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ABSTRACT 

In this paper, we critically examine how modern switching power 

supplies found in many new consumer electronic devices are a 

source of information leakage through the powerline 

infrastructure. Unlike current consumption-based security 

vulnerabilities we show how a single easy to install plug-in device 

can infer the content of what is being watched on television by 

simply monitoring the electrical noise generated by the TVs 

power supply.  We show that given a 5 minute recording of the 

electrical noise of a particular DVD movie, we can infer the 

movie from a database of noise signatures. In addition, we 

demonstrate this phenomenon in real homes despite the presence 

of noise from other electronic devices. We also discuss potential 

defenses one could employ to prevent others from eavesdropping 

over the power line. 
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Keywords 
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1. INTRODUCTION 
There is growing concern that a home‟s power consumption data 

could reveal private information about the occupants‟ personal 

activities. Indeed, just last month the Electronic Frontier 

Foundation (EFF) submitted a request to the California Public 

Utilities Commission, to petition the adoption of stronger laws to 

protect sensitive energy consumption data [21,22]. EFF‟s 

motivation for the policy change is based on discoveries revealing 

that power consumption information can be used to recognize “the 

use of most major home appliances” and more alarmingly to track 

“sleep, work, and travel habits” [22]. 

The EFF‟s claims are backed by recent findings that power 

consumption data can be used to infer appliances use. The rapidly 

evolving research strand of electrical sensing has reached a high 

level of specificity showing that it is possible to tell the difference 

between multiple devices used in a home simultaneously (by 

analyzing their unique noise signatures over the powerline) [6,16]. 

The principal goal of prior research in electrical sensing has been 

to aid users in adopting efficient energy habits and for developing 

activity recognition applications. As an example of a possible use 

case, consider a home monitoring device which determines that 

every evening between 8-10pm a single-occupant homeowner 

leaves the lights on in her bedroom and bathroom while watching 

TV in the living room. Having reached this conclusion the device 

informs the homeowner of the monetary benefits of turning off 

those unutilized lights and reducing her energy footprint. Such an 

advanced level of energy tracking and inference also enables 

numerous other applications which correlate consumption to 

activity. For example, the activation of a series of lights and 

electrical devices can help determine one‟s path or location within 

the home to aid in elder care by allowing a remote caretaker to 

assess the amount and nature of activity [17]. 

While such monitoring devices have the potential to increase 

efficiency and lead to quality of life improvements, the underlying 

methods are clearly unsettling when viewed through a privacy 

lens. Unfortunately, a privacy centric security analysis has been 

lacking in the energy sensing community which has thus far been 

exclusively focused on developing novel technologies while 

helping people become more conscientious consumers. Our 

present work flips this situation around and asks: how much 

information could one learn from monitoring a home‟s power line 

infrastructure? Is the electrical signal used for tracking 

consumption also capable of revealing private activity data? Said 

another way: are currently unknown forms of sensitive 

information leaking out over our power lines, waiting to be 

discovered?  

To deeply explore into this question, we have chosen to 

extensively study the power-line information leakage due to the 

incidental electromagnetic noise generated from a single class of 

home appliances:  televisions (TVs).  We chose to focus on TVs 

because they are a nearly ubiquitous, high-end technology. Past 

research has shown that it is possible to detect when a TV is 

operating in a home [6,16]; but could the electromagnetic noise 

from a TV‟s switching power supply leak information beyond its 

on/off power state? We find that the answer is a definitive yes. 

Moreover, we show that given a 5 minute recording of the 

electrical noise unintentionally produced by the TV it is possible 

to infer exactly what someone is watching (with an average 

accuracy of 96% when considered over a possible set of 20 

movies) by matching it to a database of content signatures. Even 

more surprising about our findings is that our sensor can be 

installed anywhere along the power line and does not require 

installing a power sensor in-line with the electrical power source 

of the home or the device of interest. 
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Given the potential exposure of private information over the 

powerline, a natural question is determining the actual risk to 

homeowners might be.  We go into this question more deeply in 

the body of this paper, but stress two important points here.  First, 

there are already natural entities that might be able to mount the 

attacks we consider here. For example, a power company with a 

modern smart power meter can remotely collect sufficient 

information to mount an attack.  Moreover, anyone capable of 

attaching a device to a home‟s power line would be able to mount 

this attack (e.g., a parent wishing to track a child‟s TV viewing 

habits when the parent is not home, a neighbor plugging a device 

into an external power outlet, or the manufacturer of a Trojan 

appliance like a picture frame with wireless capabilities to 

exfiltrate data).   

But, more importantly, we conjecture that (1) future appliances 

may leak even more information over the power line (a conjecture 

we support in the discussion sections of this paper given recent 

power efficiency mandates like Energy Star), and (2) as future 

homes become increasingly networked, new measurement vectors 

may appear over time. There are still challenges with developing 

defense mechanisms, because a tension begins to develop between 

the need for more energy efficient devices and preserving one‟s 

privacy.  

For the remainder of the paper, we begin with a discussion of 

relevant prior work and go on to present the key concepts needed 

to understand the information leakage phenomenon over the 

power line. Next we shift our focus to detailing the experimental 

data collection and analysis workflow necessary to infer TV 

content from electrical noise. We then briefly sketch several 

motivating examples of threat models. In the last two sections we 

describe a theoretical model that can learn to mimic the electrical 

noise produced by a TV and conclude with a discussion of the 

universality of our approach, possible obfuscation mechanisms, 

and interesting security challenges. 

2. RELATED WORK 
The computer security literature has long been fascinated with 

information leakage through non-obvious channels.  Although not 

brought to the public's attention until 1985 [23], evidence suggests 

that the government have long known that ancillary 

electromagnetic emissions from CRT devices can leak private 

information about what those devices might be displaying [7, 11].  

This early work on studying electromagnetic information leakage 

from CRTs has since been extended to flat-panel displays [12] and 

wired and wireless keyboards [24]. The principal differences 

between this prior work and our own is that all the prior work uses 

electromagnetic interference that is emitted, that is, it travels 

through air and can be picked up wirelessly over a short range. 

Our work uses conducted electromagnetic interference which 

propagates from the device over to the power lines of a home. 

Related to power consumption, but slightly further afield, is the 

broader area of power analysis and differential analysis for 

cryptographic processors [9].  Other examples of information 

leakage vectors include the time to perform various tasks (e.g., 

[10]), optical emanations (e.g., [14] for network appliances and 

[13] for CRTs), acoustic emanations (e.g., for printers [2], CPUs 

[19], and keyboards [4]), and reflections (e.g., [1]). In the modern 

television space, past work has also shown that it is possible to 

infer what someone might be watching over a wireless video 

stream from the size of the transmitted packets [18]; that approach 

exploits information leakage through variable bitrate encoding 

schemes, which was concurrently pioneered in [25].   

Detecting electrical device activity and power consumption in the 

home has generally been done in the 'distributed sensing model' 

wherein each device being monitored is equipped with a separate 

sensor. This one sensor per device model is limiting because as 

the name suggests each monitored device requires separate 

instrumentation. Researchers in the ubiquitous computing field 

have been trying to use a single sensor approach in the home to 

infer human activity from the incidental noise produced by 

devices in the home as their signal. Gupta et al. accomplished this 

by using a single sensor that can be plugged into any available 

electrical outlet and analyzing the conducted electromagnetic 

interference (EMI) present on the power line in the frequency 

domain [6]. In this transformed space different devices occupy 

different frequency ranges centered around the switching 

frequencies of their power supplies. The presence or absence of 

such EMI is a direct consequence of the on or off state of a device 

respectively. In this work, we leverage the same fundamental 

phenomenon but move beyond detecting the power state of a 

device to infer the content being shown on the screen. 

3. THEORY OF OPERATION 
In this section we describe the fundamental theory behind the 

power line information leakage phenomenon which is made 

possible by unintentional electrical noise production in modern 

appliances. We also highlight the pros and cons of alternative 

methods that can provide access to the same information source. 

3.1 EMI 
The drive to produce smaller, cheaper and more efficient 

consumer electronics has made the use of Switched Mode Power 

Supplies (SMPS) increasingly prevalent. The adoption of SMPS is 

also spurred by policy guidelines as manufacturers strive to 

provide products which meet the efficiency requirements set by 

the Department of Energy‟s Energy Star program. In contrast to 

linear power regulation based supplies, SMPS do not dissipate 

excess energy as heat but rather store it in the magnetic field of an 

inductor. The load output of the inductor can be modulated by 

using a switch that allows current to flow when the circuit is 

closed (switch is on); thus by modulating the opening and closing 

of the switch the circuit is able to regulate the amount of power 

output. In modern SMPS this modulation, also known as the 

'switching frequency,' happens at a very high rate (typically tens 

to hundreds of KHz). A side effect of an SMPS‟s operation is that 

the modulation of the inductor's magnetic field produces large 

amounts of unintentional electromagnetic interference (EMI) 

centered at and around the switching frequency. Due to the 

physical contact between the power line and the device this EMI 

gets coupled onto the power line, which then propagates the noise 

throughout the entire electrical infrastructure of a home. This is 

known as conducted EMI. Because such EMI is undesired, in the 

US, the Federal Communications Commission (FCC) sets rules 

for any device that connects to the power line and limits the 

amount of EMI it can conduct (47CFR part 15/18 Consumer 

Emission Limits). This limit is set to -40dBm for a frequency 

range between 150 KHz to 500 KHz (which is much higher than 

the lowest levels of EMI that our prototype system can sense and 

capture effectively -100dBm). Figure 1 shows the EMI as 

captured by our system for various devices in a home. These 

include a compact fluorescent lamp (CFL), a modern LCD 

television, and other SMPS based devices. 
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Modern high definition liquid crystal display (LCD) televisions, 

which are of particular interest to our study, dominate today's 

consumer market and are almost always based on switched mode 

power supplies. As a result, the majority of modern TVs have 

power supplies that produce unintentional EMI. We implemented 

a system that records this signal [6] and in our experiments, we 

found that the TV produces a static band of EMI centered at the 

switching frequency of the SMPS. Furthermore we observed that 

the switching frequency (and EMI band) can be translated by 

altering the brightness setting of the television. Even more 

interesting is that the dynamic video content on the TV screen 

produces fluctuations in the EMI which leads to a time varying 

signal that fluctuates in a +/- 20 KHz window centered at the 

switching frequency (Figure 1). To better understand this 

phenomenon, we used an inline power sensor to determine the 

consumption of the TV in real time. We observed two things. First 

that the power consumption changes as a function of the screen 

brightness (menu setting) and second that it also fluctuates as a 

function of change in screen content. 

To summarize, the brightness menu setting of the TV determines 

the baseline power consumption of the device, and changing this 

setting requires the SMPS to alter its switching frequency to 

match the load. In addition the dynamic visual content on the 

screen causes systematic fluctuations around this baseline since 

darker images require less energy while lighter screen content 

requires more. These content driven consumption changes 

manifest themselves as fluctuations in the EMI (which to reiterate, 

is an artifact of the SMPS's adjustments to match the power draw). 

In the case of our Sharp 42" LCD TV changes in brightness 

setting cause the center frequency of the EMI to be translated 

between 65 KHz and 75 KHz while modulating screen content 

cause the EMI to sway around this center (between 60 KHz and 

90 KHz). 

In the analysis that follows, we use the time varying EMI as a 

source of information about on screen-content and track this 

feature to determine what is being watched.  

3.2 Current Consumption as a Feature 
As described above, the power consumption of the TV is 

modulated by the nature of the dynamic screen content. Because 

power is the product of voltage and current, screen content 

changes should be manifested as changes in the amount of 

current that the TV draws.  

To validate this hypothesis, we collected current consumption 

data alongside the EMI trace and found the signals to be 

identical; suggesting the validity of either approach for inferring 

the contents on a TV screen. 

Though the current consumption data carries information about 

screen content, it comes with its own disadvantages in that 

current sensors have to be installed 'in line' with the TV. Ideally 

this means the sensor is attached to the power cord of the TV 

itself, or alternatively is instrumented inside the breaker panel. If 

the latter of these options is chosen, the sensor would also be 

reporting the current draw from all other devices in the home. 

Such an additive mixture of current consumption greatly 

complicates the isolation of the TV's signal. In contrast, the 

voltage EMI approach offers greater flexibility as it relies on a 

voltage sensor which could be plugged into any electrical outlet 

in the home. Moreover our EMI collection technique utilizes 

frequency domain analysis which allows us to simultaneously 

track multiple devices with low probability of signal clutter. 

4. PROOF OF PLAUSIBILITY 
To use EMI as a tool for inferring what is watched on a TV we 

needed to ensure that multiple recordings of the same visual 

inputs led to repeatable EMI signals while differing video content 

produced dissimilar EMI traces. To test whether these conditions 

were met we recorded data from four movies (60 minutes of data 

per movie) and repeated the recording three times (for a total of 3 

recording sessions).  
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Figure 2. Repeated recordings of identical screen content lead 

to nearly equivalent EMI traces (Panels A vs. B, Lion King, 

correlation = .989), while content from different movies 

produce distinct electrical noise patterns (B vs. C; Lion King 

vs. Bourne Ultimatum, correlation = .402). 

Next we analyzed the cross-correlation of the same movie 

between sessions and found that the similarity was consistently 

over 98% in all possible session pairings. This finding validated 

our requirement for signal consistency and the result is visually 

apparent in the top two panels (A, and B) of Figure 2, which 

represent 7 minutes of sample data from two recordings of the 

same movie (The Lion King).  

When different movies are compared, the amount of cross 

correlation between their EMI signal traces is a function of the 

similarity of their content. Panel C of Figure 2 depicts a 7 minute 

trace from The Bourne Ultimatum which is apparently different 

from the data recorded from The Lion King (Panels A and B). 
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Figure 1: Frequency domain Waterfall plot of the EMI 

spectrum in a home (red = high amplitude signal, blue = low 

amplitude). Note the dynamic nature of the TV EMI from 60 

KHz (dark scene/low power consumption) to 90 KHz (bright 

scene/high power consumption). Interesting events for other 

devices are labeled numerically 

{1: Washer Spin Cycle Left, 2: Off, 3: Spin Right} 

 {4: CFL Light ON, 5: OFF, 6: ON} 
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5. SYSTEM OVERVIEW 
Our early experiments convinced us that there exists a strong 

relationship between EMI and screen content and that we had a 

sufficient platform to derive an algorithm capable of matching 

EMI traces from sections of movies to a film database in order to 

infer what is being watched. The next step was to build a 

recording setup that captures EMI from multiple movies, 

processes the signal, and populates a database with the EMI trace. 

We expected to process a large number of movies (multiple times) 

so we opted to create an automated data collection environment to 

guarantee consistency across recording sessions. 

5.1 Hardware and Signal Processing 
Our prototype consists of three main components (Figure 3). First, 

we connect a power line interface module (PLI) to any electrical 

outlet of the recording environment to gather the conducted EMI 

signal. Second, a high speed data acquisition module is used to 

digitize the incoming analog signals from the PLI. Lastly, a data 

collection and analysis PC running our custom software 

conditions and processes the incoming signals from the digitizer. 

We also connect a spectrum analyzer for debugging purposes and 

for visualizing the real-time EMI signal as a waterfall plot. 

 

Figure 3. Recording Hardware Setup. S = Spectrum Analyzer, 

P = Power Line Interface (PLI), U = Universal Software Radio 

(USRP), I = Isolating Transformer. The Sharp 42" LCD TV 

and the data logging PC are also visible. 

Of the components we use for data collection the only custom 

hardware is found within the PLI. The analog frontend PLI 

module is essentially a voltage sensor with a high pass filter that 

removes the AC line frequency (60 Hz in the US). This is 

necessary so that the dynamic range of the digitizer and the 

spectrum analyzer are not overwhelmed by the strong amplitude 

of the 60 Hz carrier wave and its harmonics (including the 

hazardous 120V output). The PLI's high-pass filter has a flat 

frequency response from 50 KHz to 30 MHz, allowing us to 

capture the entire range of conducted EMI. The analog signal 

from the PLI is then fed into a USRP (Universal Software Radio 

Peripheral) which acts as a high speed digitizer. We set the 

sampling rate of the USRP to 500 KHz, which (under the Nyquist 

Theorem) allows us to effectively analyze the spectrum from 0 to 

250 KHz. The digitized data from the USRP is then streamed in 

real time over a USB connection to a PC.  

We developed software on the PC which extends upon the GNU 

Radio Companion platform. Our system processes the incoming 

data and performs a real time Fast Fourier Transform (FFT) on the 

time domain signal arriving from the USRP. The output of the 

FFT is a frequency domain signal (or an FFT vector) of 2048 

points which are spread uniformly over the entire spectral range 

from 0 to 250 KHz. The FFT vector is computed 122 times per 

second and its contents corresponds to the magnitude of the 

frequency strength along the range. The stream of FFT vectors is 

stored on the data recording PC for post-processing by our feature 

extraction algorithm. Figure 1 depicts a waterfall plot of a 

sequence of FFT vectors captured over a 200 second window.  

5.2 Feature Extraction 
Since we are only interested in tracking the TV, we post process 

the raw FFT bins and only retain the region around the TV's 

central frequency. This means that we reduce the 2048 element 

vector to 122 points in the 60-90KHz range wherein the EMI 

signal fluctuates (Figure 4).  

In order to reduce the dimensionality of the data we perform a 

decimation to reduce the rate at which FFT vectors are processed. 

We found that to capture the variability in the EMI signal from the 

TV, using every 40th FFT vector (a decimation factor of 40) was 

sufficient. 

Next we iterate through each time sample of the [abridged] 122 

element FFT and extract the maximal element. We do this 

because we seek to compress the signal to a single point per time 

sample. The extracted maxes are then filtered using a 2nd order 

low-pass digital Butterworth filter with normalized cutoff 

frequency of .05 (frequency where the magnitude response of the 

filter is (1/2)^(1/2)). This removes the oscillation artifacts in the 

EMI and yields a smooth timeseries (EMI trace) whose shape 

tracks the fluctuations in the raw data (Figure 4 - blue overlay).  

Prior to storing the EMI trace we perform mean removal 

(centering) and normalization to capture relative differences 

around the center frequency. 
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Figure 4. Raw FFT signal around the EMI band of the TV. The 

result of post-processing this signal to extract the EMI trace 

features is overlaid as the blue time series. Note that unlike 

Figure 1 which also shows raw FFT data, the time axis is now 

along the horizontal. 

 

6. DATA COLLECTION 
To validate our content inference approach, we recorded EMI data 

during the playback of 20 different movies on a Sharp LC-SB45U 

LCD 42" TV. At the end of the data collection our database 

contained three sessions of recordings (each session contained 20 

Time (s) 0 400 
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movies, and only the first 60 minutes of each movie were 

considered to ensure data length consistency).  

We hypothesized that there may be differences in the EMI 

features between genres so we tailored our choices to include 5 

genres with 4 representative films per category. Our selection was 

informed by genre labels gathered from the internet movie 

database (IMDB, imdb.org) and in general we opted to choose 

titles which spanned a range of years and were among the most 

popular in their respective categories (see table below). 

Table 1: Movie Database Contents 

 

Action Lord of the Rings: Return of the King, Star 

Wars V: Empire Strikes Back, The Bourne 

Ultimatum, The Matrix 

Animation Wall-E, Shrek 2, The Lion King, Aladdin 

Comedy  Office Space, Meet the Parents, The 

Hangover, Wedding Crashers 

Documentary Planet Earth: Fresh Waters, Food Inc., An 

Inconvenient Truth, Top Gear (s.14;ep.7) 

Drama The Shawshank Redemption, American 

Beauty, Titanic, Requiem for a Dream,  
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 Figure 5: Selected Movie Traces. 

From Top To Bottom these are: An Inconvenient Truth, 

Meet the Parents, Wedding Crashers, The Bourne 

Ultimatum, and Shrek 2.  

For illustrative purposes the first 15 minutes of 4 movie EMI 

traces are shown in Figure 5. Note the elevated level of EMI 

fluctuation in the Bourne Ultimatum; this is typical of action 

movies which have a consistently high rate of scenes changes. 

Other than this observation we did not find any statistically 

significant differences between movie genres in our database. 

6.1 Lab and Home Data 
The three data recording sessions described above were performed 

in a lab environment. To demonstrate the applicability of our 

approach in naturalistic settings, we also recorded the same 20 

movies in three homes. 

The key difference between the data collection in the lab and 

home deployments was the use of a line isolation transformer in 

the lab setting (Tripp Lite 250W isolation transformer). A line 

isolator is essentially a broadband filter that removes any EMI 

present on the power line and presents an EMI free power output 

(are often used in audio/video recording studios and other high 

end applications). In the lab environment, we plugged the TV and 

the PLI into the line isolator‟s output to ensure that the PLI would 

have exclusive access to the EMI from the TV without 

interference from other electrical devices. In the naturalistic case, 

we collected data from the three homes without the line isolator, 

and the PLI captured EMI generated from the TV as well as 

myriad other devices (power adapters, CFL and dimmer based 

lighting, appliances etc.). In some instances, we found devices 

which generated electrical noise in the same range as the signal 

we were tracking (TV's EMI). As we show in section 8.2, despite 

such overlaps, the ability to infer screen content was relatively 

unhindered. 

6.2 Automation 
We opted to create an automated data collection environment to 

guarantee consistency across recording sessions. To this end we 

created a system which synchronized movie playback and data 

logging. The software running on the PC sent video content to the 

TV via a composite connection and simultaneously recorded data 

samples (computed FFT vectors) streaming in from the USRP to a 

binary file for post-processing and analysis. 

7. ANALYSIS AND RESULTS 
Once we constructed our database of reference EMI traces we 

could focus on designing a search method to find matches given a 

query trace. We crafted an algorithm that would take as input a 

query (snippet from an EMI movie trace), traverse the database, 

and return the movie with the highest similarity to the input. 

7.1 Query Method 
The query search problem we are faced with is an instance of 

subsequence matching [5]. The existing methods for problems of 

this type include spectral and statistical techniques as well as more 

recent approaches such as Dynamic Time Warping (DTW) and 

Semblance matching [3,8]. Due to the repeatability of the EMI 

signal we observed across recording sessions (see Section 4) we 

decided to forgo using dynamic programming measures of 

matching costs (i.e., DTW) since the signals we were comparing 

were not stretched in time. Furthermore we decided not to use 

spectral techniques (which would shift our analysis into the 

frequency domain) and instead found that the most natural way to 

express similarity between EMI traces was to use the cross-

correlation coefficient (CCF). 

The cross correlation coefficient (CCF) offers a statistical measure 

of the similarity between two timeseries and produces a numerical 

value ranging between -1 and 1 (higher values representing higher 

similarity; a CCF of 1 indicates identity) [20]. The inputs to the 

CCF computation are two time series of equal length; hence we 

used a sliding window approach to extract sequential snippets (of 

query length size) from the reference trace and for each sub-

segment computed the CCF to the query. This results in a 

similarity vector whose maximum value represents the highest 

similarity between the query and movie pair; the index of the 

maximum represents the point within the movie EMI trace at 

which the best matching to the query occurs.  

To obtain a query's best match, we compute the maximum CCF 

value across all movies in the database and declare the winner to 

be the movie with the highest CCF. 

7.2 Experimental Evaluation 
 Successful matches were defined to be search instances whose 

winning match was the same movie that the query itself was 

extracted from. Consequently, accuracy was defined as the 

number of successful matches divided by the total number of 
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searches. As long as the query data was generated from an EMI 

trace of a movie included in our database we expected to have 

high classification accuracy. 

 To test this hypothesis we designed experiments to evaluate the 

effectiveness of our inference algorithm as we varied relevant 

parameters. We conducted a set of experiments in which we 

manipulated the following variables: query length, starting query 

location, and combinations of data sources for the query and 

database. 

In order to investigate the effect of query length on accuracy we 

chose 9 monotonically increasing query lengths ranging from 15 

seconds to 20 minutes (15s, 30s, 60s, 120s, 240s, 300s, 600s, 

900s, 1200s). For each query length we generated 10 randomly 

chosen indexes (ranging between 0 and 3600 seconds) as query 

starting locations. Lastly to ensure that our metric is consistent 

across recordings we enumerated all possible pairings of sessions 

for query and database sources (Query from Session1: DB from 

Session2 , Q S2: DB S1, Q S1: DB S3, Q S3: DB S1, Q S2: DB 

S3, Q S3: DB S2). We then invoked the matching algorithm once 

for each possible parameter combination (9 * 10 * 6 = 540 runs) 

7.3 Lab Results 
A plot of the average accuracy (across session combinations and 

query start indexes) as a function of query length is shown in 

Figure 6. From this curve we can deduce that even short length 

queries lead to high accuracy classification. In particular, once 

the query length exceeds 4 minutes the accuracy reaches a rate of 

95.7% (regardless from which part of the movie the query 

segment is chosen). Performance improvements due to extended 

query lengths (4 minutes and beyond) do not significantly change 

the average accuracy but they do reduce the variability in the 

results. This can be seen in Figure 7 which depicts averaged 

confusion matrices for selected query lengths (averaging is done 

across session combinations and query start indexes). The 

diagonal entries represent successful matches. Note the decrease 

in the perceived similarity of off-diagonal entries as the query 

length increases. 

Movies 11 (Office Space) and 12 (Meet the Parents) were the 

worst performers and we believe that this is due to their 

consistently high brightness which produced very little fluctuation 

in their EMI traces. 

7.4 Home Results 
Having found convincing results in the lab setting, we were 

interested in validating our approach in naturalistic deployments. 

We setup our system in three different home environments and  in 

each context recorded a smaller version of our database. All three 

homes were in the Seattle area; Home 1 was a typical suburban 

house in Lake City, Home 2 was a townhouse in the University 

District, and Home 3 was an apartment building in the Green Lake 

area.  

The home data collection consisted of 10 minute segments 

collected from each of the 20 movies. Using this database we 

repeated the experiments described in Section 7.2 with the caveat 

that we fixed the query length to a 10 minute EMI trace (to exploit 

the entire recording from the home). The need for this longer 

query length was intended to offset the the increased noise 

conditions in the homes. The majority of appliances in a home do 

not disturb the signal quality of the TV EMI which we track 

however there are certain devices which produce obscuring noise 

(i.e. dimmer switches, washers, and vaccums). We did not limit 

the use of these and appliances and asked the residents of the 

home to ignore the recording system. 

In these home deployments the average accuracy was notably 

degraded (98% accuracy in lab for a 10 minute query vs 85.8% 

accuracy in homes). A thorough investigation of our approach in 

naturalistic settings is beyond the scope of the current work yet 

we feel that our preliminary study suggests the feasibility of EMI-

based content inference in residential deployments.  
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 Figure 6. Accuracy as a function of Query Length. Note 

that the accuracy improvements are minimal once the 

query length reaches 4 minutes (240 s) - indicated by the 

dashed line. 

 

                    15s                                          60s                                          240s                                         1200s  

Figure 7: Average confusion matrices for selected query lengths for the entire database. Red represent a high level of 

similarity and blue a low level. 
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Table 2: Content Classification Accuracy in Homes 

Home # Avg. Accuracy 

1 93.2% 

2 76.4% 

3 87.8% 

 

8. THREAT MODELS EXAMPLES 
Although it is beyond the scope of our work to provide a thorough 

threat model analysis, we feel that it is informative to present 

several scenarios which highlight the diversity and scale of 

privacy breaking methods which leverage EMI content inference. 

8.1 Surveying Burglary Targets 
One potential adversary we consider is a thief interested in 

picking lucrative targets for burglary. Rob the robber, could build 

several databases of EMI noise from popular commercials 

recorded from the emissions of expensive televisions (one 

database of commercials per TV model of interest). Rob could 

then deploy a small form factor sensor in the external outlets of 

homes he is considering as targets for his next heist. Since the 

sensor equipment is relatively cheap, Rob could easily have a 

wide deployment that allows for the monitoring of multiple 

locations. 

After deploying his web of sensors for a week, Rob could collect 

the „field equipment‟ and analyze the data from each home using 

an algorithm similar to the one we‟ve presented. More 

specifically, Rob could look for signs of strong correlations 

between the home‟s EMI data and any of the commercials for 

which he has stored traces in his database. Whenever he detects a 

match, he is able to conclude that with high probability the home 

in question houses an expensive television. 

As an added bonus to the robber, the raw sensor data could reveal 

the number of EMI producing appliances in the home (a home 

with many appliances will be a more attractive target). If Rob was 

savvy he might even be able to detect activity patterns in the 

energy usage so that he can plan his attack when no one is likely 

to be home.  

8.2 Large Scale Monitoring 
A wealthy and trusted organization could track the EMI streams 

collected from smart sensors to infer what large numbers of 

people are watching. This data might then be sold for targeted 

advertisement. The monitoring could be accomplished by 

matching the EMI from a home against a database constructed „on 

the fly‟ that mines the EMI streams of popular channels. 

An adversary seeking to implement this large scale threat model 

would need physical access to X copies of Y television models for 

which the content tracking is desired (where X denotes the 

number of content streams/channels being monitored and Y 

denotes the number of television brands to track). Due to the large 

diversity of television manufacturers and the number of channels 

in the spectrum, the operational costs of the attack at first appear 

impractical for all but the wealthiest agencies.  

Interestingly, the limitation of physicality can be surmounted if 

the adversary is armed with a quantitative model capable of 

generating an EMI trace given only an RGB video frame sequence 

for a given movie. In Section 9 we describe our success in 

developing such a generative model for the Sharp LCD TV using 

a recurrent artificial neural network. 

9. LEARNING MODELS OF EMI 
Motivated by the robust relationship we found between screen 

content and EMI we sought to reverse engineer the method by 

which electromagnetic noise is produced as a function of 

changing video input. Access to this transfer function would allow 

us to predict the EMI without actually laying out content on the 

screen and hence bypass the need for physical access to the target 

device. In the following section we investigate the plausibility of 

finding this function by framing the problem as an instance of 

supervised learning using a recurrent neural network with 

compressed input features. 

9.1 Input Features 
The transfer function we seek to approximate takes in as input a 

sequence of 3 dimensional RGB matrices (one per frame) and 

produces as output a time series of EMI (normalized between 

0:1). The full input matrix is extremely high dimensional (~10^6 

elements - color {R, G, B}* screen width {pixels} * screen 

height {pixels}) and prohibitively large for use in its full state. 

Thus we opted to compress each video frame into a 10 element 

vector which extracts selected features from the visual content and 

greatly reduces the complexity of the learning problem. Since we 

did not know which aspects of the screen content contribute most 

to the EMI signal we chose varied features in hopes that they 

would be sufficient to drive the learning. The features we derived 

from each video frame are as follows: 

• Brightness:  Cumulative sum of averaged RGB intensities 

• Flux: average change in brightness b/w consecutive frames 

• Edge: intensity - cumulative sum of Canny Edge filter output 

• FFT: slope of the best fit line to an FFT of the image (the 

FFT shape becomes nearly linear after the frequency and 

amplitude axes are converted using a log-log scale) 

• Color:  mean and standard deviation of fitted gaussians for 

the R, G, and B color histograms (6 parameters total) 

9.2 Neural Network 
Since we are dealing with a function fitting problem of unknown 

complexity, we chose to use a recurrent neural network (RNN) 

model in order to accommodate for possible dynamic and non-

linear effects. RNNs are a class of neural networks in which 

intermediate layers (i.e. those separating input and output) have 

connections to neighboring layers as well as (re)connections to 

themselves; these properties lead to self feedback (i.e. memory) 

which enable dynamic temporal behavior [15] 

At time t the network input layer consisted of a video frame 

represented as a 10 element feature vector (section 9.1). The input 

layer was connected to the first of 3 hidden layers (connected in 

succession, each composed of 10 neurons to match the 

dimensionality of the input)3 and the final hidden layer was 

connected to a scalar output layer representing the EMI at time t. 

The training phase began with randomly initialized network 

parameters which were tuned using backpropagation through time 

(BPTT) via the Levenberg-Marquardt gradient method. The 

                                                                 

3 Hidden layers used the hyperbolic tangent sigmoid as their 

transfer function. 
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criterion for performance was the how well the network output 

matched desired EMI for a given video input (measured as mean 

squared normalized error). Each training session concluded when 

the optimization converged or after 50 epochs (whichever came 

first). We ran several hundred training experiments and chose the 

network which performed best on sets of test inputs. 

Figure 8. Neural Net output (red) vs Ground Truth EMI 

(blue). 

 

Although there is much more that can be done in this line of 

analysis, our preliminary results are promising. (Figure 8) shows 

RNN predictions (driven via visual features) vs actual EMI of a 6 

minute trace recorded from the opening segment of Lord of the 

Rings: The Two Towers. Though not perfect, the fit above clearly 

suggests that supervised methods can be used to train generative 

models of EMI. 

10. DISCUSSION 

10.1 Other TVs and Devices 
Although we are only focused on a single TV, these results extend 

to other TVs and consumer electronic devices that employ similar 

power supplies (DVRs, PCs, power adaptors, CFLs, etc). The 

trend towards more efficient Energy Star compliant power 

supplies and even states mandating the use of switching power 

supplies implies an increase in these vulnerabilities in the near 

future. 

As we demonstrated earlier in the paper, different devices exhibit 

EMI at varying center frequencies depending on the switching 

characteristics of the SMPS. The tolerance in the internal 

electronics that make of the SMPS can provide enough difference 

in the frequency domain to allow multiple similar devices to be 

observed simultaneously. Depending on the load characteristics of 

the electronic device, the switching frequency can range from 

anywhere between a few KHz to 1 MHZ. 

LCD TVs tend to exhibit similar behavior between models and 

brands because of its general functionally. Newer LED TVs are 

also similar to LCDs, but the resonant frequency may be slightly 

different and the noise model may need modifications. The 

challenge with tracking new devices, however, is that they need to 

be tested to ensure that a strong relationship between EMI and 

screen content changes is present.  

Similar to TVs, this is typically plausible in most consumer 

electronic devices. Often the power draw of a device can be strong 

indicator of its activity, which has been confirmed in prior work 

from the security community. Another way to think about SMPS 

EMI is that it is likely directly related to information leakage from 

the power draw, but can be inferred from line voltage which is 

much easier to tap into.  

Beyond TVs, another popular device that we have observed 

information leakage is from home theater audio systems, where 

the output volume typically modulates the SMPS switching 

frequency. Some hi-end audio receivers also employ multiple 

power supplies, which would allow us to further infer the state of 

the receiver. Similar observations have been made with DVD 

players and power adaptors to most consumer electronic devices. 

10.2 Potential Defenses 
There are a number of potential defense mechanisms that could be 

used to minimize information leakage through EMI. The simplest 

is the use of a powerline isolator similar to the one used in our 

laboratory experiments. The internal transformer provides enough 

isolation that the high frequency noise does not pass back over the 

powerline. This does assume that the isolator itself has not been 

comprised. We have observed this isolation phenomenon in some, 

but not all, uninterruptable power supplies (UPSs). Most power 

strips only offer transient noise suppression and rarely offer any 

high frequency noise rejection. Newer home theatre line 

conditioners, which have a build in power bar, do offer some 

isolation capabilities.  

A potential whole home solution, which does not require 

installing a device behind every electronic appliance, would be to 

inject random broadband noise over the powerline. The challenge 

with this approach is that it must conform to FCC regulations. In 

addition, this would cause problems with legitimate powerline-

based communication systems like broadband over powerline and 

X10 home automatic systems. A more practical could identify 

potential devices that may be leaking information by observing 

the power line and only blocking certain frequency bands. 

The other defense may be to employ new regulation on how 

SMPS power supplies are built. One critical observation, 

however, is that it may be impossible to fully defend against such 

information disclosure while still being in compliance with 

Energy STAR.  Said another way, new  government regulations 

may make it impossible or infeasible to protect privacy. The 

reason for this is most changes that would need to be incorporated 

into these device would likely cause an increase in power 

consumption and a reduction in efficiency, which is in conflict 

with recent legislation. 

11. CONCLUSION 
We have demonstrated that significant information leakage is 

present in modern switching power supplies found in many new 

consumer electronic devices. We have found that a single easy to 

install plug-in device can infer the content of what is being 

watched on television by simply monitoring the electrical noise 

generated by the TVs power supply. Only a 5 minute recording of 

the electrical noise of a particular movie, is needed to infer the 

movie from a database of noise signatures with up to 93% 

accuracy in actual homes. Although we have only demonstrated 

this with TVs, we believe our approach extends to other devices 

that employ SMPS. DVD players, power adaptors, and home 

theater systems all modulate their power draw during their 

operation, which can be used to infer its activity. 
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APPENDIX 

DEMO VIDEO OF EMI FROM TV: 

    http://abstract.cs.washington.edu/~miro/sec_power/emi.avi 

ANALYSIS & VISUALIZATION TOOL:  

    Note that the full movie traces are shown in the left panel 

    The source code (MATLAB) is available upon request from miro@cs.washington.edu 

 


