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Abstract

The value dependence graph (VDG) is a sparse dataow-

like representation that simpli�es program analysis and

transformation. It is a functional representation that

represents control ow as data ow and makes explicit

all machine quantities, such as stores and I/O channels.

We are developing a compiler that builds a VDG repre-

senting a program, analyzes and transforms the VDG,

then produces a control ow graph (CFG) [ASU86] from

the optimized VDG. This framework simpli�es trans-

formations and improves upon several published results.

For example, it enables more powerful code motion

than [CLZ86, FOW87], eliminates as many redundan-

cies as [AWZ88, RWZ88] (except for redundant loops),

and provides important information to the code sched-

uler [BR91]. We exhibit a one-pass method for elimina-

tion of partial redundancies that never performs redun-

dant code motion [KRS92, DS93] and is simpler than

the classical [MR79, Dha91] or SSA [RWZ88] methods.

These results accrue from eliminating the CFG from

the analysis/transformation phases and using demand

dependences in preference to control dependences.

1 Introduction

Program analysis is a prerequisite for important pro-

gram transformations performed by compilers. The

classical program representation for analysis is the con-

trol ow graph (CFG). CFG-based analyses and trans-

formations su�er from two burdens: they must main-

�
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tain CFG invariants to produce a semantically equiva-

lent CFG after each code motion or other transforma-

tion, and they are sensitive to the names given to val-

ues. CFGs overspecify a computation by totally order-

ing its operations, requiring the addition of extra nodes

(such as entry pads and exit pads [RWZ88]) to a CFG

before performing code motion. CFGs are statement-

based and name all values; the names, usually provided

by the programmer, get in the way of analyzing the un-

derlying computation.

During the last decade, new program representations

have been proposed to alleviate these problems and

make analysis simpler, faster, or more thorough. Static

single assignment (SSA) form [CFR

+

89] gives each

value a distinct name, which improves the e�ciency

of constant propagation and other analyses [WZ85,

AWZ88, RWZ88, WZ89]. The dependence ow graph

(DFG) improves the e�ciency of analyses by ignor-

ing irrelevant sections of code and linking de�nitions

to uses [JP93]. These representations can be viewed as

augmentations to the CFG that allow more rapid traver-

sal of the CFG. The program dependence graph (PDG)

eliminates some control artifacts by linking together op-

erations with the same control dependence, and builds

local data dependence graphs to simplify analysis and

transformation [Ott78, FOW87]. The program depen-

dence web (PDW) [BMO90, CKB93] makes value ow

in the PDG more explicit by using gated single assign-

ment (GSA) form.

The next step in solving the problems of CFGs is to

eliminate the CFG as the basis of analysis and trans-

formation. We represent a computation as a value de-

pendence graph (VDG), which speci�es only the value

ow through a computation. The VDG does not depend

upon information about values' names, the locations in

which they reside, or when they are computed. The

VDG is a parallel representation that speci�es a par-

tial order on the operations in the computation based

solely upon data dependences, rather than some arbi-

trary total order speci�ed by a CFG. VDG seman-

tics are demand-based; a value is computed only if it

is needed by another computation. Evaluation of the
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Figure 1: The stages in the translation from the initial con-

trol ow graph (CFG) to the �nal CFG. The parser creates

the initial CFG, and the back end generates machine code

from the �nal CFG.

VDG may terminate even if the original program would

not, because CFG values that are not demanded do not

appear in the VDG.

Code generation from CFGs is straightforward, but

the CFG's limitations|the requirement to maintain

a total ordering on program statements and the

CFG's statement-based nature|complicate analyses

and transformations. We claim that is the wrong trade-

o�, since an optimizing compiler contains many analy-

ses and transformations but only one conversion from

its intermediate representation into (say) CFG form in

the back end. Analysis and transformation is simpler to

implement, understand, and express formally, and fre-

quently faster, when using a VDG rather than a CFG.

While simple-minded code generation from the VDG

may result in poor code, the representation provides im-

portant information to the code scheduler [BR91] which

makes code movement and scheduling considerably eas-

ier. We believe the code generator is the right place

for the complexity of generating sequential code, rather

than taxing every analysis and transformation with the

burden of maintaining structures that are irrelevant to

the operation being applied.

Figure 1 shows the steps in the translation from CFG

to VDG form and then, after analysis and optimization,

back to CFG form. We use the example program of

Figure 2 to illustrate the resulting transformations. Fig-

ures 3{5 show these transformations in the CFG frame-

work, and Figures 6, 8, and 9 show intermediate steps

in the translation fromCFG to VDG, which is discussed

in detail later.

Optimizations that can be performed independently

of the �nal order of evaluation are performed on the

VDG. For example, global constant and copy propaga-

tion, constant folding, global name-insensitive common

subexpression elimination, and dead code elimination

are performed directly on the VDG. Code motion op-

timizations are decided when the demand dependence

graph is constructed from the VDG. A demand de-

pendence graph is similar in spirit to a control depen-

dence graph (CDG) [FOW87], except that the demand

dependence graph is constructed using the predicates

that lead to a computation contributing to the output

of program, whereas the predicates in a CDG are those

int example(int a, int b, int c, int d)

{

int acopy, bcopy, lp_inv1, lp_inv2;

int down, cse, epr, dead;

do {

bcopy = b;

lp_inv1 = c + bcopy;

lp_inv2 = d - b;

a = a * lp_inv1;

down = a % c;

dead = a + d;

if (a > d) {

acopy = a;

a = down + 3;

cse = acopy << b;

}

else

cse = a << bcopy;

epr = a << b;

} while (a > cse);

return lp_inv2 + epr;

}

Figure 2: Example procedure containing loop invariant

computations, common subexpressions, partial redundan-

cies, and dead computations. Figures 3{5 show the transfor-

mations performed on this procedure's CFG by translation

into VDG form and back or by VDG manipulations.

that lead to a computation being performed. Optimiza-

tions that depend upon the �nal placement of code are

performed on the VDG after the demand dependence

graph is constructed. Figure 4 demonstrates the results

of several transformations performed on the VDG.

VDGs are the basis of powerful, precise, and e�-

cient program slicing algorithms. E�cient algorithms

for interprocedural slicing, slicing unstructured pro-

grams, and interactive slicing operate directly upon the

VDG [Ern93].

The next section of this paper describes the VDG

and the translation from CFGs into VDGs (the �rst

three steps of Figure 1). Analyses and transformations

are discussed in Section 3. Section 4 discusses one as-

pect of producing CFGs from VDGs, the construction of

the demand-based program dependence graph (dPDG).

([Ste93a] describes the translation from the dPDG to

the �nal CFG.) Section 5 shows that our representa-

tion a�ords an algorithm for elimination of partial re-

dundancies (EPR) that is simpler and faster than the

classical or SSA formulations. This algorithm uses the

dPDG that was constructed for code generation. Sec-

tion 6 compares our research to related work, and the

last section discusses future research directions.
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bcopy   = b
lp_inv1 = c + bcopy
lp_inv2 = d - b
a       = a * lp_inv1
down    = a % c
dead    = a + d

acopy = a
a     = down + 3
cse   = acopy << b

cse = a << bcopy

epr  = a << b

t0 = lp_inv2 + epr
deallocate local storage
return(t0)

FalseTrue

a > d

True False

a < cse

allocate local storage

Figure 3: Original CFG for example (Figure 2). Our CFGs,

unlike those of [ASU86], explicitly represent branches and

joins. Dotted boxes enclose irreducible SESE regions (see

Section 2.1).

2 Value Dependence Graphs

The VDG is a functional representation that expresses

the computation of a procedure solely as value ow. The

lack of control ow has three immediate consequences.

First, all machine quantities that are usually implicit

in other representations, such as store contents, stack

and heap allocators, input and output channels, and

C volatile locations, must be explicitly represented as

value ow to ensure that state-changing operations oc-

cur in the correct order. To simplify the exposition,

we will consider the machine state to consist solely of

a store. Second, operators that choose among control

paths (e.g., if and switch statements) are represented

by selectors that choose among possible values; these

are essentially the  nodes of [BMO90]. Third, loop-

ing is represented via function calls: the CFG backedge

�nds its analog in the VDG recursive call.

A VDG consists of

1. A directed bipartite graph whose vertices are nodes

representing computations and ports representing

values. The graph arcs connect from nodes to their

bcopy   = b
lp_inv1 = c + bcopy
lp_inv2 = d - b
a       = a * lp_inv1
cse     = a << b
down    = a % c
dead    = a + d

acopy = a
down  = a % c
a     = down + 3
cse   = acopy << b

cse = a << bcopy

epr = a << bcopy

epr     = a << b
lp_inv2 = d - b
t0      = lp_inv2 + epr
deallocate local storage
return(t0)

allocate local storage
lp_inv1 = c + b

True False

a > d

True False

a < cse

1

2

3

4

3

5

6

7

7

Figure 4: Transformations on example done by our anal-

ysis, shown in the CFG framework. These transformations

are not performed on the CFG, but occur as a result of trans-

lations into VDG form and back, or are done on the VDG.

Statements in the light font are moved or removed by the

transformations; they do not appear in the �nal CFG (Fig-

ure 5). Statements in the heavy underlined font do appear

in the �nal CFG. The transformations that occur in this

example are: 1) Hoisting a loop invariant above the loop;

2) Lowering a loop invariant below the loop; 3) Name in-

sensitive global common subexpression elimination; 4) Code

motion into the arm of an if statement; 5) Lowering a non-

loop invariant expression below (outside) a loop (the value

of this expression is not consumed by the loop); 6) Dead

code elimination; and 7) Decoupling values from the store.

The analysis also reveals that example can be run in parallel

with other functions that do not depend on its result.
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a   = a * lp_inv1
cse = a << b

epr     = a << b
lp_inv2 = d - b
t0      = lp_inv2 + epr
return(t0)

lp_inv1 = c + b

True False

a > d

True False

a < cse

down = a % c
a    = down + 3

Figure 5: The �nal CFG of example, which results from

translation of the VDG of Figure 9 into a CFG.

operand values (ports) and from ports to the com-

putations (nodes) producing them as results. Each

port is either produced by exactly one node or is a

free value not produced by any node. Nodes are of

the following kinds:

� primitive operation (primop) nodes, includ-

ing basic arithmetic and data structure oper-

ations, constants, etc.

� boolean (or integral) selector () nodes rep-

resenting conditional expressions, which pro-

duce a single result from a predicate (integer)

operand and two (or more) alternative value

operands;

� closure (�) nodes that produce function val-

ues;

� function application (call) nodes taking

a function operand and actual parameter

operands corresponding to the formal parame-

ters of that function's VDG (see 3 below) and

producing result ports corresponding to the

function's VDG return nodes;

� formal parameter nodes with no operands

whose result is a parameter value; and

� return nodes whose operand is a return value,

and which produce no results|every VDG

contains at least one return node, one for each

value it returns.

All cycles in the graph include at least one � node.

2. Indexings

1

for the following sets: parameter nodes,

return nodes, operand arcs for each node, and re-

sult arcs for each node.

3. A body for each � node, namely, a VDG and a bijec-

tion between the free values of that VDG and the

operands of the � (in practice, we simply identify

the free values with the � operands; note that the

� operands are not its parameters).

Figures 8 and 9 show VDGs.

The free values of a VDG can be viewed as analogous

to the free variables in a lambda term. If a given VDG

is the body of some � node, its free values denote exter-

nal values (e.g., external functions, addresses of global

variables) that all calls of that � node have in common.

The top-level VDG for a complete program, which takes

the form of a function producing a �nal machine state

(in this paper, a store) from an initial machine state,

has no free values.

While VDGs are slightly larger than CFGs, we do

not anticipate that they will prove too large for practi-

cal use. Experiments with thinned gated single assign-

ment (TGSA) form [Hav93] indicate that in practice,

TGSA can be constructed in time and space linear in

the number of variable references for programs \satis-

fying reasonable assumptions." We would be surprised

if the same result did not hold for VDG form, which is

similar to TGSA form.

Sections 2.1 through 2.3 describe the three steps

in constructing a procedure's VDG. The �rst step,

SESE/end analysis, constructs a store dependence graph

(SDG), which is a translation of the CFG into VDG

formwith basic blocks left uninterpreted.

2

Unstructured

control ow is modeled via procedure calls. The second

step, inlining of nonrecursive calls, introduces extra 

nodes that allow inlining without code duplication. The

third step is symbolic execution of the SDG (and each

closure therein), which interprets the basic blocks to

produce a VDG.

2.1 Construction of the Store Depen-

dence Graph

A store dependence graph (SDG) is a VDG having the

following node kinds in place of primop nodes:

1

For an indexing of a set S, a bijection f1;2; : : : ; jSjg $ S

su�ces. This establishes the correspondenceof call operandswith

� parameters, call results with � returns, selector branches with

predicate values, etc.

2

The construction of the SDG is an expository �ction. The

implementation �nds the information necessary to construct the

SDG but uses this information to guide symbolic execution rather

than to construct the SDG.
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bcopy   = b
lp_inv1 = c + bcopy
lp_inv2 = d - b
a       = a * lp_inv1
down    = a % c
dead    = a + d

acopy = a
a     = down + 3
cse   = acopy << b

cse = a << bcopy

epr = a << b

t0 = lp_inv2 + epr
deallocate local storage
return(t0)

allocate local storage

Call

Call

γ

γ

a > d

a < cse

store

store

store

store

Figure 6: SDG for example, which was produced from the

CFG of Figure 3. Our SDG and VDG diagrams suppress

the ports, since the computations here are single-valued.

Each heavy box denotes a � node, which produces a func-

tion as its result. Arcs leaving such a box (e.g., the function

operand arc from the inner Call node) denote the �'s free

value operands. Parameter and return nodes are embedded

in its upper and lower boundaries respectively. Dotted lines

indicate store values; solid lines are scalar or function val-

ues.

� block nodes which produce a next-store from a

previous-store operand, and

� predicate nodes which produce a predicate value

from a store operand.

The initial CFG is assumed to have explicit join nodes

and entry and exit nodes. In addition, statements reside

in CFG basic block nodes having just one predecessor

and one successor; branches contain only the predicate

(switch) value and joins have no content whatsoever.

Each block or predicate node in the resulting SDG cor-

responds to a particular CFG basic block or branch.

Given a CFG node b and one of its postdominators

e, consider the function giving the store prior to e as a

function of the store prior to b. The SDG is a represen-

tation of this function for the case where b is the entry

and e is the exit. In this way, control ow is replaced by

(store) value ow. Figure 6 shows the SDG for example.

The problem thus reduces to constructing the SDG

fragment corresponding to a b ! e \traversal" of the

CFG.

� A basic block is replaced by a corresponding basic

block SDG node applied to the store operand. CFG

traversal proceeds from the block's successor.

� To translate a branch node, one of its postdomi-

nators is designated as the branch-end (see below).

A sequence of stores is obtained by traversing the

CFG from each branch successor in turn to the

branch-end, then the stores are combined via a 

node. CFG traversal proceeds from the branch-end.

� A join indicative of looping or unstructured con-

trol (see below) translates to a � node with a Call

node for each join predecessor. Such � nodes are

called internal � nodes, to distinguish them from

functions explicitly de�ned by the programmer; the

corresponding Calls are eventually converted into

gotos by the code generator. As with branch trans-

lation, join translation requires the designation of

a postdominator, the join-end, both to designate

where the CFG traversal continues after the Call

and to produce the � body SDG by traversing the

CFG from the join successor to the join-end.

� The remaining joins (e.g., the lower join in Fig-

ure 3) are merely mergings of distinct paths from a

branch; no � or Call nodes are necessary.

Whether a particular join needs a corresponding

internal � and how to designate branch/join-ends

are resolved by single-entry-single-exit (SESE) analy-

sis [JP93]. A pair of distinct CFG nodes a; b encloses

a SESE region i� there exist arcs � ending at a and �

beginning at b such that � dominates �, � postdomi-

nates �, and � and � are cycle-equivalent (i.e., every

CFG graph cycle contains both or neither). The SESE

region itself consists of a, b, and all nodes that are domi-

nated by a and postdominated by b. Merging all consec-

utive joins in the original CFG prevents artifacts result-

ing from ordering of joins. Unless otherwise speci�ed,

\SESE region" refers to a nontrivial SESE region, one

which is neither a single basic block nor the composition

of other SESE regions. A node d is a SESE-bottom if,

for some node c, c and d enclose a SESE region. Finally,

for each CFG node a, let bottom(a) be the postdomina-

tor of the smallest SESE region containing a; bottom(a)

can be found for all nodes in O(E) time [JPP93]. A join

is symptomatic of looping or unstructured control i� it

is not a SESE-bottom.

End analysis associates with each branch (join) node

a branch-end (join-end). The analysis depends on

whether the node is a SESE-bottom or not. If a

branch is a SESE-bottom node, the branch-end is that

branch's unique successor that is outside the SESE re-

gion. If a join is a SESE-bottom node, it is its own
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join-end. When determining the end for a non-SESE-

bottom branch or join n, let z be the end for bottom(n).

Nodes in contained SESE regions (that is, nodes a for

which bottom(a) 6= bottom(n)) are ignored. The branch-

end for a non-SESE-bottom branch node n is its nearest

postdominator that is either a join node or z. The join-

end of a non-SESE-bottom join n is its nearest postdom-

inator that is either a branch-end or z. End analysis

depends only on postdominator trees and takes linear

time [Har85].

The important property of this construction is that

each CFG basic block and predicate appears exactly

once within the resulting SDG, as a consequence of each

CFG node being visited exactly once in the CFG traver-

sal. The rules for determining branch/join-ends were

chosen to minimize the number of Call nodes generated,

though there are numerous variations worth exploring.

2.2 The �- Transform and Inlining

Nonrecursive Calls

Initially, the SDG models looping and unstructured

control via Call and � nodes. To simplify analy-

sis and transformation, the �- transform consolidates

Calls corresponding to unstructured control ow, en-

suring that each recursive � has only one external Call.

This permits inlining without code duplication, after

which Call and � only model looping (and programmer-

speci�ed procedures and procedure calls). The result of

this process is similar to thinned gated single assignment

(TGSA) [Hav93] except that the  trees take stores,

rather than values, as inputs. (Later passes produce

more TGSA-like structures in which the  trees operate

on values rather than upon stores.)

Before the �- transform, call loops are discovered,

which identi�es internal �s that are loop entry points

and identi�es recursive Calls, as well as �nding loops

with multiple entry points. The �- transform for a par-

ticular internal � proceeds in three steps. First, the con-

trol dependence tree is projected to contain only paths

leading to nonrecursive Calls of the �. (Symbolic execu-

tion tags all operations with their control dependences.)

Second, a  tree is generated by converting predicates

both of whose branches are contained in the projection

into  nodes and omitting other predicates. The �nal

step depends on whether the � is called recursively. If

the � is called recursively, a new call is created whose in-

put is the  tree, with the operands of the original calls

at its leaves. This new call replaces all the old non-

recursive calls, so that there is only one non-recursive

call to each internal �. If the � is not called recursively,

the third step inlines the � body by making consumers

of its store input consume the  tree instead and making

consumers of the Calls of the � consume the outputs of

the � body. The �- transform handles irreducible loops

in the same fashion, collecting and treating together all

calls into the loop.

For example, consider the simple unstructured pro-

gram CFG of Figure 7. Its upper join point is not a

SESE-bottom. The corresponding SDG for this CFG

contains a � and two Calls to that �, one for each possi-

ble path from the entry of the CFG to the unstructured

join point. The �- transform produces a new  node

that selects between the stores on the two paths to the

join, predicates the  on the fork that initiates the two

separate paths, then inlines the body of the � by replac-

ing its store parameter node by the just constructed 

node. The �- transform is illustrated by the two SDGs

of Figure 7.

The  nodes introduced by this pass represent addi-

tional representational overhead of our form over SSA

form. Experiments have shown that this overhead

is a linear function of the size of programs in SSA

form [Hav93].

2.3 Symbolic Execution

Symbolic execution expands the SDG's unevaluated ba-

sic blocks into VDG nodes. During the expansion,

global value numbering, copy propagation, and constant

propagation that can be performed without recourse to

�xed point analysis are automatically performed. Fig-

ure 8 shows the VDG that results from symbolically

executing example's SDG.

Symbolic execution occurs independently for the

body of each � node, each basic block of which is vis-

ited in turn after all of its predecessors have been pro-

cessed. Symbolic execution uses a data structure called

a symbolic store that maps locations to VDG ports rep-

resenting the values currently known to be stored there.

Essentially, the symbolic store represents what is known

about the store operand of the basic block SDG node

being executed.

The �rst basic block of the SDG is supplied with a

symbolic store that contains information about glob-

ally allocated locations, but not necessarily about their

contents.

3

Symbolic execution of a basic block updates

the symbolic store, so that it represents what is known

about the result store that gets passed on to the basic

block's successors. Symbolic execution produces VDG

nodes according to the following rules:

Variable Lookup If the variable's location in the sym-

bolic store contains a value that was placed there

by a previous update (see below), return that value.

If the location contains no explicit value, build a

VDG lookup node representing the corresponding

runtime load operation and return its result port.

If the store is actually the result of a  node, then

3

[Ste93b] describes our handling of store operations when the

location being looked up or modi�ed is not yet known due to

pointer operations.
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Figure 7: The CFG on the left contains unstructured control ow, which results in non-recursive � nodes in its corresponding

SDG (middle �gure). These non-recursive �s prevent accurate analysis because of the lack of  nodes to indicate within the

� which parameter values come from which paths through the program. That is, there is no way to track which Call supplied

a particular parameter value. We solve this problem by constructing  trees that indicate where the inputs come from, and

then inlining the � using the  as its input (right illustration).

create a  node whose \then" (\else") operand is

the result of looking up the variable in the \then"

(\else") store. Constant folding is performed here:

if the \then" and \else" values are the same port,

simply return it.

Expression Evaluation If a given expression can be

evaluated statically, then do so and return the

value; otherwise build a VDG node that repre-

sents the runtime execution of the expression and

return its result port. Nodes are cached, so at-

tempts to construct a node whose operation and

operands match an existing node will merely re-

trieve that existing node. Caching, also known as

global value numbering [Coc70, CS70], implements

common subexpression elimination (CSE)

4

by rep-

resenting multiple (not necessarily identical) source

expressions by a single node.

Variable Update Given an assignment statement,

update the location in the symbolic store to contain

the value (VDG port) obtained by symbolically ex-

ecuting the expression part of the assignment state-

ment. The updated store is used to symbolically

execute the program after the assignment, which

makes the assigned value available to subsequent

4

We follow [ASU86] in de�ning two expressions to be common

subexpressions if they compute the same value and one dominates

the other.

lookups.

Symbolic execution performs no interprocedural anal-

ysis of a Call's e�ect on, or use of, the store; later passes

perform that work. Therefore, symbolic execution of a

Call results in a store that has no information about

the contents of locations. Lookups in this store during

symbolic execution create lookup nodes. Additionally,

all values must be homed (placed in their single globally-

known locations, not in temporary storage) before each

call and return. This is done by constructing an Update

Store node whose arguments are all of the (changed) val-

ues and (corresponding) locations in the symbolic store.

3 Analysis and Transformation

of VDGs

The VDG produced by symbolic execution is too coarse

for good program analysis because too much of the com-

putation depends upon store operations, which inhibit

(instruction level) parallelism. The �rst several anal-

yses/transformations reduce the reliance on the store,

making the VDG sparser and more parallel. Then stan-

dard transformations, such as dead code elimination,

are performed. Transformations for arity raising, both

on parameter and return values, are also performed.

7
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Figure 8: The VDG of example (Figure 2) after symbolic

execution. The dashed circles taking a store operand are

lookup (load) operations. For clarity, the location argu-

ments to lookup and Update Store nodes are suppressed,

but their values (which are produced by the Allocate node)

are indicated by labels on the lookup nodes and on the value

operand arcs for Update Store nodes.

The VDG representation makes many transformations

simpler to state and to prove correct, and their imple-

mentations more e�cient.

Our formulation does not admit a standard dataow

model for proving properties of program points because

our model has no program points. Instead, analysis

proves invariants about runtime values. Each node is

given an abstract interpretation, and a �xpoint engine

�nds a �xpoint of the equations speci�ed by the VDG

and the abstract functions. This framework accommo-

dates both forward ow problems and backward ow

problems; the latter are all variants of the question,

\What information does the rest of the program de-

mand?" For example, dead update elimination, which

eliminates operations on the store, is a backwards ow

analysis that determines which elements of the store are

demanded by the rest of the program. The VDG is

called a sparse representation for analysis because in-

formation ows directly to where it is consumed.

Loop Dependences

This analysis pass annotates each internal � node with

the locations the node either demands or mutates.

When the � represents a loop, locations that are both

demanded and mutated by the loop are called loop de-

pendent locations. In the do-while loop of example

(Figure 2), variable a is both demanded and changed, b

is demanded but not changed, and epr is changed but

not demanded.

This pass employs a �xed-point �nding algorithm to

determine this information. In a particular strongly

connected component (SCC) of the VDG each � de-

mands and changes the same locations. Our algorithm

performs an inside-out traversal of SCCs by visiting in-

ner SCCs and internal �s �rst, so that inner loops get

more detailed information than outer ones.

A traversal of a � reveals which locations are de-

manded and changed by it. This traversal only needs

to follow store arguments, because only operations that

perform lookups or modi�cations are of interest, not the

values that are retrieved or stored. In Figure 8, only the

dotted arcs need be followed, so the traversal is quicker

than a full traversal of the VDG.

After all components of an SCC have been traversed,

each � in the SCC is annotated with the demand and

modi�cation information, which later transformation

passes depend on.

Accounting for the E�ects of Calls on the Store

This analysis/transformation is a constant folding pass

whose major goal is to make the program as indepen-

dent of the store as possible by symbolically executing

lookup nodes to pull values out of the store. The con-

struction of VDGs left all lookups of the store produced

8



by a Call as nodes in the graph. Likewise, nothing was

known about the store parameters of �s, which pro-

duced many lookup nodes on an internal �'s store pa-

rameter. This pass uses the information found by loop

dependence analysis to approximate the stores on entry

and exit of each Call.

The e�ects of Calls are accounted for in a single top-

down pass through the VDG. A node is processed only

after all its inputs have been processed. Processing

propagates a symbolic store, much like the one used dur-

ing symbolic execution, through the graph. Processing

a Call \blanks" out those locations mutated by the �

being called and leaves the others unchanged. Process-

ing a lookup node attempts a lookup on its incoming

symbolic store. If the lookup is successful, then the

lookup node is replaced by what was found; otherwise,

it remains.

An internal � node is processed after its (single) ex-

ternal Call is processed. Its incoming store is approxi-

mated by the symbolic store at the Call, less the loop

dependent locations of the �. Many lookups are symbol-

ically executed, and thereby eliminated. For example,

for the VDG for example (Figure 8), this pass replaces

the lookups on b, c, and d within the internal � with

direct pointers to the inputs of the procedure.

Input Arity Raising

Lookups can be eliminated in � bodies by passing the

desired values directly, instead of (or in addition to)

passing a store parameter. This is pro�table if it releases

the caller from the obligation to update the store before

the call.

Every � node takes a store as an argument and pro-

duces a store as a result; internal � nodes have no

other arguments or results. The store argument is too

coarse; only the locations whose contents are both de-

manded (i.e., used before being changed) and modi�ed

within the � (i.e., its loop dependent locations) need

be its arguments. All � invocations are sequentialized,

which inhibits transformations, especially code motion.

(Aliased variables, the requirement not to reorder out-

put, and similar constraints may introduce dependences

that force such sequentialization.)

Arity raising of the store argument changes the con-

tract between �s and their Calls. Those lookup nodes

within a � that operate on its incoming store can be

replaced by arranging for the Calls of the � to provide

those values as arguments by executing the lookup prior

to calling the �. For example, arity raising is how the

lookup of a within the internal � of example is replaced

by a new formal parameter. (The store parameter node

is then eliminated by dead code removal because after

this transformation, it is not accessed within the inter-

nal �.)

A more aggressive input arity raiser could use a �xed

point algorithm to �nd even more constant values. How-

ever, it may be cheaper to discover these additional con-

stants after the input arity raising pass.

Output Arity Raising

Just as an internal � can have its input arity increased,

so can its output arity be increased. Originally, each

� returns a store. External lookup operations then re-

trieve values from the store. We can move these lookup

operations into the � by having the � return the value

of the lookup as as additional return value that is used

instead of the original lookup. For example, this trans-

formation is applied to the epr lookup of the Call of

the internal � in (Figure 8), causing that value to be

returned by the internal �. (The store return node is

then eliminated by dead code removal since, after this

transformation, it is dead, i.e., none of the �'s Calls

have any consumers for their store result ports).

Dead Update Elimination

Due to arity raising and symbolically evaluated lookups,

there will be many dead update operations on stores.

Dead update elimination removes these now extraneous

operations. First, a bottom-up traversal determines at

each store mutating site (e.g., update nodes and Calls)

those locations whose contents are demanded (i.e., may

a�ect the computation's �nal value) after the store mu-

tator. (This is also called live variable analysis.) If the

locations that are changed by the operation are not de-

manded by the rest of the computation, then the opera-

tion is deleted, and its consumers are changed to accept

the store that was the input to the store mutator.

It would seem that more direct methods could be

used for transforming the VDG, in particular, for de-

termining the values demanded and modi�ed by loops.

Other sparse representations, such as dependence ow

graphs [PBJ

+

90, JP93] and SSA form, are constructed

directly from the CFG. They can collect in one pass

the variables used or modi�ed within a loop. We do

not do so because we are actively extending the system

to handle data structures and pointers, which requires

a uniform and incremental method for determining the

locations used or modi�ed within a loop.

Incremental Transformations

Because the VDG models (only) data dependences

explicitly, transformations occur without the classical

problem of data ow and control ow information get-

ting out of sync and without the need for a global anal-

ysis to put them back in sync. For example, consider

selector deletion, which occurs when static analysis de-

termines the value of the predicate of a selector ()

node. We snip out all  nodes with that predicate

9
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Figure 9: The VDG for example (Figure 2) after the VDG

transformations of Section 3. Dotted lines separate regions

of equivalent demand dependence; there are no store values.

by directly connecting their outputs to the relevant in-

puts and transitively rebuilding successor nodes as nec-

essary (which performs common subexpression elimina-

tion, constant folding, etc.). We safely ignore the issue

of whether some variable was de�ned on the deleted se-

lector, or some de�nition was allowed to pass through

on the deleted selector, as all the dataow rami�cations

are directly accounted for in the VDG. Nodes that were

demand dependent solely on the predicate (or its nega-

tion, whichever is false) are garbage collected without

the need to employ a separate dead code elimination

pass. After local changes propagate, a scan determines

if any enclosing � formals may now be removed, or if

return values are no longer computed within the �. If

so, the relevant Calls are updated, with local transfor-

mations proceeding outward. The same e�ect can be

achieved with PDG methods [FOW87, Section 5.1], but

at higher cost in conceptual complexity, overhead, and

analysis passes.
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+Region
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<< IF
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Figure 10: The demand dependence graph constructed from

the VDG of example (Figure 9).

4 Code Generation

Generating code from the VDG is done in two stages.

The �rst stage transforms the VDG into a demand-

based program dependence graph (dPDG). A standard

PDG [FOW87] consists of a data dependence graph and

a control dependence graph (CDG). In the dPDG the

VDG operand arcs provide the data dependences and

the CDG is replaced by a demand dependence graph.

The second stage transforms the dPDG into a CFG

from which code may be generated directly. This stage

is described in [Ste93a], which extends earlier work on

sequentializing PDGs [SF93].

The demand dependence of a VDG node is character-

ized by the  nodes encountered on paths from a return

node, much as the control dependence of a CFG node

is characterized by branch nodes encountered on paths

from an entry node. That is, any path from a return

node to a VDG node yields a sequence of  selector ports

and a corresponding sequence of selector/predicate val-

ues required in order that the given node actually be

demanded along that path. Very loosely, node n is de-

mand dependent upon  node g if n dominates, within

the VDG, one arm (either True or False) of g, but not

the other. Space prevents us from giving the formal def-

initions of demand dependence and VDG dominance.

In example's �nal VDG (Figure 9), the \%" and \+3"

nodes have demand dependence \a > d", the recursive

Call node has demand dependence \a < cse", the \a

<< b" node has demand dependence \not a < cse", and

the remaining nodes are always demanded.

5

Figure 10

shows the demand dependence graph for example.

Viewed as predicates, the demand dependence for a

5

Since the VDG contains no names, we should really refer to

the result port of the \>" node rather than to some particular

expression like \a > d".
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computation implies the control dependence: in the

original CFG, a computation may be computed in a

program before it is used and the use may occur at a

program point that doesn't post-dominate the compu-

tation. For example, the control and demand depen-

dences of the expression down = a % c in example dif-

fer. The control dependence is vacuous (i.e., \always

execute"), but the demand dependence is \a > d". The

corresponding code motion into an arm of a conditional

is called the revival transformation in [FKCX94].

The use of the dPDG enables more code motion and

other transformations than representations based on

control dependences. Motion out of loops occurs auto-

matically, since the dPDG reects only when a compu-

tation is used, not its location in the original program.

When the data dependences do not enforce a total or-

dering, the code generator is free to reorder computa-

tions and conditional constructs. For example, our sys-

tem performs more strict (nonspeculative) code motion

than [CLZ86]. In particular, for Figure 2 of that paper,

our system would move the a.1 and a.5 assignments

into the else clause of the if movable1 statement on

the right side of the �gure,

6

resulting in a clear improve-

ment in the code. We extend the results of [CLZ86] in

other ways: because of our redundancy detection, we

�nd at least as many (structural) common subexpres-

sions as their COMMON algorithm �nds, and state-

ments moved by our method don't have to have the

same values on all iterations (our method handles the

problem case of [CLZ86, Figure 11]).

5 Elimination of Partial Redun-

dancies

A computation is partially redundant at a program point

if there is some path to the point that performed the

same computation (the redundant path) and some path

to the program point where the computation is not

performed. For example, the second << operation of

example (Figure 2) is partially redundant. We will show

how to remove partially redundant computations from

a program via transformation.

Consider an operation node at least one of whose

operands is a  node. The operation can be distributed

through the  node, without changing the VDG's se-

mantics, by constructing two new operation nodes (Fig-

ure 11). This transformation is equivalent to converting

a op (p ? b : c) into p ? a op b : a op c, which

is transformation rule 3.2.a of [SHKN76]. Our contribu-

tion is a program representation that allows this simple

transformation to be the basis of e�cient EPR.

6

We assume that \unmovable" expressions are unmovable due

to loop carried dependences, and not because of semantic issues

such as volatile variables in C.

op

γ op

γ

opp

a

b c

p

cba

Figure 11: Distributing an operation through a  node.

Distribution through s duplicates code and increases

the size of the program (though not the number of op-

erations performed at runtime). It removes redundant

computations (i.e., is pro�table) if either of the new

operation nodes matches (has the same operator and

operands as) a node that it subsumes, or if further ap-

plications of the transform match such a node. Node

n subsumes node m i� n's demand dependence implies

m's demand dependence (i.e., if n is demanded, then so

is m.) In other words, if n subsumes m, then the com-

putation of m will be available (or be costlessly made

available) at the computation of n. Our EPR algorithm

performs only pro�table transformations, searching for

a subsumed match on a candidate node's  tree input(s).

When the inputs are  nodes with the same predicate,

minor bookkeeping ensures that only possible program

paths are considered during the search and transforma-

tion.

Assume that hashing (i.e., matching two nodes, or

determining whether a predicate has been encountered

and its value) is a constant time operation and that

the subsumption relation can be veri�ed in time linear

in the depth of the demand dependence graph, jDDGj.

Let Gtree(n) denote the size of the  tree rooted at

node n. A candidate node with  tree input g is pro-

cessed in worst case time O(jDDGj �Gtree(g)), which is

equivalent to being quadratic in the size of the proce-

dure being optimized. If both of the node's inputs are 

trees, the time is no worse than cubic. However, empir-

ical results [CFR

+

89] indicate that in practice Gtree(g)

contains at most a few elements, which implies that in

practice the depth of the demand dependence graph has

a small bound.

Because our EPR method employs only a partial or-

dering of the computation as expressed by the dPDG, it

is much simpler than methods that employ total order-

ings expressed as a CFG. For example, as compared to

the pure CFG methods [MR79, Dha91, DRZ92, KRS92,

DS93], it requires no availability or global (partial) an-

ticipatibility analysis for every expression nor any ba-

sic block by basic block code motion. Like more re-

cent CFG based EPR methods, it does not perform re-
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dundant code motion. It is also simpler than the SSA

method [RWZ88] with its CFG graph conditioning (e.g.,

adding landing pads), assignment of ranks or orders,

LCT and MCT tables, etc.

6 Related Research

Our graph structure is a direct descendant of the graph

structure used in the Fuse partial evaluator [Wei90,

WCRS91]. The graph structure was designed for rea-

soning about and transforming strict functional pro-

grams. The only accommodation made for imperative

programs is the explicit presence of a store datatype

(and other usually implicit machine quantities), and op-

erations on stores. Our transformational engine is an

extension of Fuse's, which, because Fuse was a special-

izer, only did constant folding and function specializa-

tion. Because we now use graphs to reason about im-

perative programs with unstructured control, the trans-

lation from the source to graph form is more complex

than it was in Fuse.

PDG-based compilers simplify transformations by

eliminating the CFG, at the cost of needing to recon-

struct the CFG to produce serial code [FM85, FMS88,

SAF90, SF93, Ste93a]. The underlying representation is

still statement-oriented, however (control dependences

are attached to statements) so the PDG approach does

not enable as many analysis and transformation simpli-

�cations as the VDG and the dPDG, which also elim-

inates the CFG but attaches demand dependences to

expressions.

The program dependence graph (PDG) [FOW87] con-

sists of a control dependence graph (CDG) and a data

dependence graph. The CDG is the novel contribution;

it ties together elements of the program that execute

under the same control conditions. CDGs provide in-

formation that enables and simpli�es many transforma-

tions, such as code motion [CLZ86].

The theta graph [Cli93a, Cli93b] is a PDG for a pro-

gram in SSA form [CFR

+

89]. The theta graph is built

directly from the CFG, without any need for an inlining

step as in the VDG construction. Click suggests remov-

ing the control information from his program represen-

tation; if this occurs, the theta graph will probably end

up very similar to the VDG.

The dependence ow graph (DFG) [PBJ

+

90, JP93]

is an extension of the standard SSA form in which, in

addition to the � nodes inserted at merge points, switch

nodes are inserted above branch points. Switches are

merge points for backwards program execution, so the

DFG makes it as easy to perform backwards as forwards

analyses.

MIT dataow graphs [AN90] di�er from VDGs by

including tokens for control and by not needing to rep-

resent machine state, such as stores. [BJP91] suggests

a dataow-like intermediate representation that shares

many of our goals and concerns. However, it uses to-

kens to represent control, which keeps explicit control

in the program representation. The authors of [BJP91]

have since abandoned the dataow model and are now

investigating DFGs [JP93].

The gated single assignment (GSA) component of the

program dependence web [BMO90, CKB93] is similar to

the VDG, but transformation is hindered by the need to

keep three di�erent representations in sync, and it fails

to handle irreducible programs. Thinned gated single

assignment (TGSA) form [Hav93] is also similar to our

representation. The major di�erence between the VDG

and TGSA form is that VDGs represent looping via

procedure call and return, whereas TGSA, like PDW

form, represents looping with special nodes (� and �).

[Fie92] presents a framework for reasoning about and

partially evaluating programs in graphical form, based

on the idea of a guarded expression. Its rewrite rules are

similar to VDG transformations, and similar techniques

are used to extract values from stores, converting lookup

operations into the values they would return. This work

is similar to [CF89], which discusses the semantics of the

program dependence graph (PDG) when considered as

an executable dataow program.

Sparse evaluation graphs [CCF91] are a program rep-

resentation for e�cient solution of dataow problems.

For a given dataow problem, a program is converted

to a sparse evaluation graph which is used as the data

structure for analysis. VDGs can be translated into

a similar data structure by removing nodes whose ab-

stract function is the identity function, removing 

nodes whose true and false inputs are identical, and

eliminating (internal) � and Call parameters that no

longer represent loop dependences. One advantage of

constructing sparse evaluation graphs from VDGs is the

presence of  nodes, which allow for conditional analyses

(e.g., conditional constant propagation).

7 Future Work

We expect the VDG representation to simplify pointer

and alias analysis. We approximate the locations to

which a pointer may refer by explicitly modeling lo-

cations as the operation that allocates them. We use

\mini-stores," which represent portions of the global

store that are not aliased to other locations but within

which aliasing may occur, in order to minimize false de-

pendences and maximize parallelism. We eliminate not

only the names that values may be bound to, but the

locations that those names really denote.

Our system will give two expressions the same global

value number even when those expressions have di�er-

ing demand dependences. When this occurs, there may

be no program point where the value can be computed
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without unnecessarily increasing register pressure. The

system will be forced to duplicate the computation,

which will be no worse than the original program, in

which the computation appeared multiply. To help the

system decide whether a computation with multiple uses

appeared duplicated in the original program, we plan

to keep track of the control dependences of each expres-

sion, and combine them when global value numbering

merges computations. We anticipate that we can con-

struct control dependences on the y during symbolic

execution and store propagation.

 nodes with the same predicate are either all pro-

duced from the same if statement in the program, or

from di�erent if statements that used the same boolean

value as their predicate. Consider the case where they

come from the same if statement. When they all share

the same demand dependence, the code generator pro-

duces only one branch operation. However, when they

have di�erent demand dependences, then the code gen-

erator may decide to place them in di�erent parts of the

program, which will require saving the test value, and

replicating the if statement throughout the program.

Doing so may or may not improve the program. We

need to address this issue in the back end.

Our representation raises many other issues for a

code generator. For example, a computation that is

demanded at two sites in the program with di�erent

demand dependences may be duplicated to reduce reg-

ister pressure [BCT92]. Similarly,  nodes with similar

predicates but dissimilar demand dependences force a

\precompute vs. register pressure vs. code size" engi-

neering tradeo�. While these issues are not trivial, they

are where they belong, in the back end.

Program slicing [Wei84, Ven91] determines which el-

ements of a program a�ect, or can be a�ected by, a

given computation. This analysis can be useful in de-

bugging and in distributing computations across pro-

cessors. The VDG is a particularly convenient repre-

sentation for slicing because it is sparse (operands are

connected directly to inputs) and all computation is ex-

pressed as value ow; a VDG is e�ectively a representa-

tion of the slice for every computation in the program,

simultaneously. Other authors have noticed the e�cacy

of the PDG for slicing [HRB90] and addressed the prob-

lems of irreducible control ow [BH92]. Our algorithms

are equally as precise as the best of these, simpler to

state, and often more e�cient [Ern93]. Because the

VDG represents only value ow, we are able to slice only

on values, not on particular program points, which no-

tion does not make sense in the VDG framework. This

does not appear to be a serious limitation.
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