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Abstract 

 

 We investigated how novel sensorimotor feedback loops can be formed in the course of 

learning. More specifically, we examined motor adaptation in an experiment which 

systematically paired a lateral force pulse at movement onset with a delayed visual target 

perturbation. Learning in this context means associating the cue and the perturbation, such that 

sensory feedback about the cue triggers a corrective action suitable for the upcoming 

perturbation. 

 

The data from the experiment reveals that human subjects gradually embraced the information 

content of the force impulse and used it to predict the forthcoming target displacement. 

Behaviorally adaptation manifested itself as (1) movements towards the anticipated target 

position (after the force pulse ended and before the target perturbation occurred), (2) reduction of 

the counter-productive stretch-reflex-like response to the force pulse, and (3) reduction in grip 

force (without change in arm impedance).  

 

To model the main effects of our study, we developed an extension to optimal control which uses 

a hedging approach to mix target-specific optimal feedback controllers weighted by an agent's 

belief in the plausibility of future goal outcomes. Using this method we accurately modeled the 

movement trajectories in the different phases of learning and observed that subject's beliefs 

converged to the true task statistics. We believe that our extension to optimal control is 

applicable to other tasks where the central nervous system (CNS) needs to maintain multiple 

hypotheses about future goals under consideration and prune them in an online fashion as novel 

information becomes available. 

 

  



1. Introduction 

 

Feedback plays an important role in sensorimotor control, and is particularly critical in complex 

behaviors and in the presence of noise and uncertainty. While the sensory guidance of movement 

has been extensively studied both experimentally and theoretically, most studies have painted a 

static picture where the underlying feedback loops remain unchanged. One exception in this 

regard are context-dependent modulation in reflex gains (Loeb et al 1999). Our goal here is to 

investigate a different type of change, namely how novel sensorimotor feedback loops can be 

formed in the course of learning. 

 

The work presented here lies at the intersection of two largely disconnected literatures: internal 

models, and classical conditioning. In our experiments, human subjects learn to anticipate 

perturbations (target displacements orthogonal to the direction of a reaching movement) and to 

take corrective actions before these perturbations occur. Thus our paradigm is technically similar 

to a number of studies on learning internal models (Shadmehr and Mussa-Ivaldi 1995, Kawato 

1999, Donchin et al 2003). However such studies have focused on learning open-loop 

corrections, i.e. corrections for perturbations that can be predicted before movement onset. In 

contrast, here the perturbation cannot be predicted based on any information that is available 

before movement onset. Instead prediction becomes possible only after movement onset, when 

we deliver a cue telling the subject which way the target will be displaced. Learning in this 

context means associating the cue and the perturbation, such that sensory feedback about the cue 

triggers a corrective action suitable for the upcoming perturbation. In other words, the learning 

we study requires the formation of a novel sensorimotor feedback loop.  

 

Our work is related to classical conditioning - where repeated presentation of a conditioned 

stimulus (CS) followed by an unconditioned stimulus (US) causes the CS to elicit anticipative 

behaviors appropriate for the US. In some sense, classical conditioning can be thought of as the 

formation of a novel feedback loop mapping the CS to the US-appropriate behavior. Of course 

classical conditioning is rarely discussed in these terms, because the time intervals in that 

literature are longer than what is normally considered to be the domain of feedback control, and 

also because the response elicited by the CS is typically a full-blown behavior (e.g. eye blink or 

salivation) rather than a correction to an ongoing movement. Nevertheless one can conceptualize 

our experiments as a classical conditioning protocol applied within the duration of a single 

reaching movement. 

 

We found that when the cue is a brief force pulse (delivered to the hand by a haptic robot) 

learning is successful. However when the cue is either visual or auditory, there is no evidence of 

learning in the movement trajectories, even though the subjects are aware of the fact that the cue 

is predictive of the perturbation (they are told so before the experiment begins). This dissociation 

can be explained mechanistically with the presence of appropriate neural pathways, or 

computationally with a Bayesian prior which says that lights and sounds are unlikely to correlate 

with object displacements. 

 

We present a computational model of these results, combining the ideas of optimal feedback 

control (Todorov 2002, 2004) and Bayesian inference (Kording and Wolpert 2006) in a way that 

resembles hedging. Models of reaching usually assume that the target is known, and rely on 



feedback to compensate for any perturbations (Flash and Henis 1991, Hoff 1992, Liu and 

Todorov 2007). However the feedback mechanisms in such models are not adapted to the 

statistics of the perturbations, thus they do not address the form of learning we study here. In our 

new model we mix optimal feedback controllers for different targets. The mixing is somewhat 

elaborate (see below) and depends on the Bayesian posterior probability over the final target 

position after the perturbation. The posterior is updated continuously during the movement as 

new sensory information becomes available. Thus, at movement onset, the hand is controlled by 

a uniform mixture of feedback controllers. Later, when the cue is detected, the mixture becomes 

narrower and matches the learning state of the subject. Finally, when the actual target 

displacement is detected, the system switches to a single controller suitable for this target. It can 

be shown mathematically that such a strategy of progressive narrowing corresponds to the 

optimal way to act in this setting. The model's behavior is very similar to the experimental data. 

Preliminary results were presented in conference format (Enev and Todorov, Neural Control of 

Movement 2009). 

 

 

2. Materials and Methods 

 

2.1. Experiments 

 

2.1.1. Experimental setup and data collection 

 

Subjects performed reaching movements in a virtual environment in which we could create 

controlled perturbations in the form of visual target jumps and haptic force impulses. The setup 

is shown in Figure 1A. It consisted of a 20" CRT monitor mounted facing down, a horizontal 

mirror which reflected images shown on the monitor and made them appear in the workspace 

below, and a 3D robot (Delta Haptic, from Force Dimension Inc.) used to record movement 

trajectories and deliver force pulses. The handle was instrumented with a 6-axis ATI force sensor 

which recorded the interaction force between the robot and the subject, as well as a single-axis 

force sensor used to measure grip force. Subjects could not see their hand; instead they saw a 

cursor which tracked the horizontal hand position with unnoticeable latency. Subjects grasped 

the robot handle with their thumb and index finger and could move in a volume measuring about 

25x25x25 cm. The lightweight robot arm was easy to manipulate and we provided gravity 

compensation to minimize the required effort. 

 

The robot's end-effector position (coinciding with the subject's hand position) was recorded at 

500 Hz using optical encoders built into the motors. Velocity and acceleration were computed 

offline by numerical differentiations and filtering (2nd-order Butterworth filter). Force sensor 

data were recorded at 2000Hz. A custom multi-threaded C++ program (running in Windows XP) 

was written to enable real-time rendering of the experimental stimuli as well as data collection 

and control of the robot. 

 

2.1.2. Experimental procedures and subjects 

 

Ten healthy volunteers were recruited for the main experiment. The subject pool was a mixture 

of university undergraduate and graduate students, 9 males and 1 female, average age 23, 8 right 



handed and 2 left handed. Every subject used their (self-reported) dominant hand. Another 12 

subjects participated in the pilot experiments described later. Prior to data collection subjects we 

given a chance to get used to the virtual environment, but in general the system was very 

intuitive and participants quickly moved on to the actual experiment. 

 

Although we allowed movements in 3D, the cursor position rendered in the virtual environment 

only reflected hand position in the horizontal plane. At the beginning of each trial there was a re-

centering phase which required subjects to initiate their movements from an origin defined in 

3D, so as to avoid drift over trials in the vertical dimension. Subjects accomplished this using 

additional visual feedback (showing the vertical deviation) which was removed once re-centering 

was completed. Subjects were allowed to take breaks between blocks; they usually opted to rest 

for less than 30 seconds. 

 

Following successful re-centering, the target was shown, always at the same initial location 

18cm in front of the hand. In some conditions (see below) the target could be displaced 9 cm left 

or right, 200 msec after movement onset. Movement onset was detected using a positional 

threshold (thus the onset of muscle force was earlier). Reaches were self-initiated, however once 

initiated the movement had to be completed within a condition-specific time limit. Successful 

reaches were those in which the cursor hit the target circle before the time limit, and the 

maximum allowed speed (1 m/s) was never exceeded. The speed had to be limited to prevent 

subjects from hitting the target before it was displaced. At the moment of contact, an animated 

target explosion was triggered and the number of particles and the intensity of an accompanying 

sound were proportional to the speed with which the target was hit. This was used to motivate 

subjects to perform the task well. On unsuccessful reaches subjects were presented with two high 

pitched beeps and a text message indicating the reason for the error ("time expired" or 

"maximum speed exceeded"). 

 

2.1.3. Experimental design: Main experiment 

  

Each subject performed 8 blocks of reaching movements, totaling 440 trials and lasting 

approximately 45 minutes. The first four blocks were the experimental condition; the last four 

blocks were baselines. The numbers of trials and allowed movement durations per block are 

given in Table 1. Reducing the allowed time limit in the experimental blocks made the task 

progressively harder. 

 

In the experimental condition (blocks 1-4), the robot applied a force pulse which was triggered at 

movement onset. The force had a predefined profile: a truncated Gaussian (in time) with mean 

90 msec, standard deviation 40 msec, and peak force 12 N (see Figure 1). The force was directed 

either left or right, orthogonal to the reach direction. At 200 msec the target was displaced by 9 

cm left or right, always in the same direction as the force. The direction of force/displacement 

was randomized over trials, with both directions having 50% probability. To provide 

consistency, the same sequence of randomized perturbations was presented to every subject. A 

constraint was enforced to prevent more than three consecutive trials with identical directions - 

so as to avoid traditional open-loop adaptation. This resulted in a "psychologically" random 

sequence, even though statistically it was not completely random. 

 



Subjects were instructed to "move as quickly and accurately as possible", and were explicitly 

informed of the contingency between the force and jump direction with the following verbal 

script "the target will always jump either left or right during your movement, prior to the jump 

the robot will always produce a force in the direction of the jump." 

 

The baseline conditions (blocks 5-8) were used to measure the response to the force pulse alone 

and the target perturbation alone. For half of the subjects, we applied force pulses without target 

perturbations in blocks 5 and 7, and target perturbations without force pulses in blocks 6 and 8. 

For the other half of the subjects the protocol was reversed. Before every block, subjects were 

informed about the forces or target perturbations they were about to experience. 

 

2.1.4. Experimental design: Pilot experiment 

 

Prior to the main experiment, we ran two pilot experiments with 6 subjects each. These 

experiments differed from the main experiment as follows. First, only the experimental condition 

(blocks 1-4) was used. Second, instead of a force pulse, we used either a sound (pilot 1) or a 

visual cue (pilot 2). The pitch of the sound in pilot 1, and the color of the cue in pilot 2, was 

predictive of the perturbation direction. Subjects were again told about the contingency between 

the cue and the target perturbation. 

 

2.2. Modeling 

 

The present model is based on the stochastic optimal control framework, which we have 

previously used to model reaching and other motor behaviors (Todorov 2002, 2004). The novel 

element here has to do with adapting the control scheme to the statistics of the perturbations. 

This is done via a decision-tree like approach (see Figure 2) in which the branches correspond to 

hypotheses about the final target position. Mathematically the branches are finite-horizon 

discrete-time linear quadratic regulators, constructed as in (Todorov 2002) and connected into a 

tree as follows. The initial state of each branch equals the final state of its ancestor. The final cost 

of each branch is a weighted mixture of the costs-to-go of its descendents, evaluated at the 

descendent initial states and weighed by the descendent probabilities. The costs-to-go are 

computed recursively using standard Riccati equations. The branch points correspond to the 

points in time when new information about the final target position becomes available. We now 

describe the model in more detail. 

 

2.2.1. Dynamics and costs 

 

We model the hand as an     kg point mass moving in a horizontal plane, with viscosity 

    Ns/m approximating intrinsic muscle damping. The controller affects the point mass 

through two force actuators which can induce positive or negative forces along two orthogonal 

dimensions; this scheme is intended to resemble two sets of agonist-antagonist muscles. We 

impose further constraints on the force actuators by making them behave as first-order low-pass 

filters of the control signals, with time constant        s. 

 

Let     ,     ,     ,      be the two-dimensional hand position, velocity, actuator state, and 

control signal, respectively. The corresponding units are m, m/s, N, N. The time index varies 



depending on which branch is being computed: branches in stage 1 have an initial time of 0ms, 

branches in stage 2 start at 157ms, and those in stage 3 are initialized at t = 357ms. The state is 

augmented with the final target position    which is constant within a branch but varies between 

branches. The plant dynamics in continuous time are modeled as follows: 

           
                  

      
         

 
        

Here g(t) represents the impulse force, and only acts in the lateral directions: 

                  
The function force(t) is the predefined force profile, and d is the force direction (+1 or -1). We 

can assemble all variables into an eight-dimensional state vector 

                          
and write its dynamics in general first-order form as follows: 

                        
with A, B, and C obtained from the above equations. 

 

The objective function being minimized for a terminal branch i is 

              
 
              

 
        

 
                   

  

 

 

These three cost terms encourage endpoint positional accuracy, stopping at the target, and 

energetic efficiency respectively. We adjusted the relative weights of the these parameters so that 

they would fit the baseline behavior (                              Each non-terminal 

branch had the same energy cost, and final cost obtained by mixing the costs-to-go at the initial 

states of its descendent branches. Recall that the cost-to-go function is the cost accumulated 

starting at a given state; in this setting the cost-to-go is always a quadratic function of the state. 

 

Given the above continuous-time formulation, we discretized the time axis at 15 msec time steps, 

and computed the optimal feedback control law 

             

where      is the time-varying sequence of optimal feedback gains. 

 

2.2.2. Hypothesis mixing 

 

To account for the uncertainty in the task, we created a branching structure for mixing control 

hypotheses intended to span the space of plausible future target states. Each control hypothesis 

was assigned a likelihood (reflecting the perceived probability) which was used as a mixture 

weight at the branch points. Branch points lie at the boundaries of the three experimental stages  

and represent moments during the reaching movement at which novel information about the final 

target position becomes available. The structure of the model is illustrated in Figure 2. 

 

To better understand the hypothesis mixing scheme consider the information available to a 

subject through the different stages of a trial in the main experimental condition. At the start of 

stage 1, the subject has high uncertainty because a target jump is forthcoming but there is no 

information about its direction. Hence the subject constructs a policy which equally weighs the 

likelihood of a left and right target jump. As a result both weights in Stage 1 are 0.5. At the start 



of stage 2, the subject has detected the direction of the force pulse. If subjects were fully rational, 

at this point they would assign probability 1 to the correct outcome, and furthermore there would 

be no learning in this experiment because subjects are told in advance that the force direction 

predicts the target displacement. However subjects are clearly not rational (see Results). Instead 

they basically ignore the verbal instructions, and gradually adapt their behavior in the course of 

the experiment. We model this as a change in the probabilities used at the start of stage 2: 

beginning from a uniform distribution and gradually transitioning towards a delta function 

centered at the correct outcome (this limit is unlikely to be reached within the duration of our 

experiments). Lastly, at the start of stage 3, the target has jumped to its final location and so there 

is no uncertainty left. 

 

As an example, consider a rightward trial. The subject has started in the root node (V1) and 

experienced a push to the right, which at the start of stage 1 has placed him/her in node V3. The 

target has not yet jumped. Node V6 is the control strategy for reaching the left target while node 

V7 is the control strategy for the right target. If the subject had learned the task, he/she would 

place high probability on the rightward hypothesis (p) and low probability on the leftward one 

(1-p). Mathematically this can be expressed as: 

                                   

where the time index      is used to indicate that the mixing occurs at the final time in stage 2 

(although its effects influence all of stage 2). At the end of stage 2 the target jump will be 

realized and the subject will complete the reaching movement without further consideration of 

multiple control strategies. The probabilities used in the model are given in Table 2. 

 

 

3. Results 

 

3.1. Main experiment 

 

The results from the main experiment are shown in Figures 3 and 4. Figure 3 shows movement 

trajectories and force data averaged over subjects. Figure 4 shows measures of learning for each 

subject and trial. Since left and right perturbations were symmetric, for analysis purposes we 

mirrored the left-perturbed trials and pooled them with the right-perturbed trials. 

 

3.1.1. Timing 

 

Although we know the exact timings of all events in the experiment, subjects react to these 

events with delays, which we inferred from the data. We analyzed the lateral acceleration data 

using a multi-way ANOVA (Matlab 'anovan') to find times at which the blocks are statistically 

distinguishable with a threshold of p < .05. In our setup the factors were the block numbers while 

the measures were the average acceleration of each subject (within a block) for a particular time 

point (1 msec resolution). 

 

The first significant difference occurred at 157 msec after movement onset. This is the time (on 

average) when subjects began to use the information provided by the force pulse. Thus 157 msec 

marks the end of stage 1 and the start of stage 2. A similar analysis found the 376 msec mark as 

the next point of divergence (end of stage 2 start of stage 3) between the blocks, when subjects 



realized that the target had jumped and altered their movements accordingly. These times are 

marked as the blue vertical lines in Figure 3. 

 

 

3.1.2. Learning 

 

The main learning effect is shown in Figure 3A.  In block 1, the force pulse perturbed the hand 

and triggered a simple stretch-reflex-like corrective response (albeit with a long latency). A very 

similar response (in terms of kinematics as well as grip and interaction forces) was observed in 

the force-only baseline, indicating that on average there was little learning in block 1. When the 

subject detected the target jump later in the movement, a corresponding visually-guided 

correction was triggered, resulting in an S-shaped trajectory. Note that the force pulse here is 

assistive in the sense that it pushes the hand towards the location where the target will be at the 

end of the movement. Resisting this force is clearly a suboptimal strategy, yet subjects used it 

early in the experiment even though they were told in advance that the force will be assistive.  

 

With practice the shape of the trajectory changed substantially and became more straight, and the 

task-inappropriate response to the force pulse was reduced - as can be seen in the kinematic data. 

The red horizontal lines in Figure 3A are standard errors, allowing for a visual test of statistical 

significance. The change from block 1 to block 4 is highly significant. The grip force data also 

showed changes over blocks: subjects gradually relaxed and held the robot with smaller grip 

force. We did not observe slips, thus the grip force was sufficient even at the end of the 

experiment. Note that the subjects grasped a flat metal piece with the thumb on top and the index 

finger underneath, thus the interaction forces acting in the horizontal plane had to remain within 

the friction cone created by the grip force in order to prevent slip. 

 

Previous studies have shown that both adaptation (Thoroughman and Shadmehr 1999) and 

reduction in grip force (Tsuji et al 1995) tend to reduce arm impedance, by reducing co-

contraction of arm muscles. However this was not the case in our experiments. While we did not 

measure impedance directly, it can be inferred from the early effects of the force pulse. If arm 

impedance had decreased over blocks, the same force pulse would cause a larger deviation (in 

movement stage 1) towards the end of the experiment. There was no such trend in the data; 

indeed we defined stage 1 as the time interval when no significant changes in acceleration were 

found, and this time interval turned out to be about as long as the force pulse itself. Thus the 

adaptive suppression of the inappropriate stretch-reflex-like response is not associated with 

reduction in muscle co-contraction, but rather a change in the underlying sensorimotor loop. 

 

Figure 4 shows the trial-by-trial lateral deviation of the hand at 80% into the movement, which is 

where the largest difference between blocks 1 and 4 was observed. Also shown is a learning 

index for each subject. This index is the number of successful trials in blocks 3 and 4 (which 

were the most challenging because they had the shortest allowed movement duration), multiplied 

by average speed at impact and then normalized so that the maximum over subjects is 100.  It is 

interesting to note that different subjects learned at rather different rates. Two of the 10 subjects 

were very fast learners and produced nearly straight movements almost from the beginning of the 

experiment (subjects 3 and 10). One subjects showed very little learning even at the end (subject 



1), while the remaining seven subjects showed more gradual adaptation. Of the subjects that 

learned (9 out of 10) everyone eventually settled to a very similar strategy. 

 

3.2. Model 

 

The trajectories generated by the model are illustrated in Figure 5. Note the similarity to the 

corresponding subplots in Figure 3. The learning effect is easily captured. Recall that the amount 

of learning in the model corresponds to the probability that a force pulse in a given direction will 

be followed by a target jump in the same direction. While this probability is 1.0 in the 

experimental design (and subjects are told so in advance), subjects behave as if this probability is 

initially set to 0.5 and then gradually increases, as shown in Table 2. Given the structure of the 

model, it is obvious that increasing this parameter will result in a learning effect in the same 

direction as the experimental data. However the quantitative resemblance to the data is 

remarkable, especially since the model is rather simple in terms of the assumed dynamics. 

 

3.3. Pilot experiments 

 

Earlier (pilot) experiments did not show the expected learning effect, despite our prolonged and 

frustrating efforts to design an experiment that does show learning. Recall that these experiments 

had identical design except that the force pulse was replaced by a visual cue or an auditory cue 

predicting the direction of the target jump. Figure 6 shows the average trajectories for blocks 1, 2 

and 3 in the auditory cue task (the data for the visual cue task were essentially the same). We 

omit plotting the trajectories from block 4 because there were very few successful trials. 

Furthermore, we often had to end data collection early because subjects got tired. 

 

In these experiments the behavior did change consistently over blocks, but in a very different 

way from the force-pulse experiment. Here subjects gradually adopted the strategy of moving as 

quickly as possible to the central position of the target (where it was at the beginning of the trial 

before jumping), and then making a sharp turn once they detected the target jump. The cue was 

effectively ignored, and the opportunity to predict the target jump and move towards the 

expected target position was not taken advantage of. Given that the cue was ignored, such a 

speeding strategy was necessary because otherwise the movement could not be completed on 

time in the later blocks. Another systematic change was observed in the grip force data: the grip 

force now increased over blocks, instead of decreasing as in the main experiment. This increase 

was probably needed in order to be able to generate larger horizontal accelerations while 

preventing slip. 

 

 

4. Discussion 

 

We examined a new form of learning which combines elements of classical conditioning, 

internal model learning, and reflex gain modulation. Systematic pairing of a force pulse at 

movement onset and a later target perturbation in the same direction caused gradual changes in 

behavior. We observed reduction of the counter-productive stretch-reflex-like response to the 

force pulse, accompanied with reduction in grip force but no change in arm impedance. The 

movement trajectories in the different phases of learning were accurately modeled by a mixture 



of target-specific optimal feedback controllers weighted by the probabilities of their 

corresponding targets. Such a mixture is the optimal strategy in the present setting. The proposed 

extension to optimal control modeling should also be applicable to other situations where the 

CNS needs to keep multiple options under consideration and prune them when sufficient 

information becomes available (Cisek and Kalaska 2010). 

 

While the above summary fits nicely in the theoretical framework of Bayesian inference and 

stochastic optimal control - which postulates that the CNS makes the best possible use of 

information available to it so as to maximize movement performance - we were surprised to 

discover that the learning studied here is by no means general. On the contrary, it took several 

months and several failed experiments to find a combination of stimuli that elicit the learning we 

set out to find. Results from two of these failed experiments (pilot 1 and pilot 2) were presented 

above. Even though the experimental design was conceptually identical to the main experiment, 

we found that replacing the force pulse with either a visual or an auditory cue abolished learning. 

Instead subjects developed a speeding-up strategy, which was sufficient to reach the target within 

the specified time limit, but was nevertheless quite fatiguing and suboptimal. Thus there is a big 

difference between using a force pulse as a cue vs. using visual or auditory cues. We now 

consider several possible explanations. Two of them were already mentioned in the Introduction: 

Bayesian priors which make the pairing of visual/auditory cues and target displacements unlikely 

(and thus require large amounts of evidence before learning is manifested), or neural pathways 

which make it easier to use tactile and proprioceptive feedback in the formation of the 

sensorimotor loops. 

 

Another possible explanation is that the learning studied here is limited to modulation of existing 

feedback loops as opposed to formation of new feedback loops. Indeed the main learning effect 

had to do with suppression of a pre-existing response. However we do not think that such 

suppression is sufficient to explain our results. In block 4 subjects are clearly moving towards the 

predicted target position after the force pulse has ended. This is best seen in the velocity plot 

(Figure 3E) which shows that, in block 4, the lateral velocity starts to increase long after the 

force pulse has ended but before the target jump is detected. Nevertheless it is interesting that the 

only case of learning we found could be at least partly explained with modulation of existing 

feedback gains. Perhaps this form of learning has to start with gain modulation before more 

elaborate changes in the feedback control structure can be made. 

 

Yet another complicating factor is the target perturbation itself. Previous work on standard 

(open-loop) adaptation has shown that, while subjects readily learn force fields and visuo-motor 

rotations, learning to anticipate predictable target jumps is much harder (Diedrichsen et al 2005, 

Liu and Todorov 2007). In our recent work (Liu and Todorov, unpublished manuscript) we have 

found that subjects can learn to anticipate predictable target jumps but only if we arrange the 

experiment so that goal achievement becomes impossible without anticipation. Our working 

explanation is that a visual target acts as an attractor, and even if subjects know that the target 

will be displaced, they are compelled to keep moving towards the current position of the target. It 

is as if the perceived task is not "hit the target at the end of the movement", but instead "move 

towards the current target". Of course in the real world these two tasks are usually the same, and 

we can again invoke the concept of Bayesian priors to explain why learning to anticipate future 

goals is very difficult. Thus, in retrospect, the target jumps we decided to use as the 



"unconditioned stimulus" may have been a poor choice. A better choice may have resulted in 

learning for arbitrary cues ("conditioned stimuli") and not just force pulses. This is an interesting 

possibility worth exploring in future work. After all, most of the sensorimotor feedback loops 

underlying human movement have been learned, and we need to find ways to investigate such 

learning in laboratory conditions. The present work is a step in that direction. 
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FIGURES AND TABLES 

 
 

 Blocks Duration (ms) Num. Trials 

Main 1-4 (800,650,550,450) 80 

Baseline 1 5, 7 650 30 

Baseline 2 6, 8 650 30 

 

Table 1. Summary of the experiment's block structure including durations and trial counts. 

 

 Cued Direction (p) Non-Cued Direction (1-p) 

Block 1 .5 .5 

Block 2 .63 .37 

Block 3 .81 .19 

Block 4 .93 .07 

 

Table 2: Belief that the target will jump in the direction of the force cue at the onset of Stage 2. 

Parameters settings are based on best fit to behavioral data.  

  



 

 

 

 

 

 

 

 

Figure1. (Left) Experimental Setup: Subject is shown performing a reach by manipulating the haptic 

robot while looking at the reflective surface onto which the visual stimuli are rendered. (Right) A 

graphical depiction of a trial with left perturbations, at t=0 the blue cursor is in the home base square, at    

t > 0 the subject has left the home base region and initiated a reach and the force impulse has also been 

activated, at t > 200 the target has jumped to its final location; Note that forces are not visible to the 

participant and are only shown here for illustrative purposes.  
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Figure 2: Branching structure of our experiment. A rightward trial causes you to traverse the tree through 

the orange nodes while a leftward trial places you in the blue nodes. Stage 1 ends at t = 157, Stage 2 ends 

at t = 376. 

  



 

Figure 3. Experimental results shown as time series averaged amongst all subjects for individual blocks 

(line thickness increases with block number); in all but panels A and C right trials are reflected and 

combined with left trials; Baseline averages are shown as green (Baseline 1) and red (Baseline 2) dashed 

lines; the blue vertical dashed lines indicate the separators of the experimental stages (Section 4.1) A) 

Movement trajectories for the 4 main condition blocks (black lines, numbered for clarity), standard errors 

are shown in red B) Lateral velocities for the 4 main condition blocks. C) Movement trajectories for block 

1 and block 4 with baseline trajectories superimposed. D) Lateral accelerations for block 1 and block 4 

with baselines superimposed. E) Lateral velocities for blocks 1 through 4 with baselines superimposed. F) 

Vertical velocities for block 1 and block 4 with baselines superimposed. G) Grip force profiles for blocks 

1 through 4 with baselines superimposed. H) Interaction forces between the hand and the robot arm for 

blocks 1 and 4 with baselines superimposed.  



 

Figure 4: Bar graph of the lateral positional deviations of successful trials in the first 3 blocks of the main 

condition. The lateral deviation is measured in centimeters at the point in the movement in which 

participants had coved 80% of the vertical distance to the target. Red lines indicate the block average. 

Low pass filtered for clarity. 

 

 

  



 

Figure 5: Model Results which capture the average subject behavior in the four experimental blocks. 

Green segments represent the model outputs during stage 1, blue during stage 2, and red during stage 3. 

Due to the symmetry of the experiment the velocity and acceleration panels show the behavior for only 

one perturbation direction. 

  



 

 

Figure 6: Failed experiments. Panel A shows the position trajectories (colors are used for easier 

identification in overlapped regions). Panel B shows the average grip force for each block in the auditory 

cue condition (dashed lines); note the high level of grip force in comparison to the force cue condition 

(solid lines); in both cases line thickness increases with block number. 

 

 


