
Compilation and Hardware Support
for Approximate Acceleration

Thierry Moreau Adrian Sampson Andre Baixo Mark Wyse Ben Ransford Jacob Nelson Luis Ceze Mark Oskin
University of Washington

Abstract—Approximate computing exposes opportunities to
increase the efficiency of computer systems by trading-off ac-
curacy for energy savings. These optimization opportunities can
be found in many emerging classes of applications which exhibit
a degree of tolerance to imprecision. Taking full advantage of
approximation requires a programming model that provides
control to the programmer over what portions of a program
can be approximated, as well as hardware-based techniques that
can effectively trade-off accuracy for energy savings. We describe
ACCEPT, a compiler framework for approximate programs
and SNNAP, an approximate accelerator that can efficiently
offload regions of approximate code. Using ACCEPT, a software
programmer can leverage the benefits of approximate computing
by annotating software with data-centric annotations and letting
the compiler identify the best approximation strategies based
on accuracy requirements. We evaluate programs that offload
approximate computation on SNNAP, and observe an average
speedup of 3.8× and an average energy saving of 2.8×.

I. INTRODUCTION

Energy consumption is a first-class concern in computer
system designs. In warehouse-scale computers, reducing power
demands can drastically impact operating costs. In mobile
systems, battery technology is advancing slowly. Making mobile
devices more capable from generation to generation will
necessitate new ways to extract more from each joule of a
battery’s capacity.

Approximate computing is an emerging research area
that promises to offer drastic energy savings. Approximate
computing exploits the fact that many applications do not
require perfect correctness. Many important mobile applications
use “soft” error-tolerant computations, including computer
vision, sensor data analysis, machine learning, augmented
reality, signal processing, and search. A few small errors
while detecting faces or displaying game graphics, for example,
may be acceptable or even unnoticeable, yet today’s systems
faithfully compute precise outputs even when the inputs are
imprecise.

Approximate computing research builds software and hard-
ware that are allowed to make mistakes when applications are
willing to tolerate them. Approximate systems can reclaim
energy that is currently lost to the “correctness tax” imposed
by traditional safety margins designed to prevent worst-case
scenarios.

In order to safely eliminate this “correctness tax”, pro-
grammers need a tractable way to write correct software even
when the hardware can be incorrect. For example, and image
renderer can tolerate errors in the pixel data it outputs; a
small number of erroneous pixels may be acceptable or even
undetectable. However, an error in a jump table could lead to

a crash, and even small errors in the image file format might
make the output unreadable. By letting the programmer isolate
parts of the program that must be precise from those that can
be approximated, the compiler can ensure that the program
functions correctly even as quality degrades.

In addition to programming models that provide safety
in approximate programs, eliminating the “correctness tax”
requires mechanisms that can smoothly trade-off accuracy
for performance. These mechanisms must provide substantial
performance gains to justify the annotation effort required
to make a program safe to approximate. For instance, an
approximate adder might not provide large enough of an
energy saving due to the large control and data movement
overheads typically found in general purpose processors, and
therefore would not constitute a compelling candidate for an
approximation strategy.

In an effort to make it practical and compelling for software
programmers to leverage quality-energy trade-offs, we co-
designed a programming model, a compiler framework, and a
hardware co-processor to support approximate computing. Our
end-to-end system includes two distinct building blocks:

• A new programmer-guided compiler framework trans-
forms programs to use approximation in a controlled
way. ACCEPT, an Approximate C Compiler for Energy
and Performance Trade-offs, uses programmer anno-
tations, static analysis, and dynamic profiling to find
parts of a program that are amenable to approximation.

• An approximate accelerator prototype that can effi-
ciently evaluate coarse regions of approximate code.
SNNAP, a Systolic Neural Network Accelerator in
Programmable logic, is a hardware accelerator proto-
type that can efficiently evaluate approximate regions of
code in a general-purpose program. The prototype is im-
plemented on the FPGA (Field Programmable Gate Ar-
ray) fabric of an off-the-shelf ARM SoC, which makes
its near-term adoption possible. Hardware acceleration
with SNNAP is enabled by neural acceleration [2], an
algorithmic transformation that substitutes regions of
code in a program with approximate versions amenable
to efficient evaluation on specialized hardware.

Using ACCEPT and SNNAP, a software programmer can
leverage the benefits of approximate computing in a disciplined
manner. Evaluating SNNAP over a suite of approximate
benchmarks, we observe an average speedup of 3.8×, ranging
from 1.3× to 38.1×, and an average energy savings of 2.8×.



II. AN APPROXIMATE COMPILER

ACCEPT1 is compiler framework for approximate comput-
ing [5]. It combines programmer annotations, code analysis,
optimizations, and profiling feedback to make approximation
safe and keep control in the hands of programmers.

ACCEPT’s frontend, build atop the LLVM compiler in-
frastructure, extends the syntax of C and C++ to incorporate
an APPROX keyword that programmers use to annotate data
types. ACCEPT’s analysis identifies code that can affect only
variables marked as APPROX. Optimizations use these analysis
results to avoid transforming the precise parts of the program.
An autotuning component measures program executions and
uses heuristics to identify program variants that maximize
performance and output quality. The final output is a set of
Pareto-optimal versions of the input program that reflect its
efficiency–quality trade-off space.

Safety constraints and feedback. Because program relaxations
can have outsize effects on program behavior, programmers
need visibility into—and control over—the transformations the
compiler applies. To give the programmer fine-grained control
over relaxations, ACCEPT extends an existing lightweight
annotation system for approximate computing based on type
qualifiers [4]. ACCEPT gives programmers visibility into the
relaxation process via feedback that identifies which transfor-
mations can be applied and which annotations are constraining
it. Through annotation and feedback, the programmer iterates
toward an annotation set that unlocks new performance benefits
while relying on an assurance that critical computations are
unaffected.

Automatic program transformations. Based on programmer
annotations, ACCEPT’s compiler passes apply program trans-
formations that involve only approximate data. To this end,
ACCEPT provides a compiler analysis library that finds regions
of code that are amenable to transformations. An ensemble of
optimization strategies transform these regions. One critical
optimization targets SNNAP, our neural accelerator, which we
describe in more detail below.

Autotuning. While a set of annotations may permit many
different safe program relaxations, not all of them are beneficial
in the quality–performance trade-off they offer. A practical
approximation mechanism must help programmers choose from
among many candidate relaxations for a given program to
strike an optimal balance between performance and quality.
ACCEPT’s autotuner heuristically explores the space of possible
relaxed programs to identify Pareto-optimal variants.

III. NEURAL ACCELERATION

A powerful approach to approximate computing, neural
acceleration, works by substituting entire regions of code
in a program with machine learning models [2]. Neural
acceleration trains neural networks to mimic and replace regions
of approximate imperative code. Once the neural network is
trained, the system no longer executes the original code and
instead invokes the neural network model on a neural processing
unit (NPU) accelerator. Neural networks have efficient hardware
implementations, so this workflow can offer significant energy
savings over traditional execution.

1Source available at http://accept.rocks

Neural acceleration consists of three phases: programming,
compilation, and execution.

Programming. To use neural acceleration in ACCEPT, the
programmer uses profiling information and type annotations
to mark data that is amenable to approximation. For many
applications, it is easy to identify the “core” approximate
data, such as the pixel array in an image filter algorithm,
that dominates the program’s execution. The programmer also
provides a quality metric that measures the accuracy of the
program’s overall output.

Compilation. The compiler implements neural acceleration in
four phases: region selection, execution observation, training,
and code generation. ACCEPT first identifies large regions
of code that are safe to approximate and nominates them as
candidates for neural acceleration. Next, it executes the program
with test cases and records the inputs and outputs to each target
code region. It then uses this input–output data to train a
neural network that mimics the original code. Training can use
standard techniques for neural networks: we use the standard
backpropagation algorithm. Finally, the compiler generates an
executable that replaces the original code with invocations of
a special accelerator, the neural processing unit (NPU), that
implements the trained neural network.

Execution. During deployment, the transformed program begins
execution on the main core and configures the NPU. Throughout
execution, the program invokes the NPU to perform a neural
network evaluation in lieu of executing the code region it
replaced. Invoking the NPU is faster and more energy-efficient
than executing the original code region on the CPU, so the
program as a whole runs faster.

IV. SNNAP: HARDWARE SUPPORT FOR APPROXIMATE
ACCELERATION

Our NPU implementation, SNNAP [3], runs on off-the-
shelf field-programmable gate arrays (FPGAs). Using existing,
affordable hardware means that SNNAP can provide benefit to-
day, without waiting for new silicon. SNNAP uses an emerging
class of heterogeneous computing devices called Programmable
System-on-Chips (PSoCs). These devices combine a set of
hard processor cores with programmable logic on the same die.
Compared to conventional FPGAs, this integration provides a
higher-bandwidth and lower-latency interface between the main
CPU and the programmable logic. However, the latency is still
higher than in previous proposals for neural acceleration with
special-purpose hardware [2]. Our design covers this additional
latency with a batching mechanism. In addition, we compensate
the mismatch between CPU frequency and FPGA frequency
with added parallelism in the accelerator design.

Implementation on the Zynq. We have implemented SNNAP
on a commercially available PSoC: the Xilinx Zynq-7020 on
the ZC702 evaluation platform [6]. The Zynq includes a Dual
Core ARM Cortex-A9 and an FPGA fabric. The CPU–NPU
interface composes three communication mechanisms on the
Zynq PSoC [7] for high bandwidth and low latency. First, when
the program starts, it configures SNNAP using the medium-
throughput General Purpose I/Os (GPIOs) interface. Then,
to use SNNAP during execution, the program sends inputs
using the high-throughput ARM Accelerator Coherency Port
(ACP). The processor then uses the ARMv7 SEV/WFE signaling



Zynq Programmable System-on-a-Chip

Neural Processing Unit

bus

AXI Master 
Interface Scheduler

PU

sc
ra

tc
hp

ad

control

PE

PE

PE

SIG

...

...

Application Processing Unit

Dual Core
ARM Cortex-A9 

L1 I$ L1D$

snoop control unit

OCM L2 $

ACP
port 

PU

control

PE

PE

PE

SIG

...

sc
ra

tc
hp

ad

Fig. 1: SNNAP system diagram. Each Processing Unit (PU)
contains a chain of Processing Elements (PE) feeding into a
sigmoid unit (SIG).

instructions to invoke SNNAP and enter sleep mode. Finally,
the accelerator writes outputs back to the processor’s cache via
the ACP interface and, when finished, signals the processor to
wake up.

Micro-Architecture. Our design, shown in Figure 1, consists
of a cluster of Processing Units (PUs) connected through a
bus. Each PU is composed of a control block, a chain of
Processing Elements (PEs), and a sigmoid unit, denoted by the
SIG block. The PEs form a one-dimensional systolic array that
feeds into the sigmoid unit. Systolic arrays excel at exploiting
the regular data-parallelism found in neural networks, and are
amenable to efficient implementation on modern FPGAs. When
evaluating a layer of a neural network, PEs read the neuron
weights from a local scratchpad memory where temporary
results can also be stored. The sigmoid unit implements a
nonlinear neuron-activation function using a lookup table.
The PU control block contains a configurable sequencer that
orchestrates communication between the PEs and the sigmoid
unit. The PUs can be programmed to operate independently, so
different PUs can either be used to parallelize the invocations
of a single neural network or used to evaluate different neural
networks concurrently.

V. EXPERIENCE AND RESULTS

We have applied ACCEPT and SNNAP to a set of approx-
imable benchmarks. Our goal was to show that programmers
can unlock significant efficiency gains at a tolerable accuracy
cost with low programming effort.

A. Writing Approximate Programs

To evaluate the effort required to apply approximation, we
annotated a set of benchmarks for ACCEPT’s language. The
programmers included three undergraduate researchers, all of
whom were beginners with the C and C++ languages and new
to approximate computing, as well as graduate students more
familiar with the field.

Programmers tended to approach annotation by finding the
central approximable data in the program—e.g., the vector

2.67

1.46

2.25

1.3

2.35

3.7810.84 38.12

0

1

2

3

4

bscholes
fft

inversek2j
 jmeint

jpeg
kmeans

 sobel
GEOMEAN

W
ho

le
 A

pp
lic

at
io

n 
S

pe
ed

up

Fig. 2: Speedup

Fig. 3: Performance benefit of neural acceleration with SNNAP
over an all-CPU baseline execution of each benchmark.

coordinates in a clustering algorithm, or pixels in imaging
code. ACCEPT’s type errors guided programmers toward other
parts of the code that needed annotation. Programmers needed
to balance effort with potential reward during annotation, so
auxiliary tools like profilers and call graph generators were
useful to find hot spots.

Overall, ACCEPT was able to detect candidate regions
of code in the majority of benchmarks solely based on data
annotations. For these benchmarks, ACCEPT was capable of
instrumenting code automatically to take advantage of neural
acceleration. For the remaining benchmarks, the programmers
have to use an internal API to make use of neural acceleration.

B. SNNAP Acceleration Efficiency

Our evaluation targeted 7 benchmarks from many ap-
plication domains: option pricing (blackscholes), signal
processing (fft), robotics (inversek2j), lossy image com-
pression (jpeg), machine learning (kmeans) and image
processing (sobel). Table I provides insight on the size of
the neural network that had to be trained to approximate the
computation in each benchmarks.

We compared each program’s performance, power, and
energy consumption when using SNNAP versus running the
original software on the ARM processor. We limited each
application’s output error to 10%. SNNAP incorporates 8
processing units and runs at one quarter of the CPU’s core
frequency.

Performance and Energy Efficiency. Figure 2 shows geometric
mean whole-application speedup of 3.78× across our bench-
mark suite ranging from 1.30× for kmeans to 38.12× for
inversek2j. Inverse kinematics saw the largest speedup
since the bulk of its execution was offloaded to SNNAP. The
target code for that benchmark includes trigonometric function
calls that are expensive to evaluate on an ARM CPU. Neural
acceleration approximates these functions with a compact neural
network that can be quickly evaluated on SNNAP. Conversely,
kmeans had the lowest speedup because a small fraction of
the program execution got offloaded to SNNAP. Also, the
neural network that approximates target region in kmeans was
relatively deep and did not present a significant advantage over
executing the precise code on the CPU.



Application Description Error Metric NN Topology NN Config. Size Error Amdahl
Speedup (×)

blackscholes option pricing mean error 6–20–1 6308 bits 7.83% > 100
fft radix-2 Cooley-Tukey FFT mean error 1–4–4–2 1615b 0.1% 3.92
inversek2j inverse kinematics for 2-joint arm mean error 2–8–2 882b 1.32% > 100
jmeint triangle intersection detection miss rate 18–32–8–2 15608b 20.47% 99.65
jpeg lossy image compression image diff 64–16–4 21264b 1.93% 2.23
kmeans k-means clustering image diff 6–8–4–1 3860b 2.55% 1.47
sobel edge detection image diff 9–8–1 3818b 8.57% 15.65

TABLE I: Applications used in our evaluation. The “NN Topology” column shows the number of neurons in each MLP layer. The
“NN Config. Size” column reflects the size of the synaptic weights and microcode in bits. “Amdahl Speedup” is the hypothetical
speedup for a system where the SNNAP invocation is instantaneous.

1.
08

0.
67

3.
61

4.
2

3.
01

2.
33

0.
34

0.
04

0.
36

0.
01

2.
46

4.
2

1.
87

3.
66

1.
31

0.
81

8.
7

12
.7

9

0

1

2

3

4

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Accel:

HLS
SNNAP

Fig. 4: Resource-normalized throughput of the NPU and HLS
accelerators.

The energy efficiency results were similar: 2.77× energy
reduction on the SoC+DRAM subsystem ranging from 0.87×
for kmeans to 28.01× for inversek2j. The primary energy
benefit of SNNAP comes from racing to completion: SNNAP
has a fixed power overhead which has to be compensated for
by faster execution times.

Output quality. We measure SNNAP’s effect on output quality
using application-specific error metrics, as is standard in the
approximate computing literature [4], [1], [2]. Table I lists the
error metrics.

We observe less than 10% application output error for all
benchmarks except jmeint. jmeint had high error due to
complicated control flow within the acceleration region, but we
include this benchmark to fairly demonstrate the applicability
of neural acceleration. Among the remaining applications, the
highest output error occurs in sobel with 8.57% mean absolute
pixel error with respect to a precise execution.

Comparing SNNAP with Fixed-Function Accelerators. Spe-
cialized hardware accelerators are another way to improve
applications’ energy efficiency using FPGAs. We compared
SNNAP’s performance to specialized FPGA designs generated
by a commercial high-level synthesis tool, Vivado HLS 2014.2.
For each benchmark, we generate a specialized datapath by
compiling through HLS the same region of code that we offload
to SNNAP via neural acceleration.

For a fair comparison, we normalize the performance of
each approach by its resource usage on the FPGA. The results
of this study are shown in Figure 4. To our surprise, neural
acceleration offers better resource-normalized throughput on 4
out of 7 benchmarks. These 4 benchmarks generally has larger
datapaths with sometimes high control flow divergence, which

made it difficult for HLS tools to fit a fully pipelined datapath
on the available FPGA resources.

Aside from competitive performance, SNNAP and ACCEPT
also offer programmability and generality advantages over
specialized datapaths. Neural acceleration does not require
hardware design knowledge which was often required to debug
or optimize the performance of HLS kernels. Also, all bench-
marks we compiled through HLS generated a different datapath,
whereas SNNAP provides a single fabric for accelerating all 7
benchmarks, making virtualization possible.

VI. FUTURE WORK

ACCEPT and SNNAP represent the first steps toward near-
term approximate computing on PSoCs. But compilation and
neural acceleration are not the only challenges in approximate
computing. We are also developing high-level tools to help
programmers better navigate and understand performance–
quality trade-offs, including special-purpose debuggers for
approximate programs. We also wish to explore the rich design
space for approximate acceleration; neural acceleration is just
one coarse-grained technique among others. Future work will
also establish better error guarantees for neural acceleration.

VII. CONCLUSION

Many important classes of applications can tolerate some
imprecision. Programs from diverse domains such as machine
learning, vision and embedded sensing exhibit trade-offs
between accuracy and energy efficiency. Approximate program
transformations such as neural acceleration have been shown
to drastically improve performance and energy usage while
only minimally impacting output quality. By providing tools to
reason about quality relaxation, we can ensure that approximate
transformations do not have destructive effects on program
execution.

ACCEPT is a compiler framework for approximate pro-
gramming that balances automation with programmer insight.
ACCEPT makes approximate accelerators useful by helping
programmers reason about quality–performance trade-offs.
SNNAP, our approximate accelerator prototype on an off-the-
shelf ARM SoC with programmable logic, demonstrates a 3.8×
speedup and 2.8× energy savings for approximate applications.

Approximate computing research is in its infancy and needs
more tools for prototyping and evaluating ideas. The ACCEPT
framework and the SNNAP prototype demonstrate a practical
and efficient implementation of approximate transformation.



REFERENCES

[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012, pp. 301–312.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” Micro, IEEE,
vol. 33, no. 3, pp. 16–27, 2013.

[3] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “SNNAP: Approximate computing on programmable socs
via neural acceleration,” in HPCA, Feb. 2015.

[4] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-

power computation,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011, pp. 164–174.

[5] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and
M. Oskin, “ACCEPT: A programmer-guided compiler framework for
practical approximate computing,” Univesity of Washington, Tech. Rep.
UW-CSE-15-01-01, Jan. 2015.

[6] Xilinx, Inc., “All programmable SoC.” Available: http://www.xilinx.com/
products/silicon-devices/soc/

[7] Xilinx, Inc., “Zynq UG585 technical reference manual.” Available:
http://www.xilinx.com/support/documentation/user guides/


