
Ernst, Lencevicius, Perkins

Detection of Web Service substitutability and
composability

Michael D. Ernst1

CSAIL
MIT

Cambridge, MA, USA

Raimondas Lencevicius2

Nokia Research Center Cambridge
Cambridge, MA, USA

Jeff H. Perkins3

CSAIL
MIT

Cambridge, MA, USA

Abstract

Web services are used in software applications as a standardand convenient way of ac-
cessing remote applications over the Internet. Web services can be thought of as remote
procedure calls. This paper proposes an approach to determine web service substitutability
and composability. Because web services may be unreliable,finding other services substi-
tutable for an existing one can increase application uptime. Finding composable services
enables applications to be programmed by composing severalweb services (using one ser-
vice’s output as an input to another web service). We have implemented our technique
and evaluated it on 14 freely available web services producing 92 outputs. Our approach
correctly detects all composable and substitutable web services from this set.

Key words: web services, composition, testing, dynamic analysis

1 Email: mernst@csail.mit.edu
2 Email: Raimondas.Lencevicius@nokia.com
3 Email: jhp@csail.mit.edu

International Workshop on Web Services Modeling and Testing (WS-MaTe 2006)

Ernst, Lencevicius, Perkins

1 Web service integration problem

Web services [13] are software building blocks that can be accessed over the In-
ternet in a standard programmatic way using SOAP messaging.They allow pro-
grammers to access data from remote providers without extracting it from HTML
web pages or using proprietary protocols. Web services are used in various areas:
customized stock tracking and trading applications, product search and ordering,
address validation, and so on. Programmers can select from over 100 services
listed on XMethods.org [1] and other web service providers. Businesses are also
adopting and publishing web services for business-to-business communication.

It can be difficult to integrate web services, since most of them were never de-
signed to work together. In theory, semantic information inWSDL [14] files was
supposed to solve this problem. In practice, it is often insufficient. In most web
services we considered, the web service operation parameter types are indicated
simply as strings, floats, and integers. It is impossible to decide from a WSDL file
if the input string is a stock ticker or a town name, or what theunits of the output
quantity are. Some services are even worse, returning a single untyped XML object
instead of a typed set of outputs. Because currently WSDL files don’t carry enough
information to decide substitutability or composability,there is a need for automatic
techniques to deduce this information. The web services cover a wide variety of
domains. Considering semantic hints from web service namesand operations, hu-
mans might guess that some operations may be substitutable or composable. Some
of those guesses could be wrong. For example, some of the stock quote services
return a variety of different results such as the previous closing price, the opening
price, the current price, the daily high and low price, the annual high and low price,
etc. The only semantic information available is the name of each parameter. Those
names are not always clear. One stock service we considered has output parameters
named “HIGH” and “LOW”. It is not clear whether those are the daily high and low
or the annual high and low. Our tool discussed in this paper, however, was able to
determine that they were substitutable with output parameters in a different service
named “DayHighPrice” and “DayLowPrice”.

Our goal is to enable creation of applications that deliver new functionality
by integrating web services. In the long run, the integration can indicate which
services are compatible with one another; substitute one service for another; and
transform inputs or outputs in order to make them compatible. We wish to support
the integration performed by programmers writing software, by users who compose
services, or even by applications as they discover new services. We discuss each of
these scenarios in turn.

Information about web service composability or substitutability can be very
useful for programmers. Suppose that a new information source or sink becomes
available. As noted above, existing documentation is not necessarily adequate for
the programmer’s purpose. However, given the information source or sink, and
an example application that uses it, tools based on our techniques will enable the
programmer to explore the semantics of the feed in order to more quickly build

124

Ernst, Lencevicius, Perkins

applications that properly use it.
End users can discover web services and may wish to compose them. Suppose

that a user discovers two services created without knowledge of one another, and
they do not adhere to a common standard. Tools should enable the user to create
a new application on the fly by connecting them. A compositionwizard would
permit the user to make sensible connections between them, rejecting nonsensi-
cal ones, and converting the representation of those with compatible semantics but
incompatible formats. For example, a motion detector’s output might not be a sen-
sible input to a shopping application, but could be providedas spatial control for
aiming a video camera. As another example, today a difference in data format ren-
ders an application completely unable to use a data source. Based on observations
of use, a future system could infer transformations that retain the meaning. Triv-
ial examples are centigrade–Fahrenheit and polar–Cartesian coordinates, but future
work should address more ambitious ones as well.

Currently, the stability of web services is not guaranteed.Finding substitutable
web services allows application developers to increase their application uptime. For
example, suppose that a blogger posts a local weather reportfrom a home meteoro-
logical station. A weather application could notice this new information source and
determine that it is (imperfectly) correlated with other weather data, perhaps after
transformations. If the primary weather service becomes unavailable, the applica-
tion automatically converts the blogger’s information into a form compatible with
the application and uses it to approximate the missing information. As another ex-
ample, the system could determine when multiple services provide interchangeable
functionality and choose the one that is cheapest, fastest,or most accurate, based
on user preferences. Such substitutability improves system reliability.

Our work does not solve all of the above problems. However, ittakes a step to-
ward their solution by proposing and evaluating techniquesfor automatically com-
puting web service substitutability and composability.

The paper is organized as follows. Section 2 presents an example of how sub-
stitutability and composability can be detected. Section 3proposes an approach
for detecting web service substitutability and composability. Section 4 discusses
the web services used in our experiments, and Section 5 showsthe experimental
results. The paper concludes with related work, future work, and conclusions.

2 Substitutability and composability detection example

Here we present an example of the application of our technique.
Consider two web services Stock1 and Stock2, and suppose they have the par-

tial input/output behavior shown in the tables below, wherethe leftmost column is
the input and the other columns are the output. Those values could have been ob-
tained by testing, by random invocations, by observing their actual user over time,
or in any other way.

125

Ernst, Lencevicius, Perkins

Service Stock1:
StockTicker Price
ADBE 36.90
INTC 19.88
MSFT 27.40
QCOM 50.86

Service Stock2:
Stock LatestPrice Volume
ADBE 37.00 1.9M
MSFT 27.39 34.9M
QCOM 50.92 30.9M
YHOO 30.80 24.8M

Our technique works in two phases. The first phase detects theoverlap of the
StockTicker and Stock inputs (ADBE, MSFT, and QCOM are the same inputs) as
well as overlap with a margin of error of the Price and LatestPrice outputs. The
Volume output of the service Stock2 does not overlap with anyother column of
inputs or outputs. Since there are no inputs of one service that overlap outputs
of another service, there is no potential for composability. However, since there
are inputs that overlap inputs and outputs that overlap outputs, the services are
potentially substitutable.

The second phase aligns the invocations of the two services for the overlapping
inputs and outputs, and finds the best match of different overlapping outputs. In
our example, the ADBE 36.9 invocation of Stock1 aligns with the ADBE 37 invo-
cation of Stock2, MSFT 27.40 aligns with MSFT 27.39, and so on. If thus aligned
invocations match well (as they do in our example), the services are considered
substitutable.

3 Approach

This section describes our algorithm for computing web service composability and
substitutability. Our approach assumes that trace data is available from executions
of a set of web services. Then it finds similarities between the inputs and outputs
of different web services.

A single web service contains one or more operations. Each operation takes
zero or more inputs and produces one or more outputs. Our algorithm treats each
operation independently. We use the term “param” to mean an input or output.

Our algorithm is a dynamic one; that is, it infers composability and substi-
tutability by observing actual executions of the web service. Simply put, it searches
for outputs that match inputs to determine composability, and it searches for inputs
that match inputs and outputs that match outputs to determine substitutability. The
notion of “matching” is parameterizable; different matching sub-algorithms can be
plugged into our framework.

Suppose that there are two operationsop
1

andop
2
, in different web services.

The algorithm observes, at run time, many invocations ofop
1

and many invocations
of op

2
; for each invocation, the observed trace data indicates each param value (in-

put and output value). There are two challenges. First, the algorithm must deter-
mine which invocations ofop

1
are related to which invocations ofop

2
. Second, the

algorithm must determine which params ofop
1

are related to which params ofop
2
.

As an example, supposeop
1

takes a movie as input, and it outputs the names

126

Ernst, Lencevicius, Perkins

and zip codes of theaters showing the movie. Suppose thatop
2

takes a zip code
and a location as input, and it outputs the approximate distance between them. The
first challenge is to determine which invocations ofop

1
are related to invocations

of op
2
. An invocation ofop

1
matches an invocation ofop

2
if op

1
outputs the same

zip code as the one used as input byop
2
. Many invocations ofop

1
will not match

any invocation ofop
2
, and vice versa. Once the invocations have been aligned, the

second challenge is to determine which params are related. In the example, only
the zip codes are related, and no other params are.

The algorithm works in two phases. The first phase aligns invocations of dif-
ferent services. The second phase builds on those results and performs a second,
potentially looser matching operation to match params. Approximately, the first
phase indicates composability (though composability could be refined by the sec-
ond phase), and the second phase computes substitutability.

3.1 Algorithm

Figure1 contains the algorithm in pseudocode. Thesetfraction and list fraction

constants are selected empirically.
Both phase 1 and phase 2 of the algorithm perform a value matching step to

determine the percentage of matching values. These two invocations ofVALUE -
MATCH can and should be different. In phase 1SET-MATCH should use a relatively
low setfraction, because arbitrary executions are not likely to line up veryoften,
but a rather strictVALUE -MATCH (such as exact equality) to avoid false positives.
By contrast, in phase 2LIST-MATCH should have a highlistfraction cutoff (if the
invocation matching occurred properly, then any true matchshould be overwhelm-
ingly common), but the value matching might be made less rigorous (to permit
floating-point roundoff rather than requiring an exact match, or to permit different
printed representations) to avoid false negatives.

The algorithm treats operations as logical units; for example, if many invoca-
tion alignments are possible, the best one is chosen, and if many param matchings
are possible, again the best one is chosen. An alternative approach that considers
each output as an independent operation would simplify the algorithm but degrade
its quality. For example, consider two stock services. Bothtake a stock ticker and
return a number of output parameters such as OpenPrice, DayHighPrice, DayLow-
Price, LastPrice, etc. Depending on the volatility of the stock and the time of day
the services were executed, many of the output parameters might have very similar
values. For example, on a day when prices are rising DayHighPrice may often be
very similar to the LastPrice. Thus, there may be many different combinations of
output parameters that exceedlistfraction. It is important to choose the best among
them, and not to match any one param to multiple params in another operation.

When at least one input and output param match up, then unmatched params
may indicate constant parameters or mappings. As an exampleof a constant pa-
rameter, a movie service that returns the movies playing near a zip code may take a
zip code and a radius. The radius is not a critical parameter.It may always have the

127

Ernst, Lencevicius, Perkins

� PHASE 1:
1 for every paramp1 from an operationop

1
of a web services1

2 do for every paramp2 from an operationop
2

of a web services2 6= s1

3 do if SET-MATCH(valuesof (p1), valuesof (p2)) > setfraction

4 then if IS-INPUT-AND-OUTPUT(p1, p2)
5 then markp1 andp2 as composable
6 else markop

1
andop

2
as potentially substitutable

� PHASE 2:
7 for every pair〈op

1
, op

2
〉 of potentially substitutable operations (from Phase 1)

8 do � First, find an alignment between invocations
9 Choosep1 from op

1
andp2 from op

2
be such that

IS-INPUT-AND-OUTPUT(p1, p2) andSET-MATCH(p1, p2) is maximal
10 An invocation ofop

1
corresponds to (is aligned with) an invocation ofop

2

if VALUE -MATCH(p1, p2)
(In the remainder of the algorithm, ignore non-aligned invocations.)

11 � Second, find a mapping among params
12 Choosem to be the mapping between the params ofop

1
andop

2

that maximizes
∑

p1∈op
1

LIST-MATCH(valuesof (p1), valuesof (m(p1)))

13 � Third, mark well-matched params as substitutable
14 for each pair〈p1, p2〉 ∈ m � p1 andp2 are corresponding params
15 do if LIST-MATCH(p1, p2) > listfraction

16 then markp1 andp2 as substitutable.

SET-MATCH(set1, set2)

� Return the fraction of elements ofset1 andset2 that match
� Example:SET-MATCH({1, 2, 3}, {1, 3, 4, 5})→ min(.67, .5)→ .5
match1 ← {v1 ∈ set1 : ∃v2 ∈ set2 : VALUE -MATCH(v1, v2)}
match2 ← {v2 ∈ set2 : ∃v1 ∈ set1 : VALUE -MATCH(v1, v2)}
return min(|match1| / |set1| , |match2| / |set2|)

LIST-MATCH(list1, list2)

� Return the fraction of corresponding list elements that match
� Example:LIST-MATCH([1, 2, 3, 4, 5], [1, 4, 3, 2, 5])→ .6
return|{i : VALUE -MATCH(list1[i], list2[i])}| / |list1|

VALUE -MATCH(v1, v2)

� Return true if the two values match
� VALUE -MATCH is set by the specific instantiation of our framework. Examples are:
� return v1 = v2

� return (v1/v2 < 1 + ǫ) and (v2/v1 < 1 + ǫ)
� return (v1 is a prefix ofv2) or (v2 is a prefix ofv1)

IS-INPUT-AND-OUTPUT(p1, p2)

return (p1 is an input andp2 is an output)or (p1 is an output andp2 is an input)

Fig. 1. Algorithm for determining Web Service composability and substitutability.

same value (as in our experiments), or its value may be more reasonably supplied
by the user rather than extracted from the outputs of the service that yielded the zip
code. As an example of a mapping, consider two currency exchange services. One
takes two country names as input and returns the exchange rate. The other takes
two currency names as input and returns the exchange rate. The exchange rate out-

128

Ernst, Lencevicius, Perkins

Service & operation #Inputs & description #Outputs & descrip.
stock_wsx.GetQuote 1 ticker 16 quote info
stock_gama.GetLatestStockDailyValue2 ticker, exchange 1 quote
stock_xmethods.getQuote 1 ticker 1 quote
stock_sm.GetStockQuotes 1 ticker 10 quote
weather_global.GetWeather 2 city, country 10 weather info
currency_exchange.getRate 2 country, country 2 exchange rate
currency_convert.ConversionRate 2 currency, currency 1 exchange rate
gold.GetLondonGoldAndSilverFix 0 10 gold, silver info
region_ab.abbrevToRegion 1 state abbrev 4 state name
region_name.regionToAbbrev 1 state name 4 state abbrev
geoip.GetGeoIP 1 IP address 5 country
location.getCity 1 zip code 1 city
Zip_ripe.ZipCodeToCityState 1 zip code 1 city, state
Zip_ripe_city.CityStateToZipCode 2 city, state 1 zip code
airport.getAirportInfoByAirportCode 1 airport code 16 airport info
movies.GetTheatersAndMovies 1 zip code, radius 6 movie info

Fig. 2. Web services used in our experiments.

put parameter can be used to line up the results in the first phase of the algorithm,
but the input parameters will not match in the second phase. However, a consis-
tent mapping can be found from country name to currency name and vice versa
(e.g., “United States” and “USD”, “Europe” and “Euro”, etc.). Once the mapping
is determined, the two services become substitutable.

Duplicated values, which occur frequently in a parameters valueset, carry little
information even though they may match well. For example, suppose that two
Boolean operations each returntrue half of the time. These match well, but the
mapping carries little information content in terms of matching invocations to one
another. So on line12 of Phase 2, the algorithm discards matches where a single
item matches multiple items. An alternative formulation would consider multiple
params as necessary, until the matching was unique.

4 Experimental methodology

This section describes the web services and test data used inour experiments.

4.1 Web services

We used 14 different web services and invoked 16 different operations (methods)
on them. These operations produce 92 different outputs. A web service operation
may produce multiple outputs.

The 92 outputs include 16 outputs that are constants and 6 outputs that are du-
plicates of an input in the same operation. Our tool ignores constant and duplicate
outputs. 10 of the output constants are from the gold operation — this service does
not have an input, so it returns the same values every time it is called.

Figure2 is a synopsis of the web services, their operations, inputs and outputs.
Figure3 gives the WSDL addresses of these web services.

129

Ernst, Lencevicius, Perkins

Service/operation and WSDL file
stock_wsx.GetQuote

http://www.webservicex.com/stockquote.asmx?WSDL
stock_gama.GetLatestStockDailyValue

http://www.gama-system.com/webservices/stockquotes.asmx?wsdl
stock_xmethods.getQuote

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
stock_sm.GetStockQuotes

http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL
weather_global.GetWeather

http://www.webservicex.com/globalweather.asmx?WSDL
currency_exchange.getRate

http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
currency_convert.ConversionRate

http://www.webservicex.com/CurrencyConvertor.asmx?wsdl
gold.GetLondonGoldAndSilverFix

http://www.webservicex.net/LondonGoldFix.asmx?WSDL
region_ab.abbrevToRegion

http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
region_name.regionToAbbrev

http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
geoip.GetGeoIP

http://www.webservicex.com/geoipservice.asmx?WSDL
location.getCity

http://webservices.imacination.com/distance/Distance.jws?wsdl
zip_ripe.ZipCodeToCityState

http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
zip_ripe_city.CityStateToZipCode

http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
airport.getAirportInfoByAirportCode

http://www.webservicex.com/airport.asmx?wsdl
movies.GetTheatersAndMovies

http://www.ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.asmx?wsdl

Fig. 3. WSDL files for the web services of Figure2.

4.2 Test data

We obtained experimental data from each service by calling it 50 times, choosing
input parameters at random from a predefined set of possible choices (see Figure4).
We used the same set for each input parameter of the same type.Each combination
of input values is used at most once for each service. The number of choices is
constrained to generate data similar to the real-world datathat would be generated
by a few users of a service. For example, users probably woulduse the service to
check for movies in their local geographical area.

Figure 4 shows the values used for each parameter. We usesetfraction of
60% andlistfraction of 80%. BothSET-MATCH andLIST-MATCH use an almost
exactVALUE -MATCH function that allows only 1% difference for floating number
matches.

5 Experimental results

We have applied our tool to detect and determine substitutability and composability
of the web services of Section4.

Before looking at the results generated by our tool, we first explain what sub-
stitutions and compositions can be found in the ideal case. We determined these

130

http://www.webservicex.com/stockquote.asmx?WSDL
http://www.gama-system.com/webservices/stockquotes.asmx?wsdl
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL
http://www.webservicex.com/globalweather.asmx?WSDL
http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
http://www.webservicex.com/CurrencyConvertor.asmx?wsdl
http://www.webservicex.net/LondonGoldFix.asmx?WSDL
http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
http://www.synapticdigital.com/webservice/public/regions.asmx?WSDL
http://www.webservicex.com/geoipservice.asmx?WSDL
http://webservices.imacination.com/distance/Distance.jws?wsdl
http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
http://www.ripedev.com/webservices/ZipCode.asmx?WSDL
http://www.webservicex.com/airport.asmx?wsdl
http://www.ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.asmx?wsdl

Ernst, Lencevicius, Perkins

stock_wsx.getQuote.input.parameters.symbol
stock_gama.GetLatestStockDailyValue.input.parameters.strStock
stock_xmethods.getQuote.input.symbol
stock_sm.getStockQuotes.input.parameters.QuoteTicker

71 Nasdaq stocks, most of which are in
the Standard and Poors 500

stock_gama.GetLatestStockDailyValue.input.parameters.strExchange constant = “nasdaq”
weather_global.getWeather.input.parameters.CityName 68 Massachusetts airport names
weather_global.getWeather.input.parameters.CountryName constant = “United States”
currency_exchange.getRate.input.country1
currency_exchange.getRate.input.country2

12 countries

currency_convert.ConverstionRate.input.parameters.FromCurrency
currency_convert.ConverstionRate.input.parameters.ToCurrency

151 currencies

region_ab.abbrevToRegion.input.parameters.regionCode 50 US state abbreviations
region_name.regionToAbbrev.input.parameters.regionName 50 US state names
geoip.getGeoIP.input.parameters.IPAddress all possible IP addresses
location.getCity.input.zip
zip_ripe.ZipCodeToCityState.input.parameters.ZipCode
movies.GetTheatersAndMovies.input.parameters.zipCode

72 Massachusetts zip codes

Zip_ripe_city.CityStateToZipCode.input.parameters.City 72 Massachusetts cities
Zip_ripe_city.CityStateToZipCode.input.parameters.State constant = “ma”
airport.getAirportInfoByAiportCode.input.parameters.airportCode 68 airport codes (primarily in MA)

Fig. 4. Values used for testing. Unless otherwise noted, thevalues for a parameter were
chosen at random from the distribution listed in the right column of the table.

by careful hand examination of the services, including additional experimentation
where necessary.

5.1 Substitutability results

There are 13 possible direct substitutions. All of these arebetween the various stock
services. The two zip code to city conversion services do notsubstitute because one
returns just the city name while the other returns the city and state. The one that
returns just the city has a separate operation that returns the state. So in theory
it might be possible to substitute one service for the other.However, this is not
handled by our tool at the moment. The two currency conversions services do not
substitute because one uses countries as input and the otheruses currencies as input.

The execution of our tool on the data automatically finds all direct substitutions.
The tool does not find any false positives, and there are no false negatives.

5.2 Composability results

There are 6 possible direct compositions. A composition consists of a service
whose output is a valid input to a different service. We assume that the output ser-
vice must provide all of the non-constant parameters to the input service, although
in some cases, it might make sense to propose compositions toinput parameters in-
dependently and allow the user to specify the other parameter values or use separate
services for other parameters.

Two of the compositions have input operations with two parameters. In both
cases one of the parameters is a constant in our data, so thereis effectively one input
for our purposes. Our tests always set the second parameter of the Zip_ripe_city.City-
StateToZipCode operation to “Massachusetts”. Our tests always set the radius pa-
rameter (distance from the zip code of interest) of the movies.GetTheatersAnd-

131

Ernst, Lencevicius, Perkins

Movies operation to 0.
The tool finds all direct compositions and does not find any false positives.

There are two more complex possible compositions that are not found. currency_ex-
change.getRate takes two countries, neither of which is constant. geoip.GetGeoIP
returns the country for a specific IP address. One could imagine an interesting
composition which takes the country from an IP address and calculates the cur-
rency exchange with a constant country (e.g., the United States). Our tool does not
find this composition because it chooses IP addresses at random and there was not
a good correlation with the country names used.

The Zip_ripe.ZipCodeToCityState operation outputs a city/state as a single string
such as “Cambridge, MA”. The Zip_ripe_city.CityStateToZipCode operation takes
two input parameters (city and state). By parsing the city and state from the output
of the first operation, the second operation could be composed with it. Our tool
does not find compositions that require a single output to be parsed into multiple
outputs.

6 Related work

None of the related work discussed in this section uses analysis of runtime infor-
mation as our approach does.

Dong et al. [2] have built a web service search engine, Woogle, that supports
searching for web service operations similar to a given one.The tool also supports
searching for web service operations composable with a given one. The tool only
uses information available in WSDL files, but clusters it, based on the names of the
fields, in an effort to extract semantically meaningful concepts. The work of Dong
et al. is orthogonal to ours and could be used as a complement to our dynamic
substitutability and composability detection.

Majithia and others [7] propose the Triana toolkit, which allows interactive web
service composition. Triana checks the types of parametersin WSDL and even per-
forms type conversions. However, the toolkit does not offerany automatic detection
of composability.

Most of the research on discovering web service composability assumes that
web services are annotated with semantic information (beyond WSDL) and uses
that information to detect substitutability or composability. Such semantic infor-
mation might be available in the future; however, the web services available now
lack it. Sirin, Hendler, and Parsia [11, 12] assume annotations in OWL-S (DAML-
S in the first paper). Lassila and Dixit [6] propose a similar scheme using a subset
of OWL-S (called DAML-S Lite at the time).

Much research is dedicated to matching user requests to a webservice or their
composition. This is related to our search for substitutability. Paolucci et al. [9]
propose to achieve this with a matching engine using DAML-S service descriptions.
Rao, Kungas, and Matskin [10] use a propositional linear logic prover to compose
web services according to user requests. Pistore et al. [8] propose a tool WS-
Gen; given a set of web services with semantic descriptions and a user request, it

132

Ernst, Lencevicius, Perkins

generates a composed web service. Kim and Gil [5] propose a tool that interactively
guides the user from their request to a composition of web services achieving that
request. Their tool uses semantic information to find services composable to the
ones already in the composition. Pistore et al. and Kim and Gil’s work could be
potentially used on the services we find to be composable.

BPEL4WS [4] is a language to specify web service composition. As such it
does not address the issue of finding composable services, but is a good tool to
implement and present the composed services.

7 Future work

Our promising preliminary results suggest that automatic detection of web ser-
vice composability and substitutability is a promising direction for future research.
However, additional work is required to make the technique practical. Here we note
some directions that we plan to pursue.

We would like to experiment with additional web services, including commer-
cial ones. We would also like to apply our techniques to Internet information ser-
vices that are not packaged as web services, for instance by “screen scraping” the
results of web forms. We expect that our technique could alsobe applied to other
software services, and we plan to experiment with components of the Nokia mobile
phone architecture.

Our framework is parameterized by matching algorithms. We plan to experi-
ment with more sophisticated matching algorithms. For instance, when provided
with sufficient data, an approximate matching algorithm could determine that “$5”
and “5” stand for the same quantity, or that the string “5” andthe number 5 are
the same. Other machine learning techniques, such as those of Daikon [3], could
indicate properties of parameters (for example, zip codes are 5-digit strings that
are composed solely of digits). Such an approach could also assist in determining
when substitutability is not symmetric. For example, a stock service that supports
all exchanges can be substituted for one that only handles NASDAQ stocks, but not
vice versa; this can be though of as a form of subtyping.

Once our algorithm has aligned invocations and matched parameters, correla-
tions could be inferred among un-matched parameters. For example, if all other
parameters match, it could be inferred that “US” in one web service must mean the
same thing as “United States” in another. This is just one wayto deal with constants
and with multiple inputs; we plan other approaches to those problems as well.

We would like to apply our technique to real data collected from the field; our
current approach relies on inputs that we made up. Real data will reveal how much
repetition of values occurs and will aid us in tuning our algorithms.

8 Conclusion

With web services becoming standard software building blocks accessible over the
Internet, it becomes important to automatically find substitutable and composable

133

Ernst, Lencevicius, Perkins

services. Finding substitutable web services allows application developers to in-
crease their application uptime by replacing unreliable services on the fly. Finding
composable web services helps programmers and users to build interesting appli-
cations using web service compositions. This paper describes a method to discover
substitutability and composability of web services. We have applied this method
to 14 freely available web services. The technique discovered that parameters in 6
pairs of operations are substitutable (for each pair, all non-constant inputs match,
and at least one output parameter matches), and 6 additionalpairs of services are
composable (an output of one service is sensible as an input to the other). Our
tool is precise: it does not find any false positives. We hope that our approach will
enable more powerful tools for web service programming and use.

Acknowledgments

The authors thank Alexander Ran, Karel Driesen, and the anonymous reviewers for
comments on the paper.

References

[1] Xmethods.org, 2006.

[2] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, andJun Zhang. Simlarity
search for web services. Ine)Proceedings of the Thirtieth International Conference
on Very Large Data Bases (VLDB2004), pages 372–383, Toronto, Canada, August 31
- September 3 2004.

[3] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evolution.
IEEE Trans. Software Eng., 27(2):99–123, 2001.

[4] IBM. Business Process Execution Language for Web Services version 1.1.

[5] Jihie Kim and Yolanda Gil. Towards interactive composition of semantic web services.
In in Proceedings of the AAAI Spring Symposium on Semantic Web Services, 22nd -
24th March 2004.

[6] Ora Lassila and Sapna Dixit. Interleaving discovery andcomposition for simple
workflows. In in Proceedings of the AAAI Spring Symposium on Semantic Web
Services, 22nd - 24th March 2004.

[7] Shalil Majithia, Matthew S. Shields, Ian J. Taylor, and Ian Wang. Triana: A graphical
web service composition and execution toolkit. Inin Proceedings of the IEEE
International Conference on Web Services (ICWS’04), pages 514–523, San Diego,
California, June 6-9 2004.

[8] M.Pistore, P.Bertoli, E.Cusenza, A.Marconi, and P.Traverso. Ws-gen: A tool for the
automated composition of semantic web services, November 7-11 2004.

134

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Semantic matching of web services capabilities. InThe Semantic Web - ISWC 2002,
First International Semantic Web Conference, pages 333–347, Sardinia, Italy, June
9-12 2002.

[10] Jinghai Rao, Peep Küngas, and Mihhail Matskin. Logic-based web services
composition: From service description to process model. Inin Proceedings of the
IEEE International Conference on Web Services (ICWS’04), pages 446–453, San
Diego, California, June 6-9 2004.

[11] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. InIn Proceedings of Web Services: Modeling,
Architecture and Infrastructure Workshop at ICEIS 2003, Angers, France, April 2003.

[12] Evren Sirin, Bijan Parsia, and James A. Hendler. Filtering and selecting semantic web
services with interactive composition techniques.IEEE Intelligent Systems, 19(4):42–
49, 2004.

[13] World Wide Web Consortium (W3C).Web Services Activity, 2006.

[14] World Wide Web Consortium (W3C).Web Services Description Language (WSDL),
2006.

135

