
a concern that a conflict may be hard to resolve [13], [19].
Ironically, this fear of potential conflicts can cause devel-
oper copies to diverge even further, making real conflicts
more likely.

Conflicts can be textual or higher order. A textual conflict
arises when two developers make inconsistent changes to
the same part of the source code. To prevent subsequent
changes from overwriting previous ones, a version control
system (VCS) allows the first developer to publish changes,
but prevents the second developer from publishing until
the conflict is resolved automatically (by the VCS) or
manually (by a developer). Higher order conflicts arise

when there are no textual conflicts among developers’
changes, but those changes are semantically incompatible.
Higher order conflicts cause compilation errors, test fail-
ures, or other problems, and are problematic to detect and
resolve in practice [25].

As with errors in programs, it is generally easier and
cheaper to identify and fix conflicts early, before they
propagate in the code and the relevant changes fade away
in the memories of the developers. Currently, this informa-
tion is not readily available to developers [14].

Our approach, speculative analysis, unobtrusively pro-
vides information about the presence or absence of conflicts
in a continuous and accurate way. We intend for this
information to allow developers make better informed
decisions about how and when to share changes, while
simultaneously reducing the need for human processing and
reasoning. This paper makes the following contributions:

. We analyze nine open-source systems. Conflicts
between developers’ copies of a project 1) are the
norm, rather than the exception, 2) persist, on
average, 3 days, and 3) are higher order 33 percent
of the time. (We make public and open-source our
analysis tools and data.)

. We introduce a novel technique called speculative
analysis that anticipates actions a developer may
wish to perform and executes them in the back-
ground. When applied to collaborative develop-
ment and version control systems, speculative
analysis can use previously unexploited informa-
tion to precisely diagnose important classes of
conflicts and offer concrete advice about addressing
them. Reporting the consequences of these likely
version control operations can improve the way in
which collaborating developers identify and man-
age conflicts.

. We design and implement an open-source, pub-
licly available tool called Crystal—http://crystalvc.
googlecode.com—that implements the analyses

1358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

. Y. Brun is with the Department of Computer Science, School of Computer
Science, University of Massachusetts, 140 Governors Dr., Amherst, MA
01003-9264. E-mail: brun@cs.umass.edu.

. R. Holmes is with the David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: rtholmes@cs.uwaterloo.ca.

. M.D. Ernst and D. Notkin are with the Department of Computer Science
and Engineering, University of Washington, PO Box 352350, Seattle, WA
98195. E-mail: mernst@cs.washington.edu.

Manuscript received 18 Nov. 2012; revised 30 Apr. 2013; accepted 10 May
2013; published online 24 May 2013.
Recommended for acceptance by A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-11-0334.
Digital Object Identifier no. 10.1109/TSE.2013.28.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

and unobtrusively presents advice to developers,
to aid them in identifying, managing, and pre-
venting conflicts. (See Fig. 10 in Section 6 for a
detailed Crystal screenshot.)

We have previously proposed how speculative analysis
may help developers [7] and shown how it can improve
recommendation systems [29]. Here, we extend an earlier
version of this paper [9] in three ways: 1) expanding our
experimental, retrospective analysis of conflict lifespan (see
Section 4), 2) exhaustively enumerating the space of
collaborative relationships, actions developers may per-
form, and guidance regarding those actions (Sections 5.2
and 10), 3) augmenting the comparison of related research
to our work (see Section 7).

Section 2 provides a brief scenario of two collaborating
developers, sketching how their development activities
would differ with and without the use of a Crystal-like
tool. Section 3 presents VCS terminology. Section 4 details
our retrospective analysis of the frequency and persistence
of conflicts in practice. Section 5 describes the information
that can help developers better manage their conflicts.
Section 6 introduces the design of Crystal, an unobtrusive
tool that computes and reports this information to devel-
opers. Section 7 surveys related work. Section 8 discusses
threats to validity. Finally, Section 9 summarizes our results
and contributions.

2 SCENARIO

Consider a simple scenario with George and Ringo adding
features to a project. As part of George’s feature, he makes
changes in his individual copy. When finished, George and
Ringo each independently run the test suite on their
individual copies (the tests pass for both of them), then
publish their changes to the master repository. When the
regression tests run after both have published, George and
Ringo are notified that a test fails. At that time, they have to
recollect their earlier changes and assumptions, and their
fixes might force them to rework other code they had
written in the meanwhile.

One way to lessen these difficulties is to use an
awareness tool which reports where in the code base
teammates are working, allowing a developer to be more
attentive to conflicts that may arise in those locations (see
Section 7 for more details). For example, when George edits
the library, an awareness tool may tell Ringo that someone
else is editing code he depends on. However, if George’s
change to the library had not actually affected Ringo, the
warning would have been a false positive. Furthermore,
George might have been exploring some ideas and changes
without ever intending to share the intermediate changes
with his team. Thus, awareness tools have the potential to
give early warnings, but also the potential to give multiple
types of false warnings.

By contrast, suppose George and Ringo were using a
speculative analysis tool such as our tool Crystal, which
proactively informs developers of version control conflicts.
Crystal informs them before they publish their changes that
integrating those changes would cause the test suite to fail
(see Fig. 1). The tool encourages George and Ringo to

address the impending conflict before they forget the

relevant changes and assumptions.
Speculative analysis [7] neither guesses at possible

conflicts nor approximates them. Instead, it speculatively

performs the work, including VCS operations, in the

background on clones of the program: It actually merges

George’s and Ringo’s committed code, builds it, and runs

its tests. This allows speculative analysis to deliver precise

information about conflicts: Those that can be merged

safely are not reported as potential conflicts, and textually

clean merges that fail to build or test properly are reported

as conflicts.
The frequency with which speculative analysis executes

is adjustable. For example, merging code between two

developers can happen whenever either of those developers

make a change, at a regular time period, or a combination of

the two. (By default, Crystal runs its analysis after checking,

every 10 minutes, if new changes have been made and

committed to a developer’s local repository.) Running the

analysis more frequently requires more computation, but

produces conflict information sooner.
To handle exploratory development, our approach

assumes that when a developer commits code to the

VCS, the developer has decided to share that code with

other developers at a future time. This can prevent some

false warnings present in awareness systems when devel-

opers make exploratory changes that they never intend to

share, such as adding print statements for debugging

purposes. Overall, our approach provides precise and

pertinent information available as soon as conflicts occur in

the VCS.

3 TERMINOLOGY

Our results are applicable in the context of both centralized

version control systems (CVCSes)—such as CVS, Subver-

sion, and Perforce—and distributed version control systems

(DVCSes)—such as Git and Mercurial. This paper focuses

on DVCSes to simplify the presentation (Section 5.4 will

discuss how our approach applies to CVCS). We first

briefly present accepted DVCS terminology. We then

introduce additional new terminology to allow us to

precisely characterize seven pertinent relationships be-

tween repositories.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1359

Fig. 1. A screenshot of the Crystal tool as run by a developer named
George. The green arrow informs George that his changes can be
published (uploaded) without conflict to the master repository. The red
merge symbol indicates that Ringo’s changes, if combined with
George’s, would cause a test (“T”) failure.

3.1 Version Control Terminology

Fig. 2 shows a common [44] DVCS repository setup. There
is a single master repository and four developers: George,
Paul, Ringo, and John. Each developer makes a local
repository clone from the master. Each local repository
contains a complete and independent history of the master
repository at the time it was cloned. In addition, each
repository has a working copy, in which code is edited.
Changing the working copy does not modify the local
repository; to modify the local repository the developer
commits a changeset to the local repository’s history.
Teammates are not privy to these changesets until the
developer pushes them to the master repository from the
local repository. After a push, another developer can
perform a pull from the master, which updates that
developer’s local repository with the changesets. To refresh
a working copy after a pull, the developer must apply the
update operation. It is common for developers in a DVCS to
commit multiple times before publishing through a push. A
merge conflict can arise due to a pull operation, and the
conflict must be resolved before proceeding. It is uncommon
for a developer to pull changesets without immediately
resolving (if necessary) and updating their working copy.
The terms used above are common, or have direct
equivalents, across DVCS systems.

The discussion in this paper makes two simplifying
assumptions for clarity: 1) It assumes that developers push
to and pull from only the master repository, and 2) it
assumes that developers only make a commit when all their
tests pass. However, our approach and the Crystal tool
handle arbitrary pushes, pulls, and commits.

3.2 Repository Relationships

We have identified seven relevant relationships that can
hold between two repositories. Fig. 2 illustrates these
relationships.

SAME:

The repositories have the same changesets. For

example, George’s repository is the SAME as the

master repository because they both consist of

changesets 100 and 101.

AHEAD:

The repository has a proper superset of the other

repository’s changesets. For example, George’s

repository is AHEAD of Paul’s.

BEHIND:

The inverse of AHEAD; for example, George’s

repository is BEHIND John’s.

The remaining four relationships represent repositories
that share an initial sequence of changesets followed by
distinct sequences of changesets.

TEXTUAL����: (pronounced “textual conflict”)

The distinct changesets necessitate human

intervention as they cannot be automatically merged

by the VCS. For example, if George’s changeset 101
and Ringo’s changeset 102 modify overlapping lines

of code, they are in TEXTUAL����.

BUILD����:

The repositories can be automatically merged by the

VCS, but the resulting merged code fails to build.

TEST����:

The repositories can be automatically merged by the

VCS and the resulting merged code builds but fails
its test suite.

TEST
p

:

The repositories can be automatically merged by the

VCS and the resulting merged code builds and

passes its test suite.

Analogously to TEST
p

, there are relationships
BUILD

p ¼ TEST
p [TEST���� and TEXTUAL

p ¼ BUILD
p [

BUILD����. The table header of Fig. 4 illustrates the interrela-
tion among the relationships. When build scripts and test
suites are not available, we distinguish only five relation-
ships: SAME, AHEAD, BEHIND, TEXTUAL

p
, and

TEXTUAL����.
Higher order conflicts, such as BUILD���� and TEST����, are

not considered by existing VCS systems. Although this
paper discusses only these two higher order relationships,
others naturally arise for other analyses; for example,
consider when a test suite passes but a performance
analysis or code style checker does not.

4 CONFLICTS IN PRACTICE

This section answers three research questions: First,
Sections 4.1 and 4.2 address “How often do the TEXTUAL����,
BUILD����, TEST����, and TEST

p
relationships of Section 3.2

happen?” (Section 4.1 focuses on the TEXTUAL���� relation-
ship, and Section 4.2 focuses on BUILD����, TEST����, and
TEST

p
relationships.) Second, Section 4.3 answers “How

long do developers experience the conflict relationship
TEXTUAL����?” Third, Section 4.4 answers “How risky is it
not to share changes with teammates, if those changes
would currently merge cleanly?”

Anecdotally, conflicts are a serious problem. For exam-
ple, in a private communication, an industrial manager
expressed the following concerns to us about his two
offshore teams and their collaboration with his local team:

“The remote guys tend not to commit frequently enough to

get leverage out of our continuous integration builds, even

1360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Fig. 2. A DVCS with four clones of a master repository. The box labeled
“history” lists those changesets currently in the repository. The commit
command creates a new changeset in its repository’s history, and the
update command incorporates changesets into the working copy. A
developer can incorporate changesets from other repositories using the
pull command and can share changesets using the push command.

after prompting. It is a real challenge to know how far out of

sync [the remote teams] are [with the local team] when their

commits are not being merged in regularly”.

...

“I want [my developers] to at least initiate a conversation
with the relevant parties when the system says they have, or
are just about to, walk into a conflicting situation. I also want
the system to give them a certain level of trust of other
developer’s changes so that if [a merge] will not cause a
problem, they should sync up.”

There is little hard data on conflicts. Zimmermann’s

analysis of CVS repositories for four open source systems is

the only work we could find that directly addresses this

issue [47]. He reported that of all merges, 23 to 47 percent

had textual conflicts (TEXTUAL��������) while the remainder

could be merged automatically (TEXTUAL
p

). Answering

our first two research questions requires analyses that

significantly augment these data and anecdotes.

In answering those research questions, and to augment

Zimmermann’s data and determine the validity of the

anecdotal evidence, we performed an analysis on a set of

open-source software projects. As subjects (see Fig. 3), we

chose Git itself and the eight most active projects on GitHub

(http://github.com) that satisfy the following three criteria:

1) at least 10 developers, 2) at least 1,000 changesets, and

3) not just a Git copy of a CVCS repository (which would

not contain sufficient information to answer our research

questions). For each of the projects, we used the version

control history up to 13 February 2010.
The tools we created to perform the analyses described

in this section are open source. These tools and all our data
are publicly available at https://github.com/rtholmes/
crystal-retrospective-analysis/.

4.1 Textual Conflicts

RQ1: How frequently do conflicts—textual and higher
order—arise across developers’ copies of a project’?

The answer to RQ1 is that conflicts are the norm: For
each subject system, there were no times when all pairs of
developers were in consistent relationships (SAME, AHEAD,
or BEHIND) with each other.

Fig. 4 shows how often developers merged their changes.
(This is analogous to Zimmermann’s result described
above.) Of all the merges, one in six, or 16 percent, had

textual conflicts as determined by Git’s built-in merging

mechanism, reflecting the TEXTUAL���� relationship. (This

number may be smaller than Zimmermann’s 23-47 percent

due to better merging algorithms in DVCSes.) The other

83 percent of the merges had no textual conflicts, meaning

the relevant developers were in the TEXTUAL
p

(including

BUILD���� and TEST����) relationship.
The importance of the frequency of the TEXTUAL����

relationship is clear: An unrecognized TEXTUAL���� between

the repositories of two developers may cause problems. The

importance of the frequency of the TEXTUAL
p

relationship

is also material: A developer who is unsure whether others’

changes can be incorporated safely might avoid doing so,

allowing conflicts to persist and grow (as suggested in the

manager’s quotation above).
Fig. 5 considers every commit at which developers who

did eventually merge their changes could have done so

earlier. On average, 19 percent of the potential merges

would have resulted in a textual conflict. In other words,

had the developers been using Crystal, for 19 percent of the

commits, Crystal would have informed those developers

about TEXTUAL���� relationships. Conversely, the 81 percent

of clean merges indicate the likely benefit of notifying

developers when a safe textual merge can be performed.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1361

Fig. 4. Historical merges. Frequencies with which developers experi-
enced TEXTUAL����, BUILD����, TEST����, and TEST

p
relationships when

they integrated their code. For three systems with nontrivial test suites in
the repository, we measured the frequencies of all four relationships; for
the other six (which had no nontrivial test suite that we could run), we
measured only TEXTUAL���� and TEXTUAL

p
.

Fig. 3. Nine subject programs analyzed to address RQ1, RQ2, and RQ3 in collaborative development environments. KNCSL stands for thousands of
noncomment source lines.

4.2 Higher Order Conflicts

In our subject programs, 16 percent of merge operations
required human assistance to resolve a textual conflict (see
Fig. 4). This underestimates the human effort, since textually
safe merges are not always safe: An automatically merged
change may suffer a build or test failure, for example. We
computed the relationships at the time of each of the 5,355
merges that developers performed during the development
of Git, Perl5, and Voldemort. We did not compute the
information for the other six subject programs because of the
absence of a nontrivial test suite that we could run.

Fig. 4 shows that during the development of Git, Perl5,
and Voldemort, 76 percent of merges completed cleanly,
16 percent of merges resulted in a textual conflict
(TEXTUAL����), 1 percent of merges resulted in a build
failure (BUILD����), and 6 percent of merges resulted in a test
failure (TEST����). The 266 textual conflicts reported by the
version control system only represent 67 percent of all
conflicts. That is, 33 percent of the 399 clean textual merges
led to build or test conflicts.

Few current awareness tools detect higher order conflicts
(see Section 7). Rather, they generally notify developers of
all changes to the repository (e.g., FASTDash [4]) or of
concurrent changes to ASTs (e.g., Syde [23]). In contrast, we
adopt the project’s tool chain to dynamically and precisely
detect BUILD���� relationships (via the build system) and
TEST���� relationships (via the test suite).

4.3 Persistence of Conflicts

RQ2: How long do textual conflicts persist?

RQ2 asks how long developers experience the TEXTUAL����
relationship. As we argue in Section 4.4, the longer a

relationship persists, the more opportunities it has to change
into a more severe relationship.

To measure the lifespan of a conflict, we traced
backward in time through the history from the two
changesets that were eventually merged to find the earliest
point in time when the two branches came into conflict
with each other. To do this, we created a time-ordered list
of the changesets from each of the two branches and
compared all distinct pairs of changesets that coexisted at
each point in time to see if they were in conflict, stopping
when we found a nonconflicting pair. This approach
flattened all other subbranches and merges that existed
on the branches that contributed to the merge under
analysis. (We omitted all conflicts between changesets that
were never actually merged in the history, such as those on
dead-end branches.)

On average, the TEXTUAL���� relationship persisted for
3.2 days and involved 18.3 changesets (with median
values of 0.7 days and 6 changesets) before being resolved
(left side of Fig. 6). A tool could have let developers
know about these TEXTUAL���� relationships immediately
upon their creation. In the worst case, one TEXTUAL����
relationship in MaNGOS persisted for 334 days and
included 676 changesets by one of its developers before
it was resolved.

If developers know that they can merge others’ changes
safely, they may choose to do so quickly and thus prevent a
future conflict. The longer a TEXTUAL

p
relationship

persists, the more opportunities it has to change into a
conflict. Accordingly, we asked “How long do developers
experience the TEXTUAL

p
relationship?” We measured the

lifespan of a TEXTUAL
p

relationship for each conflict-free
merge in the history (again starting with the changeset that
introduced the relationship and ending with the one that
resolved it).

On average, the TEXTUAL
p

relationship persisted for
2.4 days and involved 12.7 changesets (with median
values of 0.8 days and 7 changesets) before incorporation
(right side of Fig. 6). A tool could have helped developers
learn immediately about the TEXTUAL

p
relationship,

encouraging earlier, smooth incorporation. In the worst
case, in terms of time, one TEXTUAL

p
relationship in

Voldemort persisted for 138 days; in terms of changesets,
one TEXTUAL

p
relationship in Gallery3 persisted for

232 changesets without a merge, while each of the possible
merges along the way would have been textually clean
and fully automated. Neither of these two long-lived
TEXTUAL

p
relationships evolved into a conflict.

1362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Fig. 6. Persistence of the TEXTUAL���� (left) and TEXTUAL
p

(right) relationships in historical data.

Fig. 5. Potential early merges. The frequency with which developers
would be informed of TEXTUAL���� and TEXTUAL

p
relationships if they had

used Crystal throughout their development of nine open-source systems.

4.4 Escalation of Clean Merges into Conflicts

RQ3: Do clean merges devolve into conflicts?

Parallel work enables faster progress, but also the
creation of conflicts. We, and others, argue that developers
should perform safe merges as frequently as possible. Every
conflict relationship develops from a situation in which a
second developer makes a change without having incorpo-
rated and understood a first developer’s work. How often
does parallel editing escalate into a conflict, in practice?

Using a methodology similar to that of Section 4.3, we
found that 93 percent of the TEXTUAL���� relationships
developed from a TEXTUAL

p
relationship; the other

7 percent developed from a BEHIND relationship. In other
words, in almost every case, both developers had already
committed (but not shared) changes before the conflict
developed. Every TEXTUAL���� relationship between reposi-
tory commits can be prevented by incorporating others’
changes earlier. (In some cases, a developer may have to
change his or her plans based on edits by others, and may
need to make edits to resolve conflicts, but at least the
conflicts would never be committed to the VCS.)

We also found that 20 percent of TEXTUAL
p

relation-
ships devolved into a conflict. The remaining 80 percent of
TEXTUAL

p
relationships was merged successfully, pre-

venting a conflict from developing. This suggests that what
we call “safe merges” are actually at risk of devolving into
conflicts that require human effort to resolve. Being aware
of these merges early may prevent some such conflicts
from arising.

While DVCSes record sufficient information to let us
reconstruct how often a conflict arose from a BEHIND

relationship, they do not record information that would
allow us to determine how often a BEHIND relationship
devolves into a conflict. We suspect that BEHIND relation-
ships are also risky.

5 INFORMATION ABOUT CONFLICTS

RQ4: What information could developers use to reduce the
frequency and duration of conflicts?

Multiple factors can affect the frequency and duration of
conflicts. For example, the order in which developers
incorporate changes may affect whether they encounter a
conflict at all. Further, which developers communicate, and
when they do so, may affect how quickly the developers can
resolve a conflict.

Consider a scenario with three developers, George, Jeff,
and Tom, collaborating on a project using a master
repository. (These developers and their work are part of a
larger scenario we will describe in Section 6.1 and Fig. 10.)
Fig. 7 shows the developers’ repository histories. All three
create changes, but only George’s and Tom’s (101 and 103)
conflict. Tom shares his changes with the master and Jeff
incorporates that change from the master. At this point in
time, George’s and Jeff’s repositories conflict. If George and
Jeff discover that their repositories conflict, they may
attempt to resolve the conflict together. However, that is
not the ideal action for them to take because Jeff did not
write any of the responsible code. It would be best for

George to communicate with Tom, who is likely to be more
familiar with the relevant changes than Jeff is.

This section explores and enumerates the space of
collaborative relationships, actions developers may perform,

and guidance regarding those actions. First, Section 5.1
enumerates the space. Then, Section 5.2 describes the
exhaustive approach by which we enumerated the space.
Section 5.3 augments the space with information specific to
higher order, build, and test conflicts. Finally, Section 5.4
describes differences between CVCS and DVCS that affect
the space.

5.1 Available Information

This section enumerates the space of collaborative relation-
ships, actions developers may perform, and guidance
regarding those actions. Section 5.1.1 describes five local
states of a developer’s repository and working copy.
Sections 5.1.2 and 5.1.3 augment our classification of the
relationships between developers’ repositories (already

described in Section 3.2) with two other categories of
information: the developer’s possible actions and guidance
about those actions.

5.1.1 Local States

A developer’s local state is information that can be obtained
without querying any other repository. The five possible
local states are:

uncommitted

There are uncommitted changes in the working

copy.
in conflict

The local repository is in conflict with itself, that is, it

has two heads that are not automatically mergeable.

This happens, for example, when pulled changesets

conflict with local changesets.

build failure

The repository’s version of the code fails to build.

test failure
The repository’s version of the code builds but fails

its test suite.

OK

The repository’s version of the code builds and

passes its test suite.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1363

Fig. 7. A DVCS snapshot of three developers working in parallel. Each
changeset in the history is annotated by who created it. Changesets
101 and 103 conflict textually, so George is in TEXTUAL���� with Jeff and
with Tom.

These states are not mutually incompatible; for example,
a working copy may have uncommitted changes at the
same time that the repository is in conflict with itself and
has a different build status for each head. Furthermore,
these states obscure some information, such as whether the
working copy has been updated to all of the changesets in
the local repository. The list also omits some states, such as
when the local repository has two heads that can be merged
automatically. Our approach and tools can handle such
situations. For simplicity of exposition, however, this paper
classifies each developer’s state as the first one in the list
that holds. This is all the information about state that is
needed to provide the generally best advice to the team.

5.1.2 Actions

Given two repositories A and B, the possible actions that
developer A can perform depends on both the local state
and the relationship between A and B.

Local states. The local state partially determines which
version control operations can be executed in different
situations.

If A’s state is “uncommitted,” then the “update”
operation cannot be applied. If A’s state is not “uncom-
mitted,” then the “commit” operation is inapplicable.

If A’s state is “in conflict,” then all operations except
“merge” are discouraged. (DVCSes permit most operations
at any moment, but discourage some of them, most
commonly by aborting the operation unless the user
supplies an extra confirmation flag.) If A’s state is not “in
conflict,” then the “merge” operation is inapplicable.

The “build failure” and “test failure” states do not limit
the possible actions—VCSes are as yet unaware of such local
states—although fixing these problems should likely be a
priority. The “OK” state does not limit the possible actions.

Repository relationships. In this section, we assume that
the local state is neither “uncommitted” nor “in conflict,”
per DVCS best practices as discussed immediately above.

SAME: Nothing to do.

AHEAD: May push; the new relationship will be

SAME.

BEHIND: May pull; the new relationship will be SAME.

TEXTUAL����: May pull; will result in the “in conflict” state.

May push; B will be in the “in conflict” state.

BUILD����: May pull and merge; will result in the “build

failure” state. May push; B will be in the
“build failure” state.

TEST����: May pull and merge; will result in the “test

failure” state. May push; B will be in the “test

failure” state.

TEST
p

: May pull and merge; the new relationship

will be AHEAD. May push; B will be able to

merge the changes cleanly.

The consequences of applying available actions can be
tricky to understand and remember. One example is when
the available actions are the same but the consequences
differ. For example, the developer can cleanly pull in both
the BEHIND and TEST

p
relationships. However, in the

BEHIND case, the developer ends up in the SAME relation-
ship, while in the TEST

p
case, the developer ends up in the

AHEAD relationship. Another example is when there are
side effects of performing an operation intended to change
the relationship between A and B. For example, incorpor-
ating B’s changes into A may put A and another repository
C into a TEXTUAL���� relationship. Using global version
control information to help developers track such situations
can be beneficial.

5.1.3 Guidance

Information about how each action may affect the devel-
oper’s state and relationships can help developers make
better-informed decisions.

This section makes one common, generally realistic
assumption: Repositories are organized in a tree hierarchy,
so developers only push to and pull from a parent. This
aligns with how developers predominantly interact with
VCSes, even DVCSes [44]. Further, we consider only
information relevant to two developers who share a common
parent repository (possibly that of one of the developers
themselves) because in all other cases the developers’ future
relationship is dependent on actions by others.

We classify the guidance information into five types.
One type of information concerns the relationship: Commit-
ter. The other four concern the possible action: When,
Consequences, Capable, and Ease.

Section 5.2 will enumerate the space of possible
collaborative situations. For these situations, these five
types of guidance information are sufficient for the
developers to make the optimal choice in avoiding and
resolving conflicts, given the information contained in the
VCS we considered. Of course, this is not all the information
available in a VCS that might be relevant to collaboration
and to identifying and resolving conflicts. For example,
each commit contains a descriptive, developer written,
natural-language message describing the commit’s changes.
This message may describe side effects and could theore-
tically lead to a better understanding of a conflict. Further,
information outside of the VCS can also affect conflict
resolution, including the developers’ organization and
development policies. This information can further inform
and improve conflict detection and resolution, but we do
not study it here.

Committer: Who made the relevant changes?
Consider George, Jeff, and Tom again, from Fig. 7. If

George knows he is in the TEXTUAL���� relationship with Jeff,
George might decide to contact Jeff to discuss the situation.
However, Jeff did not make the conflicting changeset 103,
Tom did and Jeff only incorporated Tom’s change. In this
case, George should likely discuss the conflict with Tom
rather than with Jeff. Knowing the committer facilitates
communication between relevant parties, which in turn
decreases the time required to fix conflicts [10].

When: Can an action that affects the relationship be
performed now, or must it wait until later?

Tom can be in the BEHIND relationship with Jeff but may
be unable to incorporate his change (changeset 102) because
Jeff has not yet shared it with the master. Thus, it may be
helpful for Tom to know that although he will need to
incorporate at some point, he cannot get Jeff’s change until
Jeff shares it. As another example, a developer may have to
resolve an “in conflict” state before being allowed to push.

1364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Consequences: Will an action—perhaps one on a

different repository—affect a relationship?
The situation with Tom BEHIND Jeff illustrates this kind

of guidance as well. Is Tom BEHIND Jeff because Jeff has not

yet shared his change (changeset 102) with the master, or

because Jeff has shared with the master but Tom has not yet

incorporated from the master? In the first case, even if Tom

incorporates from the master, his relationship with Jeff will

not change. In the second case, if Tom incorporates, he will

become SAME with Jeff.
Capable: Who can perform an action that changes the

relationship?
Consider a situation in which George is in the

TEXTUAL���� relationship with Tom. Tom has already shared

his change (changeset 103) with the master, so George must

be the one who resolves the conflict when he eventually

incorporates from the master. Conversely, if George had

shared his change (changeset 101) first, he could not resolve

the conflict. And if neither had shared, either of them might

be the one to resolve the conflict.
Ease: Has anyone made changes that ease resolving an

existing conflict?
George and Tom have created conflicting changes

(changesets 101 and 103) and Tom has shared his with the

master. If George were to incorporate from the master, he

would have to resolve the conflict. What if Tom had made a

set of follow-up changes that he has not yet shared? If these

changes resolve the conflict, then it is likely better for

George to wait for Tom to share his new changes. Tom’s

sharing action would be the best way to resolve George’s

TEXTUAL���� relationship with the master.
By performing actions, developers can affect how long a

conflict persists, or even prevent it from ever occurring. The

guidance information can help developers decide which

actions to perform. Knowing of a conflict relationship can

encourage the developer to address it earlier, while the

changes are fresh in the relevant developers’ minds; this

may reduce the conflict’s duration as well as the effort

necessary to resolve it. Knowing about BEHIND and TEST
p

relationships can reassure developers that it is safe to

incorporate others’ changes, which in turn keeps the

development states closer together. In some cases, this

may also allow the developer to prevent some potential

conflicts altogether, which would also reduce conflict

frequency. At a minimum, these relationships can prompt

developers to communicate, which can reduce conflicts in

the developers’ mental models and work plans.
The Committer guidance informs the developers of who

else is relevant to a conflict, reducing the time required to

resolve it [10]. The When and Capable guidance can inform

developers of the right time to perform an action, eliminat-

ing the overhead of manually figuring out if an action can

be performed now and possibly having to undo actions

later. The Consequences guidance can allow the developers a

peek into the future, also limiting undoing and redoing of

work. Finally, the Ease guidance can inform a developer if

someone else may have an easier time resolving a conflict,

thus helping reduce the effort needed to resolve it.

5.2 Exhaustively Enumerating the Space

This section exhaustively enumerates the space described in
Section 5.1. Section 5.2.1 describes all possible repository
topologies among three developers. Section 5.2.2 describes
all possible situations that can arise during collaborative
development in those topologies.

5.2.1 Repository Topologies

A repository topology describes which repositories may
share changes with, and incorporate changes from, which
other repositories. For example, centralized VCSes gener-
ally restrict each developer to share with and incorporate
from only a single “master” repository. In practice, there are
many ways to restrict collaborative development to con-
form to topologies, including VCS constraints, corporate
guidelines, and developer practices. Distributed VCSes
generally allow unrestricted sharing and incorporating.
However, in practice, unrestricted topologies are rare. The
centralized use case, with a “master” repository, is the most
common use case even for distributed approaches [44].

We call repository A the child of repository B (and B the
parent of A) if A can share changes with and incorporate
changes from B. Note that A can be B’s child and parent at
the same time.

We considered all possible repository relationships (see
Section 3.2) between two developers A and B and applied
all permitted operations. We represented all other repo-
sitories with a single repository C. For three repositories
A, B, and C, considering all possible parent/child
relationships yields 26 ¼ 64 distinct topologies. After
exhaustively considering those 64 topologies (see Fig. 12
in Section 10), we found that there are three classes of
topologies that are relevant to consider from A’s point of
view. These are as follows:

. A and B share a common parent (TT1 in Fig. 12),

. A is B’s child (TT7 in Fig. 12), and

. A is B’s nonchild descendant (TT3 in Fig. 12).

The other classes are not relevant because they do not
allow A to perform actions, do not allow A and B to
collaborate, or are combinations of other classes (adding no
new interesting information). See Section 10 and Fig. 12 for
more information.

Fig. 8 shows the three relevant classes of topologies.
These three classes represent all the relevant, distinct
topologies, in term of A’s abilities. This classification

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1365

Fig. 8. The three relevant classes of topologies that are distinct in
terms of A’s abilities. An edge from repository X to repository Y
indicates that X is Y ’s child. The solid, black edges must be present for
a topology to belong to a given class, whereas the dotted, gray edges
may or may not be present. The gray groupings of nodes represent
arbitrary, connected structures.

focuses on what A can do independently of asynchronous
actions by other repositories. For example, in an TT7
topology, A may be able to share changesets with B, but
if B incorporates them first, A loses that ability. Fig. 8 differs
from Fig. 12 in that Fig. 8 includes all other possible
repositories, whereas Fig. 12 included only those via which
information might flow between A and B.

5.2.2 Collaborative Situations

The repository topologies restrict what the developers may
and may not do at any given point during development.
The relationships (recall Section 3.2) between the reposi-
tories result in further restrictions.

At a moment when new development is not taking place,
a goal of collaborating developers is to incorporate every-
one’s changes together, reaching SAME relationships. Even
during development, reaching a mutually consistent single
state is a goal (to the extent that is possible). Thus, for each
topology, we considered A’s relationships with B and with
C, and answered the following questions to identify what
actions the developers may wish to perform:

A Can A share?1

B Does sharing reduce the number of future actions A

will have to perform to become SAME with B?

C Can A incorporate?

D Does incorporating reduce the number of future

actions A will have to perform to become SAME with

B?
E Do new changesets in C increase the number of actions

A has to perform to become SAME with B?

By exhaustively examining all these situations, which
actions A can perform and which of those help A become
closer to B, we identified the kinds of guidance (recall
Section 5.1.3) that help developers make VC decisions. For
example, for TT1 and TT3 topologies (see Fig. 8), if A is
AHEAD of B and SAME with its parent, A can neither share
nor incorporate, which means A cannot perform an action to
become SAME with B, and B must be the one to act.

Fig. 9 answers the above five questions for the TT1
topology. For example, if A, B, and C are all SAME (top row
in Fig. 9), then A can neither share (A) nor incorporate (C)
changes, and since A can do neither, it does not make sense
to ask whether sharing (B) and incorporating (D) reduces
the number of actions A has to perform to become SAME

with B. Finally, since A and B are already SAME, new
changesets in C do not affect that relationship (E).

By contrast, if A is BEHIND B and AHEAD of C (ninth
row in Fig. 9), A can share (A)—the TT1 topology only
allows A to share with C—and sharing does not reduce the
number of actions A has to perform to become SAME with B
(B) because B would still need to share changes with C, and
then A would still need to incorporate B’s changes from C.
A cannot incorporate (C)—the TT1 topology only allows A to
incorporate from C—and thus it does not make sense to ask
whether incorporating (D) reduces the number of actions A
has to perform to become SAME with B. Finally, new
changes in C increase the number of actions A has to
perform to become SAME with B because B would first

have to incorporate those new changes before sharing its
changes with C (E).

The information in Fig. 9 that describes the TT1 topology
is a superset of the actions available to the developers in the
other topologies.

We used these questions to identify the five types of
guidance information from Section 5.1.3. Those five types
describe completely the answers to these questions. As a
result, making the developers aware of the guidance
informs their decisions in avoiding and resolving conflicts.

5.3 Examples of Higher Order Conflicts

Early identification of higher order conflicts between
developers reduces—or at the least is highly unlikely to
increase—the time to resolve a conflict. We describe two
situations from Voldemort, one resulting in BUILD���� and
one in TEST����, for which the conflicts could have been
detected earlier and, potentially, never committed to the
repository. The information available to developers for
these kinds of conflicts is similar to that for TEXTUAL����.

5.3.1 BUILD���� Conflict Due to Missing Type

On 9 November 2009, a developer successfully merged
branches c77a4 and 7f776. Branch 7f776 was edited
11 times while the branch was alive; branch c77a4 was
edited three times. Both branches had been modified
within four days of the merge. While the merge had
no textual conflicts, the code failed to build: Four
compilation errors resulted from referencing a missing
type ProtoBuffAdminClientRequestFormat. After 8
minutes, the developer merged in another branch (f68e3)
which resolved the compilation problem.

In this case, a tool could have speculatively told the
developer about the compilation error that would arise as a
result of the merge. With this information, the developer
may have chosen to do the merges in an alternate order or
manually to avoid the problem.

5.3.2 TEST���� Conflict Due to Malformed Noncode

Resource

On 10 October 2009, a developer successfully merged two
branches (“tips” in Git), 50b74 and 00c35. Branch 00c35

1366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Fig. 9. Answers to the five questions A-E for an TT1 topology.

1. In a DVCS, push shares changes and pull incorporates them.

was edited 17 times while the branch was alive and the
last changeset on this branch occurred only 8 minutes
before the merge. Branch 50b74 had not been edited in
the previous 48 days. Although the difference between
these two branches was very large (63,413 lines), Git
successfully merged these changesets. Test voldemort.

store.http.HttpStoreTest::testBadPort() did
not fail in either branch before the merge, but did in the
merged system. Thus, some unintended behavioral inter-
action between the two branches’ changes broke this test.
In fact, the merge invalidated one of the metadata files,
cluster.xml. In this case, if a tool had let the
developers know that it was safe to merge earlier, the
problem could have been avoided completely by sequen-
tializing the changes to cluster.xml and/or by enabling
earlier testing of the merged version.

5.4 Relating CVCS and DVCS

This paper has focused on DVCS. However, proactive
detection of collaboration conflicts is similarly applicable to
CVCS. There are two ways in which this work can be
extended to CVCS.

First, from the point of view of collaborative information,
DVCS repositories are equivalent to branches in both DVCS
and CVCS. In CVCS, developers use separate branches
where DVCS developers use either distributed repositories
or branches. In that case, the branches can be classified into
exactly the seven topology classes from Section 5.2.1. In fact,
Microsoft Beacon (a version of Crystal that Microsoft built
jointly with us) proactively detects conflicts in exactly this
way. Beacon works with a CVCS used internally by
Microsoft. Case studies of Beacon are future work.

Second, while the technique we have described considers
changes only once they are committed into changesets, it
can be extended to consider changes as soon as the
developer makes them, or as soon as the developer saves
the source files. Considering such changes may reduce
further the time before conflicts are detected, which in turn
may reduce the frequency and duration of conflicts. On the
other hand, considering such changes could also detect
conflicts among temporary changes that the developer does
not intend to share with others.

Fundamentally, the same information is available in
collaborative development that uses each of CVCS and
DVCS at the time of development, and our technique
applies to both. (Note, however, that different information
is stored by DVCS and CVCS histories, so the retrospective
analysis from Section 4 we performed on DVCS repositories
could not have been performed on CVCS repositories.)

6 DELIVERING VERSION CONTROL ADVICE

Given that version control conflicts are frequent and serious
(see Section 4) and that a global view of the VCS could
detect conflicts and reduce their frequency and severity (see
Section 5), how can a tool effectively deliver that informa-
tion and advice to developers?

Our tool, Crystal, conveys the key information without
overwhelming or distracting the developer, in three ways.

First, a taskbar icon in the system tray reports the most
severe state for all tracked repositories. A developer who
prefers to receive limited but critical information need

never open the main window. (Crystal never opens any
window asynchronously.)

Second, the main window compactly summarizes all
projects and relationships, allowing a developer to instantly
scan it to identify situations that may require attention. The
main window displays icons exploiting color and shape
redundantly and in stable locations (rather than, say, a
textual list that a developer would have to read and
interpret). Each icon’s fixed color represents the severity of
the situation.

Third, full, detailed information about each relationship,
action, and guidance is available but hidden until a developer
shows specific interest in it. When the developer mouses
over an icon, a tooltip displays all the information discussed
in Section 5.

Crystal works with the Mercurial and Git DVCSes.
Crystal is an open-source, cross-platform, standalone
tool and is available for download: http://crystalvc.
googlecode.com. Our initial qualitative evaluation of Crys-
tal is positive, but future work should evaluate it via both
qualitative and quantitative user studies.

6.1 Crystal’s UI

Fig. 10 shows a screenshot of Crystal’s main window. In
this example, there are two projects: “Let it be” and
“Handle with care.” The former has four collaborators:
George (the developer running Crystal), Paul, Ringo, and
John. The latter has five collaborators: George, Jeff, Roy,
Bob, and Tom.

On the leftmost side of the row, underneath the project
name, Crystal displays the local state. This tells George (in
the native language of the underlying VCS) whether he
must commit changes (hg commit, in Mercurial) or
resolve a conflict. Then Crystal displays the relationship
with the master and the collaborators’ repositories. The
window displays a row of icons (see Fig. 11) for each of a
developer’s projects.

When and Capable guidance is represented by the shading
of the icon. If George has the ability to affect a relationship
now, the icon is solid. If George cannot affect the relation-
ship, the icon is hollow. For example, consider John, who

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1367

Fig. 10. A screenshot of George’s view of Crystal. George is following
two projects under development: “Let it be” and “Handle with care.” The
former has four observed collaborators: George, Paul, Ringo, and John;
the latter has five: George, Jeff, Roy, Bob, and Tom. Crystal shows
George’s local state and his relationships with the master repository and
the other collaborators, as well as guidance based on that information.

has made some changes in “Let it be” but has not yet
pushed them to the master; George is BEHIND John, but the
icon is hollow because George cannot affect this relation-
ship until John pushes. Similarly, George’s relationship
with Ringo is a hollow TEST

p
because 1) George has the

SAME relationship with the master, 2) Ringo had not pulled
the latest changes from the master, and 3) Ringo has made
some other changes, which he has not pushed but which
can merge without human intervention. If the relationship
is of the might variety—George might or might not have to
perform an operation to affect the relationship—the icon is
solid but slightly unsaturated (see the relationship with Bob
in the “Handle with care” project).

These features allow George to quickly scan the Crystal
window and identify the most urgent issues, the solid red
icons, followed by other, less severe icons. George can also
easily identify quickly whether there is something he can do
now to improve his relationships (in the example, George
can perform actions to improve his relationships in the
“Handle with care” project, but not in “Let it be”), and
whether there are unexpected conflicts George may wish to
communicate with others about.

The most urgent relationship is displayed by Crystal as
its system tray icon, which allows a developer to know at all
times whether there is any action that requires attention
without even having the Crystal window open.

Crystal also provides other guidance that is hidden
unless a developer wants to see it. Holding the mouse
pointer over an icon displays the action George can perform
and the Committer, Consequences, and Ease guidance, when
applicable. As shown in Fig. 10, when George holds the
mouse over Jeff’s TEXTUAL���� icon, it tells him that he can
perform a pull and a resolve (hg fetch, in Mercurial), that
performing this action will resolve George’s TEXTUAL����
with Jeff, and that Tom and George committed the
conflicting changesets.

Even though George asked for information about the
relationship with Jeff, Crystal was able to correctly point
George to Tom as the developer who was responsible for
the conflicting changesets (which Jeff had pulled into his
repository). In other situations, it is possible that George
performing a pull and a resolve operation with his parent
would not resolve George’s TEXTUAL���� with Jeff (e.g., if Jeff
and Tom had both created conflicting changesets but only
Tom had pushed his changesets to the master). This is why
the consequences guidance is important. As a final note,
because no one else has merged these changesets, George
must resolve this conflict and there is no Ease guidance for
Crystal to display.

6.2 Initial Experience

Crystal consists of 5,200 NCSL of Java and has been tested
on Windows, Mac OS X, and several Linux distributions.
The developer using Crystal must have read access to the
collaborators’ repositories; the Crystal manual (available at
http://crystalvc.googlecode.com) describes several simple
ways to accomplish this.

We deployed the beta-test version of the tool to a small
number of developers and have been using it ourselves, and
refining it, since early July 2010. One coauthor uses Crystal
to monitor 49 clones of 10 projects belonging to eight
actively working collaborators.

Our initial, anecdotal experience has suggested that
Crystal affects developers’ workflow by 1) prompting
communication between developers who create a conflict,
and 2) reminding developers to incorporate changes before
beginning work. Further, Crystal affects managers’ work-
flow by increasing their awareness of which developers
have made, shared, and incorporated changes.

Designing and deploying Crystal, along with frequent
feedback from the handful of users, has helped us to better
understand the issues and to improve the tool’s design.
Crystal user feedback enhanced our understanding of the
need for guidance as well as which information is most
pertinent to make available to the developer. For example,
showing hollow and solid icons arose from a user’s need to
differentiate between relationships he could and could not
affect. The feedback drove us to systematically explore the
complete space, as described in Section 5.

Here is one example piece of feedback from an external
user, via private communication:

“Keeping a group of developers informed about the state of
a code repository is a problem I have tried solving myself.
My solution was an IRC bot that announced commits to an
IRC channel where all of the developers on the project idled.
This approach has many obvious problems. [...] The Crystal
tool does not suffer from these problems. Crystal handles
several projects and users effortlessly and presents the
necessary information in a simple and understandable way,
but it is only a start at filling this important void the in the
world of version control.”

Prior to developing Crystal, we surveyed 50 DVCS users
about their collaborative development habits. Their use of
highly heterogeneous operating systems, IDEs, VCSes, and
languages informed Crystal’s design. Even among this
small group, there were vast differences in committing,
pushing, and pulling styles, which further encouraged our
research. We anticipate that future user studies will identify
additional strengths and weaknesses that will allow us to
further improve Crystal.

6.3 Precision and Timeliness in Conflict Detection

Crystal precisely reports actual conflicts, determining the
relationship between two developers’ states by actually
creating the merged artifact. In other words, to find out what
would happen if George and Ringo merged their code,
Crystal does the merge in the background: It makes a copy
of George’s code and incorporates Ringo’s changes. Simi-
larly, once Crystal creates the merged code artifact, it
attempts to compile and to execute the test suite on that
artifact. Again, Crystal only reports a compilation or testing

1368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Fig. 11. Crystal associates an icon with each of the seven relationships.
Each icon has a fixed color, which represents the severity of the
relationship (see Section 3.2): Relationships that require no merging are
green, those that can be merged automatically are yellow, and those
that require manual merging are red. Icons can be shaded to indicate a
developer’s capability to affect this relationship at this time. Solid,
unsaturated, and hollow icons indicate the developer can, might, and
cannot affect this relationship, respectively. Here, the icons are shown
solid; Fig. 10 includes examples of unsaturated and hollow icons.

conflict when the build or a test actually fails. Because the
computation happens in the background, the developers can
continue to work without interruption. In certain situations,
we expect the developers to ignore Crystal, much as they
sometimes ignore project bulletin boards and email.

By creating the merged artifact in the background, Crystal
uses speculative analysis [7] to detect conflicts. In contrast,
awareness tools [4], [15], [23] notify developers when they
might have conflicting changes. This approximation is
computed differently in various tools. Some determine if a
codeveloper is working in the same file, some report
any change to the repository (e.g., FASTDash [4]), others
report concurrent changes to the AST (e.g., Syde [23]), and so
on. These approaches can lead to the inclusion of false
positives—reporting potential conflicts that do not evolve
into actual conflicts. Furthermore, few current awareness
tools try to automatically detect higher order merge
conflicts; by contrast, Crystal is precise as it uses the project’s
tool chain to dynamically detect conflicts by execution of the
build system and test suites. We discuss further differences
between Crystal and awareness tools in Section 7.

Crystal can, in rare situations, report conflicts about
which the developers may not wish to know. Changesets
that are later discarded can cause a teammate to see a pending
conflict that later disappears. This can happen when a
developer commits exploratory code, a partial change, or a
change that is later determined to be undesirable.

6.4 Scalability

This section describes how Crystal’s design allows it to
scale to large projects and compute the relevant information
efficiently.

6.4.1 Large Projects

Crystal scales to large projects that involve many devel-
opers and repositories. A developer explicitly instructs
Crystal (via a GUI or a configuration file) which repositories
to observe. For example, a developer may be interested in
only the relationships with other developers in his
collaborative team and the per-team development reposi-
tories of the other teams.

Crystal can provide information about relationships even
with developers who are not using it, easing adoption by
avoiding a requirement that the whole team uses the tool.
Each developer can independently choose whether or not to
run Crystal. In particular, the repositories being monitored
need not be using Crystal—they only have to be accessible
to Crystal (see Section 6.4.2 below).

For detecting test failures, Crystal allows a developer to
select any subset of the tests to execute. Naturally, for large
projects with build scripts and test suites that take a long
time to execute, Crystal will experience that latency.
However, it would still identify relevant information sooner
than other existing methods.

While the current implementation of Crystal runs on the
developer’s machine, its architecture can be extended to
offload the computation onto a central server (perhaps an
integration server), a cluster of machines, or the cloud.
Projects whose build and test scripts cannot feasibly run on
the developer’s machine in a reasonable amount of time
may require such offloading.

6.4.2 Computation Efficiency

Crystal provides a developer with information on his
development state and the relationships between his
repository and collaborators’ repositories. Thus, Crystal
needs access to that developer’s repository and working
copy (if the working copy is inaccessible or nonexistent,
Crystal does not report certain local states, for example,
uncommitted), and the locations of the other repositories. In
some development environments, access to others’ reposi-
tories is trivial. For example, many corporate development
configurations include a common file system. In other
environments, it is possible for developers to have their
local repositories on machines that are often offline. In such
an environment, each developer (even those not using
Crystal) must make his repository available to other
developers. One simple approach is to symbolically link
their repository to a Dropbox2 shared folder.

To limit the computation necessary to extract the
relationships between repositories, Crystal follows the
following algorithm. First, Crystal checks the history of
the two repositories to identify the changesets each
contains, and only recomputes the relationship if at least
one history has changed. If the sets of changesets are the
same, then the relationship is SAME. If one repository
contains strictly more (respectively fewer) changesets, it is
AHEAD (respectivel, BEHIND). If both repositories contain
changesets the other does not (and Crystal has not
previously computed their relationship), Crystal makes a
local clone of one repository and uses the VCS to attempt to
incorporate the changesets from the other repository. If the
VCS reports a problem with incorporation, the relationship
is TEXTUAL����. If the integration succeeds, Crystal runs the
build script. If that script fails, the relationship is BUILD����.
Finally, if the build script succeeds, Crystal runs the test
suite and determines whether the relationship is TEST���� or
TEST

p
.

Cloning repositories, especially remote ones, can be
costly. To address this issue (and to enable faster start-up
times), Crystal keeps a cached clone of each project,
bringing it up to date before updating the relevant relation-
ship. This has significantly increased Crystal’s performance
in all common cases. In the rare and discouraged situation
of changing existing VC history (e.g., rebasing), the cache
may contain changesets that no longer exist in a repository.
This can cause problems and require the developer to clear
the cache.

7 RELATED WORK

This section places our research in the context of related
work in evaluating the costs of conflicts, collaborative
awareness, mining software repositories, and continuous
development.

7.1 The Cost of Conflicts

Efficient coordination is important for effective software
development. The number of defects rises as the amount of
parallel work increases [32]. Developers eschew parallel
work to avoid having to resolve conflicts when committing

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1369

2. http://www.dropbox.com.

changes [19], or rush their work into the trunk to avoid
being the developer who would have to resolve conflicts
[13]. In practice, antipatterns for parallel software develop-
ment emerge that hinder collaboration [2], [6]. Developers
can more effectively manage risks to the consistency of their
systems if they are aware of the consequences of their
commits on other developers [17].

Several observational and laboratory experiments em-
pirically demonstrate that collaborative awareness benefits
configuration management by reducing use of shared
resources, increasing project-related communication, and
detecting some conflicts at the time they are created [4], [15],
[42]. Augmenting these results, we performed a retro-
spective analysis on real projects to estimate the potential
benefit. Our analysis is consistent with their studies in
confirming the potential for better coordination of indivi-
dual and team repositories.

In practice, some branches can cause delays in integra-
tion, in part because branches typically have to meet certain
criteria before integration [2], [6]. These delays can, in turn,
lead to conflicts. Classifying branches based on their
integration history can, in theory, reduce delays, and
perhaps conflicts [6].

Sarma provides a comprehensive classification of colla-
borative tools for software development [39]. In this
classification, Crystal could be considered a seamless tool
as it provides continuous awareness about development
state and guidance about the consequences of potential
future actions.

7.2 Collaborative Awareness

The research most similar in intent to ours studies
collaborative awareness—increasing awareness of the activ-
ities among team members. Such awareness can be a
distraction unless a conflict is imminent, so awareness tools
have adopted increasingly sophisticated methods for
avoiding false positive warnings, as we now describe.

Palantı́r [41], [40], [1] shows which developers are
changing which artifacts (e.g., files) by how much. Palantı́r
has similar motivations to ours: “providing workspace
awareness to users will enable them to detect potential
conflicts earlier, as they occur. Ideally developers can
then proactively coordinate their actions to avoid those
conflicts” [41, p. 444]. FASTDash [4] is similar: It is an
interactive visualization—a spatial representation of which
files each developer is editing—that augments existing
software development tools with a specific focus on
helping developers understand what other team members
are doing.

Syde [23] reduces false positives via a fine-grained
analysis of abstract syntax trees (AST) modifications. Two
potentially conflicting changes to the same file are flagged
for a developer only when they also change the same parts
of the underlying ASTs. For example, if two users have
inserted, deleted, or changed the same method, the changes
will be flagged “yellow”; if one of the users had committed,
the changes would instead be flagged “red,” indicating that
there may be a merge conflict. Syde examines files every
time they are saved.

The most detailed analysis is done by tools like CollabVS
and Safe-commit. CollabVS “detects a potential conflict
when a user starts editing a program element [e.g., method,

class, or file] that has a dependence on another program
element that has been edited but not checked-in by another
developer” [15]. Safe-commit [45] does the deepest pro-
gram dependence analysis, identifying changes that are
guaranteed not to cause tests to fail. This allows earlier
publishing of some of a developer’s changes, on the theory
that increasing the publishing frequency can decrease the
amount of duplicate development and the likelihood of
merge conflicts.

Instead of considering the conflicts that arise when
integrating the code of two developers, it is possible to
consider integrating the code of all developers working on a
project at once. Performing this analysis continuously can
help discover merge problems early [22].

Our approach suffers fewer false positives and fewer
false negatives than previous awareness approaches [8] for
four reasons. First, our approach computes actual pending
conflicts rather than estimating potential ones. By spec-
ulatively doing exactly what a developer will actually do in
the future—run a version control operation, then run the
build script, and finally run the test script—our approach
only reports problems that would actually happen while
executing those steps. (A secondary benefit of using the
underlying VCS directly is that users of Crystal can benefit
immediately from any improvements to the VCS merging
algorithm.) Second, Crystal does not report conflicts until
they have been committed to some repository. This reduces
false positives resulting from exploratory edits, such as for
debugging: Developers typically commit code that is
consistent and is a candidate for sharing. This could delay
Crystal’s reports until a commit occurs, but commits tend
to be frequent in a DVCS. Third, unlike most of the
previous work, our approach aids developers in perform-
ing safe merges earlier, in addition to early isolation of
conflicts. Fourth, also unlike most of the previous work, we
consider and support multiple levels of conflicts—textual,
build, and test.

7.3 Version Control Systems

Rochkind introduced the first source code control
system in 1975 [33]. Since then, numerous similar
systems—characterized by a centralized shared repository
—have been developed and deployed, including RCS [43],
CVS [20], and Subversion [11]. More recently, a set of
DVCSes have emerged, including Bazaar, Mercurial, and
Git. These systems do not rely on a centralized repository,
are less dependent on network availability, and allow
more freedom to the collaborators in terms of branching,
merging, and keeping multiple repositories. As we have
discussed in Section 5.4, neither the distinctions between
centralized and distributed version control nor those
among specific VCSes [12], [28], [31] prevent the
technique we have presented from proactively detecting
conflicts. The only exception to this might be that DVCSes
may encourage more frequent branching and merging
[44], which likely provides additional opportunities for
our technique. Perry et al. [32] empirically document
these variations, and consequences of this variations with
respect to quality and schedule, in how software teams
perform work in parallel.

1370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

7.4 Mining Software Repositories

Ball et al. [3] extracted metrics such as coupling—based on
the probability that two classes are modified together—and
used the metrics to assess the relationship between
implementation decisions and the evolution of the resulting
system. Later efforts mine version histories to determine
functions that must likely be modified as a group [48], to
identify common error patterns [27], to predict component
failures [30], and so on.

Our effort contrasts with these efforts in at least two
dimensions. First, we are assessing a different property:
opportunities to incorporate changes with others on a team.
Second, the purpose of our mining was to determine
whether building a tool like Crystal would be worthwhile.
Other mining efforts generally aim to improve a team’s
software development process, such as by informing
managers of a pattern so that they will allocate more quality
assurance resources to more error-prone components.

7.5 Continuous Development

Our approach can be characterized as continuous mer-
ging. Thus, it is related to a number of other approaches
to continuous computation in the context of software
development.

A programming environment, modeled on spreadsheets,
can continuously execute the program as it is being
developed [24], [26]. Modern programming environments
focus instead on providing continuous compilation. The
environment maintains the project in a compiled state as it
is edited, speeding software development in two ways.
First, the developer receives rapid (and usually unobtru-
sive) feedback about compilation errors, allowing for quick
correction while that code is fresh in the developer’s mind.
Second, the developer is freed from deciding when to
compile, meaning that the developer is not distracted by the
compilation task and that when it is time to run or test the
code, no intervening compilation step is necessary.

Continuous testing [36], [37], [38], [18] applies the same
idea to testing: It uses excess cycles on a developer’s
workstation to continuously run regression tests in the
background. It reduces the time and energy required to
keep code well-tested and prevents regression errors from
persisting uncaught for long periods of time. The vision is
that after every keystroke, the developer knows immedi-
ately (without taking any extra action) whether the change
has broken the tests. Continuous testing requires small unit
tests that can execute quickly. Test factoring automatically
carves large system-wide tests into such unit tests [16], [35].

Recent work has investigated real-time integration to
decrease developers’ hesitation in committing changes
using centralized version control [21]. Like FASTDash, this
approach aims to help developers avoid conflicts. In
contrast to FASTDash (but similarly to Crystal), it computes
rather than predicts the presence of merge conflicts.

Similarly to continuous compilation, execution, testing,
and integration, our approach is reactive to certain devel-
oper actions—committing changes—and proactive with
respect to others—sharing and incorporating those changes.
Unlike these other approaches, our approach focuses on
detection of collaboration conflicts among developers.

8 THREATS TO VALIDITY

This section discusses threats to the validity of our results.
Construct. The version control histories tell us when a

TEXTUAL���� or TEXTUAL
p

relationship first arose and
when the developers resolved it. However, the histories
do not tell us 1) when or how the developers found out
about the relationship, 2) when the developers began trying
to resolve the relationship, and 3) had the developers
known about the relationship earlier, would they have
done anything differently?

DVCS histories only contain information about incor-
porate operations from the TEXTUAL

p
and TEXTUAL����

states; nothing is recorded when a developer incorporates
from the BEHIND state or pushes from the AHEAD state.
DVCS histories do not record when share operations take
place in BEHIND and AHEAD states. (DVCS disallows
sharing in TEXTUAL

p
and TEXTUAL���� states, although a

special flag allows such sharing, which is then also
omitted from the record.)

Our analysis used the projects’ test suites to detect test
failures. A merge might cause other semantic errors that
were not detected by the tests.

Internal. Our experiments (see Section 4) are in the
context of DVCSes, which differ from CVCSes [12], [28],
[31]. The complete effects of the VCS on developer behavior
is not established [5], [34], [46]. If DVCSes encourage more
frequent branching and merging [44], that would provide
additional opportunities for Crystal.

While our full retrospective analysis cannot be done on
the histories of repositories built using existing CVCSes, we
believe the data we find in DVCS projects is an approx-
imation of what happens in development with CVCSes.
Our largely similar results to Zimmermann [47] justify this
belief.

External. Another threat is that our retrospective study
focused on nine open-source systems. The systems we
selected may not be characteristic of other systems.
Anecdotally, developers are all-but-universally worried
about the problems that can arise from conflicts. The
professional web (blogs, Q&A sites, etc.) is filled with
examples of developers expressing this concern and
suggesting ways to reduce it.

Usability and developer style. While Crystal can
answer important questions about the developers’ relation-
ships in a collaborative environment and aid those
developers in making better-informed decisions, Crystal
might also harm productivity by distracting developers or
leading them to premature integration. To mitigate the
issues of distraction, we have worked to reduce Crystal’s
intrusiveness. In particular, humans tend to be reasonably
good at selecting which information to ignore, and we
have designed Crystal to be consistent with that ability.
Some developers may prefer to use the full Crystal view,
while others may prefer the system-tray view most of the
time. And a developer who is “heads-down” can simply
quit Crystal for a while, just as many developers choose to,
at times, ignore their e-mail.

One challenge to Crystal’s adoption may be that
developers may fail to see its utility. One developer who
attempted to use Crystal reported that he simply was not

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1371

interested in seeing conflicts with unpublished changes and
that he rarely experienced conflicts with others in his
development. While he saw no harm to running Crystal, he
anticipated it would provide him no benefit either. Crystal,
indeed, may well not be appropriate for all classes of
developers. Nonetheless, the data in Section 4 show that
conflicts are common in practice, suggesting strongly that
most developers may well benefit from Crystal, regardless

of their intuitions. We plan to test this hypothesis as part of

a future user study.
Furthermore, conflicts are not the only reason to use

Crystal. The developer who declined to use Crystal ended
up doing redundant work. He noticed a problem and
fixed it—but another developer had already made the
same fix, and pushed it, six days earlier. The non-Crystal-
user had forgotten to pull changes before beginning to

1372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Fig. 12. The 64 topologies over three repositories can be grouped into nine classes. Two topologies within the same class are identical in terms of the
actions A and B can perform.

work on the problem. Crystal would have reminded the
user that he could pull changes, and had he followed
Crystal’s advice, he would have avoided the wasted effort
of the duplicated bug fix.

9 CONCLUSIONS

Speculative analysis over version control operations
provides precise information about pending conflicts
between collaborating team members. These pending
conflicts—including textual, build, and test—are guaran-
teed to occur (unless a developer modifies or abandons a
committed change). Learning about them earlier allows
developers to make better informed decisions about how to
proceed, whether it is to perform a safe merge, to publish a
safe change, to quickly address a new conflict, to interact
with another developer and so on.

Our retrospective, quantitative study of over 550,000
development versions of nine open-source systems, span-
ning 3.4 million distinct (and a total of over 500 billion, over
all versions) NCSL, indicates that

1. conflicts are the norm rather than the exception,
2. 16 percent of all merges required human effort to

resolve textual conflicts,
3. 33 percent of merges that were reported to contain

no textual conflicts by the VCS in fact contained
higher-order conflicts, and

4. conflicts persist, on average, for 3.2 days (with a
median conflict persisting 0.7 days).

Although there is a significant amount of qualitative
and anecdotal evidence consistent with our findings, the
only previous quantitative research we could find was
Zimmermann’s [47]. We expand on his work 1) by
comparing actual merges from project histories to merges
that could have taken place successfully earlier than they
did, and 2) by considering not only textual conflicts but also
higher order conflicts, such as build and test conflicts.

Our speculative analysis tool, Crystal, provides concrete
information and advice about pending conflicts while
remaining largely unobtrusive. Our evaluation of Crystal
is preliminary and qualitative; future work should evaluate
it via both qualitative and quantitative user studies.

Collaborative development is essential but troublesome.
Making pertinent and precise information available to
developers allows them to identify and fix conflicts before
they fester. This is one useful and practical step in
reducing some of the costs and difficulties of collaborative
software development.

10 COLLABORATIVE SITUATIONS

This section exhaustively enumerates (as overviewed in
Section 5.2) the space described in Section 5.1. It first
describes the space of all possible repository topologies
among three developers and then all possible situations
that can arise during collaborative development in
those topologies.

We represent a repository topology by a directed graph. A
node represents a repository. (We use the node’s label to
refer to both to the repository and to the developer who
owns that repository.) A directed edge from one repository
(the child) to another repository (the parent) represents the

ability of (the owner of) the child to share changes with and
incorporate changes from the parent. Directed paths
connect descendants to their ancestors. For example, a simple
topology (TT1) with a single master repository and two
children would be represented by three nodes, with an edge
from each child to the master. Two nodes may be each
other’s parents and children simultaneously, represented
by one directed edge in each direction or by a single two-
headed edge. Such a relationship means that the owner of
either repository may share changes with and incorporate
changes from the other repository.

To determine the information specific to VC operations
that can help make better collaborative decisions, given a
topology between two developers, A and B, we consider
all possible repository relationships (see Section 3.2) and
apply all operations permitted by the topology. Without
loss of generality, we consider only A’s point of view
(because A and B are symmetric). We first represent all
other repositories with which A and B may interact as
single repository C. For three nodes (A, B, and C), there are
six potential directed edges: A! B, B! A, A! C, C ! A,
B! C, and C ! B. Therefore, there are 26 ¼ 64 potential
topologies with three nodes. Fig. 12 enumerates these
64 topologies and groups them into 9 classes, named
TT1�TT9, that are distinct from the global point of view of
the actions they allow developers to perform. In Fig. 8, we
considered how these nine classes differ from A’s point of
view, and further grouped these nine classes into three
classes from that perspective.

Three of these topology classes, TT1, TT3, and TT7, have
the following three properties: Each topology 1) allows A to
perform actions, 2) allows A to collaborate with B, and 3) is
not a combination of other classes (if it were, it would
provide no new information about A’s capabilities). We call
these three classes relevant from A’s point of view (recall
Section 5.2.1).

ACKNOWLEDGMENTS

The Crystal beta users provided valuable feedback. This
material is based upon work supported by the US National
Science Foundation under grants CNS-0937060 to the
Computing Research Association for the CI Fellows Project
and CCF-0963757, by a National Science and Engineering
Research Council Postdoctoral Fellowship, and by Micro-
soft Research through a Software Engineering Innovation
Foundation grant.

REFERENCES

[1] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A. van der Hoek, and D.
Redmiles, “Continuous Coordination within the Context of
Cooperative and Human Aspects of Software Engineering,” Proc.
Int’l Workshop Cooperative and Human Aspects of Software Eng.,
pp. 1-4, May 2008.

[2] B. Appleton, S.P. Berczuk, R. Cabrera, and R. Orenstein,
“Streamed Lines: Branching Patterns for Parallel Software Devel-
opment,” Proc. Pattern Languages of Programs Conf., 1998.

[3] T. Ball, J.-M. Kim, A.A. Porter, and H.P. Siy, “If Your Version
Control System Could Talk,” Proc. Workshop Process Modelling and
Empirical Studies of Software Eng., May 1997.

[4] J.T. Biehl, M. Czerwinski, G. Smith, and G.G. Robertson,
“FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams,” Proc. SIGCHI Conf. Human Factors in Computing
Systems, pp. 1313-1322, Apr. 2007.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1373

[5] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. Germán, and
P.T. Devanbu, “The Promises and Perils of Mining Git,” Proc. Sixth
IEEE Int’l Working Conf. Mining Software Repositories, pp. 1-10,
2009.

[6] C. Bird and T. Zimmermann, “Assessing the Value of Branches
with What-If Analysis,” Proc. ACM SIGSOFT 20th Int’l Symp.
Foundations of Software Eng., 2012.

[7] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Speculative
Analysis: Exploring Future States of Software,” Proc. FSE/SDP
Workshop Future of Software Eng. Research, pp. 59-63, Nov. 2010.

[8] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Crystal: Precise
and Unobtrusive Conflict Warnings,” Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. Foundations of Software Eng., Sept.
2011.

[9] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, “Proactive
Detection of Collaboration Conflicts,” Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. Foundations of Software Eng., pp. 168-
178, Sept. 2011.

[10] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and K.M. Carley,
“Identification of Coordination Requirements: Implications for the
Design of Collaboration and Awareness Tools,” Proc. 20th
Anniversary Conf. Computer Supported Cooperative Work, pp. 353-
362, Nov. 2006.

[11] B. Collins-Sussman, “The Subversion Project: Buiding a Better
CVS,” Linux, vol. 3, no. 94, 2002.

[12] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol. 30,
no. 2, pp. 232-282, 1998.

[13] C.R.B. de Souza, D. Redmiles, and P. Dourish, “‘Breaking the
Code,’ Moving between Private and Public Work in Collaborative
Software Development,” Proc. Int’l ACM SIGGROUP Conf.
Supporting Group Work, pp. 105-114, Nov. 2003.

[14] P. Dewan, “Dimensions of Tools for Detecting Software Con-
flicts,” Proc. Int’l Workshop Recommendation Systems for Software
Eng., pp. 21-25, Nov. 2008.

[15] P. Dewan and R. Hegde, “Semi-Synchronous Conflict Detection
and Resolution in Asynchronous Software Development,” Proc.
European Computer Supported Cooperative Workshop, pp. 159-178,
Sept. 2007.

[16] S. Elbaum, H.N. Chin, M.B. Dwyer, and J. Dokulil, “Carving
Differential Unit Test Cases from System Test Cases,” Proc. 14th
ACM SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 253-
264, 2006.

[17] J. Estublier and S. Garcia, “Process Model and Awareness in
SCM,” Proc. 12th Int’l Workshop Software Configuration Management,
pp. 59-74, Sept. 2005.

[18] D.S. Glasser, “Test Factoring with Amock: Generating Readable
Unit Tests from System Tests,” master’s thesis, MIT Dept. of
EECS, Aug. 2007.

[19] R.E. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” Proc. Conf. Organizational
Computing Systems, pp. 168-177, Aug. 1995.

[20] D. Grune, “Concurrent Versions System, a Method for Indepen-
dent Cooperation,” Technical Report IR 113, Vrije Universiteit,
1986.

[21] M.L. Guimarães and A. Rito-Silva, “Towards Real-Time Integra-
tion,” Proc. ICSE Workshop Cooperative and Human Aspects of
Software Eng., pp. 56-63, May 2010.

[22] M.L. Guimarães and A.R. Silva, “Improving Early Detection of
Software Merge Conflicts,” Proc. Int’l Conf. Software Eng., 2012.

[23] L. Hattori and M. Lanza, “Syde: A Tool for Collaborative Software
Development,” Proc. ACM/IEEE 32nd Int’l Conf. Software Eng.,
pp. 235-238, May 2010.

[24] P. Henderson and M. Weiser, “Continuous Execution: The
VisiProg Environment,” Proc. Eighth Int’l Conf. Software Eng.,
pp. 68-74, Aug. 1985.

[25] S. Horwitz, J. Prins, and T. Reps, “Integrating Noninterfering
Versions of Programs,” ACM Trans. Programming Languages and
Systems, vol. 11, pp. 345-387, July 1989.

[26] R.R. Karinthi and M. Weiser, “Incremental Re-Execution of
Programs,” Proc. Symp. Interpreters and Interpretive Techniques,
pp. 38-44, June 1987.

[27] B. Livshits and T. Zimmermann, “DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories,” Proc. 10th
European Software Eng. Conf. Held Jointly with 13th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng., pp. 296-305, Sept. 2005.

[28] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Tran. Software Eng., vol. 28, no. 5, pp. 449-462, May. 2002.

[29] K. Muşlu, Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin,
“Speculative Analysis of Integrated Development Environment
Recommendations,” Proc. ACM Int’l Conf. Object Oriented Pro-
gramming Systems Languages and Applications, Oct. 2012.

[30] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. 28th Int’l Conf. Software Eng., pp. 452-
461, 2006.

[31] B. O’Sullivan, “Making Sense of Revision-Control Systems,”
Queue, vol. 7, no. 7, pp. 30-40, 2009.

[32] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel Changes in Large-
Scale Software Development: An Observational Case Study,”
ACM Trans Software Eng. and Methodology, vol. 10, pp. 308-337, July
2001.

[33] M.J. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.

[34] C. Rodriguez-Bustos and J. Aponte, “How Distributed Version
Control Systems Impact Open Source Software Projects,” Proc.
Ninth IEEE Working Conf. Mining Software Repositories, pp. 36-39,
2012.

[35] D. Saff, S. Artzi, J.H. Perkins, and M.D. Ernst, “Automatic Test
Factoring for Java,” Proc. IEEE/ACM 20th Int’l Conf. Automated
Software Eng., pp. 114-123, Nov. 2005.

[36] D. Saff and M.D. Ernst, “Reducing Wasted Development Time via
Continuous Testing,” Proc. 14th Int’l Symp. Software Reliability Eng.,
pp. 281-292, Nov. 2003.

[37] D. Saff and M.D. Ernst, “Continuous Testing in Eclipse,” Proc.
Second Eclipse Technology Exchange Workshop, Mar. 2004.

[38] D. Saff and M.D. Ernst, “An Experimental Evaluation of
Continuous Testing during Development,” Proc. ACM SIGSOFT
Int’l Symp. Software Testing and Analysis, pp. 76-85, July 2004.

[39] A. Sarma, “A Survey of Collaborative Tools in Software Devel-
opment,” Technical Report UCI-ISR-05-3, Univ. of California,
Irvine, Inst. of Software Research, 2005.

[40] A. Sarma, G. Bortis, and A. van der Hoek, “Towards Supporting
Awareness of Indirect Conflicts Across Software Configuration
Management Workspaces,” Proc. 22nd IEEE/ACM Int’l Conf.
Automated Software Eng., pp. 94-103, Nov. 2007.

[41] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantı́r: Raising
Awareness among Configuration Management Workspaces,”
Proc. 25th Int’l Conf. Software Eng., pp. 444-454, May 2003.

[42] A. Sarma, D. Redmiles, and A. van der Hoek, “Empirical Evidence
of the Benefits of Workspace Awareness in Software Configura-
tion Management,” Proc. 16th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., pp. 113-123, Nov. 2008.

[43] W.F. Tichy and W.F. Tichy, “RCS—A System for Version
Control,” Software: Practice and Experience, vol. 15, pp. 637-654,
1985.

[44] C. Walrad and D. Strom, “The Importance of Branching Models in
SCM,” Computer, vol. 35, no. 9, pp. 31-38, 2002.

[45] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-Commit Analysis to
Facilitate Team Software Development,” Proc. Int’l Conf. Software
Eng., pp. 507-517, May 2009.

[46] J. Wuttke, I. Beschastnikh, and Y. Brun, “Effects of Centralized
and Distributed Version Control on Commit Granularity,” Tiny
Trans. Computer Science, Sept. 2012.

[47] T. Zimmermann, “Mining Workspace Updates in CVS,” Proc.
Fourth Int’l Workshop Mining Software Repositories, May 2007.

[48] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. 26th Int’l
Conf. Software Eng., pp. 563-572, 2004.

1374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Yuriy Brun received the MEng degree from the
Massachusetts Institute of Technology in 2003
and the PhD degree from the University of
Southern California in 2008. He completed his
postdoctoral work in 2012 at the University of
Washington as a CI Fellow. He is an assistant
professor in the School of Computer Science at
the University of Massachusetts, Amherst. His
research interests include software engineering,
distributed systems, and self-adaptation. He is a

member of the IEEE, the ACM, and ACM SIGSOFT. More information is
available on his homepage: http://www.cs.umass.edu/brun/.

Reid Holmes completed an NSERC postdoctor-
al fellowship at the University of Washington in
2010 following receiving the PhD degree from the
University of Calgary in 2008. He is an assistant
professor in the Cheriton School of Computer
Science at the University of Waterloo. His
research interests include understanding how
software engineers build and maintain complex
systems; this understanding is generally trans-
lated into tools and techniques that can be

validated in practice. His prior research focused on pragmatic software
reuse and source code recommendation systems. More information is
available on his homepage: https://cs.uwaterloo.ca/rtholmes/.

Michael D. Ernst is an associate professor in
Computer Science & Engineering at the Uni-
versity of Washington. He was previously a
tenured professor at MIT, and before that a
researcher at Microsoft Research. His research
aims to make software more reliable, more
secure, and easier (and more fun!) to produce.
His primary technical interests include software
engineering and related areas, including pro-
gramming languages, type theory, security,

program analysis, bug prediction, testing, and verification. His research
combines strong theoretical foundations with realistic experimentation,
with an eye to changing the way that software developers work. More
information is available on his homepage: http://homes.cs.washington.
edu/mernst/.

David Notkin (1955-2013) received the ScB
degree from Brown University in 1977 and the
PhD degree from Carnegie Mellon University in
1984. He served as a professor and Bradley
chair Computer Science & Engineering at the
University of Washington, which he joined in
1984. His research interests include software
engineering in general and in software evolution
in particular. He received the US National
Science Foundation Presidential Young Investi-

gator Award, served as the program chair of the First ACM SIGSOFT
Symposium on the Foundations of Software Engineering, served as
program cochair of the 1995 International Conference on Software
Engineering, chaired the steering committee of the International
Conference on Software Engineering, served as the general chair of
the 2013 International Conference on Software Engineering, served as a
charter associate editor and later as editor-in-chief of the ACM
Transactions on Software Engineering and Methodology, served as an
associate editor of the IEEE Transactions on Software Engineering,
received the ACM SIGSOFT Distinguished Service Award, the ACM
SIGSOFT Outstanding Research Award, the ACM SIGSOFT Influential
Educator Award, and the A. Nico Habermann Award, served as the chair
of ACM SIGSOFT, served as the department chair of computer science
and engineering, and received the University of Washington Distin-
guished Graduate Mentor Award. He is a fellow of the IEEE and ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRUN ET AL.: EARLY DETECTION OF COLLABORATION CONFLICTS AND RISKS 1375

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

