
Summary: ICSE Workshop on Dynamic Analysis (WODA 2003)

Jonathan E. Cook Michael D. Ernst
Department of Computer Science MIT Lab for Computer Science

New Mexico State University Massachusetts Institute of Technology
Las Cruces, NM 88003 USA Cambridge, MA 02139 USA

jcook@cs.nmsu.edu mernst@lcs.mit.edu

Abstract

Dynamic analysis of software systems has long proven to be a
practical approach to gain understanding of the operational
behavior of the system. This workshop brought together
researchers in the field of dynamic analysis to discuss the
breadth of the field, order the field along logical dimensions,
expose common issues and approaches, and stimulate syner-
gistic collaborations among the participants.

Introduction

Dynamic analysis encompasses many techniques that reason
about the observed dynamic behavior of systems [1]. Exam-
ples include assertion checking, memory allocation monitors,
and profilers. Dynamic analysis includes both offline tech-
niques that might take substantial compute time and operate
on a trace or some other captured representation of the sys-
tem’s behavior, and runtime techniques that operate while
the system is producing its behavior. Dynamic analysis tech-
niques have proven useful and practical for many software
engineering tasks.

The 2003 ICSE Workshop on Dynamic Analysis (WODA
2003) brought together researchers from around the world,
discussing topics from hardware support for instrumentation,
to pattern discovery techniques, to using dynamic analysis
for test case generation, and many more. The workshop was
structured in sessions of short (20-minute) presentations on
related topics, followed by questions, interaction, and discus-
sion involving all of the presenters.

In this summary we chose to mention only the presenters
by name, for the sake of conciseness. The co-authors are
just as important, and many attended the workshop and
contributed greatly to its success. We invite readers whose
interest is piqued by this summary to access the full program
of WODA 2003 at

http://www.cs.nmsu.edu/∼jcook/woda2003/

Workshop session summaries

Andreas Zeller began the day with a thought-provoking the-
ory of program analysis that was structured over a hierarchy

of reasoning techniques: deduction, observation, induction,
and experimentation. Deductive analysis can generate a con-
crete fact from an abstract program, without executing the
program. A debugger or program monitor can observe con-
crete events from a single execution. Inductive analysis over
multiple executions can find a generalization (e.g., an invari-
ant). Finally, controlling the executions through experimen-
tation can allow an analysis to generate specific, strongly
substantiated facts about multiple executions.

Instrumentation

A two-paper session on instrumentation followed the opening
session. Raimondas Lencevicius began with a look at archi-
tecture and efficiency concerns in an industrial setting. His
experience in real-time embedded system software led to the
conclusion that planned instrumentation must be an explicit
part of the development process, because it impacts the per-
formance of the overall system and thus tradeoffs between
desired instrumentation and other system concerns must be
made.

Markus Mock presented ideas for using low-level mecha-
nisms such as built-in CPU performance counters to under-
stand program-level behavior. Mock discussed how existing
hardware mechanisms already built into CPUs can be ap-
plied to some well-known program analysis problems, and
proposed that dynamic analysis could both benefit from ex-
isting hardware mechanisms and inspire new ones that could
further aid software development.

Testing and Static Analysis

The session on the relationships of dynamic analysis with
testing and static analysis included three papers. Tao Xie
presented ideas for improving both the test suites of a pro-
gram and the inferred specifications from dynamic analysis,
such as program invariants. Test cases from automatic test
generation tools can be selectively adopted based on their
ability to violate existing invariants that were derived from
the existing test cases. This avoids bloating the test suite
with unneccesary test cases and improves both the testing
and the understanding of the program itself.

Neelam Gupta showed how dynamically discovered pro-

1



gram invariants could be used to automatically generate use-
ful test cases. One goal was to produce test suites that were
more useful for dynamic analysis. Gupta showed how discov-
ered invariants could be used to guide test case generation
based on path selection.

Finally, Michael Ernst explored the relationship of dy-
namic analysis and static analysis, and where they might
synergistically be applied to be able to perform new anal-
yses or to handle larger programs. Ernst proposed a com-
mon framework in which static and dynamic analyses were
special cases. He also proposed that researchers from both
communities should look to successes on the other side for
inspiration and direction on their own side.

Pattern discovery

A three-paper session on pattern discovery followed lunch.
Lothar Wendehals presented how dynamic analysis could im-
prove object-oriented design pattern recognition. Dynamic
analysis removed a large number of false positives by match-
ing the expected dynamic behavior of patterns found through
static structural analysis.

Timothy Lethbridge discussed techniques to reduce ex-
tremely large traces of procedure calls to more meaningful in-
formation, in particular repeated patterns over the dynamic
call tree that the program execution produced. Several sepa-
rate criteria were presented that together help compress the
call tree into patterns that can be related to higher-level
domain-oriented concepts rather than low-level implementa-
tion details.

Finally, Joel Winstead presented ideas for performing dif-
ferential program analysis, where the focus is on finding the
important behavioral differences between two related pro-
grams (e.g., two versions of the same program). While the
syntactic difference between versions is easy to detect, find-
ing the inputs that exercise that syntactic difference can be
very hard. Winstead presented ideas that use machine learn-
ing techniques along with guided fitness criteria to discover
the correct inputs that exercise the difference in the versions.

Frameworks and languages

The closing session of the workshop covered frameworks and
languages for dynamic analysis. Steve Reiss discussed fea-
ture requirements for frameworks and special purpose analy-
sis languages. He proposed to separate the instrumentation
from the analysis, even possibly using separate languages for
specifying these aspects of a dynamic analysis.

Mikhail Auguston presented general framework issues that
arose in building the UFO Dynamic Analysis framework.
One example was the disconnect between the desire to write
an abstract specification of a specific analysis as if it had a
full, post-mortem trace of a program available and the de-
sire to efficiently compute the analysis during runtime, thus
avoiding the often prohibitive cost of generating a full trace.

Finally, Jonathan Cook discussed ideas and issues in using
existing scripting languages to build program monitoring and

dynamic analysis tools. Most scripting languages are rela-
tively easily interfaced with lower-level system programming
languages, and this presents an opportunity for easing the
cost of implementing ad hoc analyses or prototyping more
robust or complete analyses.

Conclusion

During the closing discussion at WODA 2003, the partici-
pants decided it was so informative and enjoyable that they
wanted to repeat the experience. David Evans and Rai-
mondas Lencevicius have proposed a second workshop on
dynamic analysis for ICSE 2004. All interested parties are
encouraged to watch for an announcement, and to plan on
submitting to and attending both ICSE and WODA 2004!

References

[1] T. Ball. The Concept of Dynamic Analysis. In Proceedings
of the Seventh European Software Engineering Conference /
Seventh ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 216–234. Springer-Verlag, Sept.
1999.

2


