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ABSTRACT 
Many natural language processing (NLP) applications make use of entity recognition as preprocessing 

step. Therefore there is a need to identify nouns (entities) and verbs in free text. The task boils down to 

using machine learning to techniques to train a system that can perform entity recognition with 

performance comparable to a human annotator.  Challenges like lack of large annotated training data 

corpus, impossible nature of listing all entity types and ambiguity in language make this problem hard. 

There are existing entity recognizers which perform this task but with poor performance. An obvious 

solution is to improve the performance of an existing entity recognizer. This Senior Thesis will analyze 

the existing features, through a series of experiments, that are important for the recognizer. This project 

will also suggest usage of additional features like Word Cluster features and Bigram features to improve 

the performance of the system. At the same time, experiments will show that lack of large annotated 

training data may not be as big of a problem it might seem at first. 
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1 INTRODUCTION 
Common applications of natural language processing (NLP) include summarization of text, classifying 

documents or automatic answering of questions posed in natural language. Each of these applications 

require entity type recognition in the text as a pre-processing step. Here, “entity” refers to concrete and 

abstract objects identified by proper and common nouns. Entity recognition focuses on detecting 

instances of types like person, location, organization, time, communication, event, food, plant, animal, 

and so on. For example, an entity recognizer would take the following sentence as input: 

George Washington was the first President of the United States of America. 

and output: 

<noun.person> George Washington </noun.person> was the first <noun.person> President 

</noun.person> of the <noun.location> United States of America </noun.Location>. 

Humans generally have no problems finding out what type a noun belongs  to. In the example above,  a 

human would look at “President” and know that it is of type Person. He/she would also know a location 

or organization can have a President. Additional knowledge about the country, makes him/her think it is 

a location. Finally, “George Washington” has to be a person as a president can only be a human.1 The 

way a human figures out the entity types could be summarized in the following points: 

 Recalling what entity type a word most likely belongs to 

 Looking at the context the word appears in. 

 Looking at features like word capitalization, punctuation marks. For example, the use of an 

upper-case letter after punctuation marks like periods or question marks does not indicate that 

the first word of the sentence is a proper noun. But in general, the use of capitalization does 

suggest a person, organization, or location. 

Our task is to use machine learning techniques to train a system that can do entity type recognition with 

a performance comparable to human annotator. This problem is hard for a variety of reasons. In 

general, it is not possible to list all possible instances of a single entity type and feed it to the machine. 

The lack of a large annotated data corpus for training is another major impediment. Due to these 

reasons, existing entity recognizers are not very accurate (F1 ranging 70%-80%) (Shipra, Malvina, Jenny, 

Christopher, & Claire, 1900; Carreras, Màrquez, & Padró, 2002).2 The obvious task then is to improve the 

performance of existing machine tagging systems. This would be achieved by looking for features (new 

as well as ones used with existing taggers) that affect the performance of the tagger the most. 

Additionally, finding out how much training data is needed, can help solve the problem of the lack of a 

large annotated training data corpus. 

This Senior Thesis performs analysis on an existing entity recognizer by considering removal and addition 

of certain features that affect the performance of the recognizer. It will also address the issue of 

                                                                 
1
 unless it is a line out of a fantasy novel, where an animal (other than a human) presides. 

2
 Please refer to the section 3 for the definition of F1 
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whether large training data sets are necessary or not. The outcome of this project will be a step forward 

in making an enhanced entity recognizer which in turn will benefit other NLP applications. 

2 BACKGROUND AND RELATED WORK  
The entity recognizer that we are analyzing is the Supersense Tagger (SST) (Ciaramita & Altun, 2006). 

The tagger performs sequence tagging with a perceptron-trained Hidden Markov Model (HMM). The 

following section will describe the tag set used, the type of sequence tagging and the model used for 

training. 

2.1 SUPERSENSES 

The entity-type tag set we use in this research project contains types referred to as supersenses 

(Ciaramita & Altun, 2006; Ciaramita & Johnson, 2003; Curran, 2005). As opposed to the usual entity 

types Person, Location and Organization, and sometimes Date used in earlier Named Entity Recognition 

(NER),3 the supersense tag set includes 26 broad semantic classes. These semantic classes are labels 

used by lexicographers who developed Wordnet (Fellbaum & others, 1998), a broad-coverage machine 

readable lexical database which has proper and common nouns, verbs, adjectives and adverbs 

interlinked via synonym, antonym, hypernym, hyponym and variety of other semantic relations. Table 1 

(from (Ciaramita & Altun, 2006)) shows the supersense labels for nouns. Wordnet is used to lemmatize a 

word and provide the most frequent supersense for the word. 4 Because this tag set suggests an 

extended notion of named entity, this particular process of recognition is called supersense tagging.  

Furthermore, supersenses have been used to build useful latent semantic features in syntactic parse re-

ranking (Koo &  Collins, 2005). Supersense Tagging, along with other sources of information such as part 

of speech, domain-specific NER models, chunking and shallow parsing, can contribute a lot to question 

answering and information extraction and retrieval (Ciaramita & Altun, 2006). 

 

TABLE 1 NOUNS SUPERSENSE LABELS, AND SHORT DESCRIPTION(CIARAMITA & ALTUN, 2006) 

                                                                 
3
 Named Entity here refers to proper nouns only. Some of the earlier works include (Borthwick, 1999; Carreras et 

al., 2002; Finkel, Grenager, & Manning, 2005; Florian, Ittycheriah, Jing, & Zhang, 2003; Mikheev, Moens, & Grover, 
1999; Zhou & Su, 2002) 
4
 Lemmatizing refers to finding the root of a word. For example, the lemma of ran is run, while the lemma of said, 

is say and for teachers, it is teacher. 
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2.2 SEQUENCE TAGGING 

In NLP, people often seek to assign labels to each element in a sequence. Here, sequence generally 

refers to a sentence where the words are the elements. Let 𝑋 = {𝑥1 ,… , 𝑥𝑘} denote the vocabulary of 

sequence elements, and 𝑌 = {𝑦1 ,… , 𝑦𝑚 } the vocabulary of tags. The task of sequence tagging is to 

assign lexical categories 𝑦 ∈ 𝑌 to words 𝑥 ∈ 𝑋 in a given natural language sentence. NER and part-of-

speech (POS) tagging are two such tasks which involve sequence labeling or tagging.  

Label assignment may involve simply matching the element to a dictionary entry. For many NLP 

applications, however, the process can be improved upon by assigning the labels sequentially to 

elements from a string (usually a sentence). This allows the choice of a label to be optimized by 

considering previous labels.  

The tagging scheme used in the Supersense Tagger is begin-in-out (BIO) tagging scheme. In this scheme,  

each token/word in a sentence is either marked as beginning of a chunk (B), continuing a chunk (I) or 

not part of any chunk (O) based on patterns identified on the basis of the training data. In the following  

example, 

George Washington was the first President of the United States of America. 

“George” would be labeled as B-noun.person and “Washington” as I-noun.person. This is because 

“George” is the beginning of the noun.person phrase and “Washington” continues that supersense. 

Similarly, “United” would be labeled as B-noun.location. Following this, “States”, “of” and “America” 

would be labeled as I-noun.location. The remaining tokens are labeled O. 

2.3 PERCEPTRON-TRAINED HMM 

As mentioned earlier, the SST uses a perceptron-trained Hidden Markov Model (P-HMM)(Ciaramita & 

Altun, 2006, 2005). This model uses Viterbi and perceptron algorithms to replace a traditional HMM’s 

conditional probabilities with discriminatively trained parameters. It has been successfully implemented 

in noun phrase chunking, POS tagging and Bio-medical NER (M. Collins, 2002; Jiampojamarn, Kondrak, & 

Cherry, 2009) and many other NLP problems.   

The advantages of using this kind of model are that it does not require uncertain assumptions, optimizes 

the conditional likelihood directly and employs richer feature representation (Ciaramita & Altun, 2006). 

These kinds of models represent the tagging task through a feature-vector representation.   

A feature represents a morphological, contextual, or syntactic property and typically looks like this for 

example 

Φ100 𝑦, 𝑥 =  
1            𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑜𝑟𝑑 𝑤𝑖 𝑖𝑠 the 
                       𝑎𝑛𝑑 𝑦 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑟
0                                         𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

A vector of these features is represented as: 

Φ 𝒙, 𝒚 =   Φ𝑖(𝑦𝑗 , 𝒙)
 𝑦 
𝑗=1

𝑑
𝑖=1      (2) 
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Here d is the total number of features, x is the token that is being tagged and y is the label. The task of 

tagging can be represented as learning a discriminant function F which is the linear in a feature 

representation Φ defined over the space: 

𝐹 𝑥, 𝑦; 𝒘 =  𝒘, Φ(𝑥, 𝑦)       𝐹: 𝑋 × 𝑌 → ℝ  (3) 

w, is the parameter vector of d dimensions. For an observation sequence x, the SST makes predictions 

by maximizing F over the response variables: 

𝑓𝒘 𝒙 = argmaxyϵY 𝐹(𝑥, 𝑦; 𝒘)    (4) 

The process involves Viterbi decoding with respect to 𝒘 ∈ ℝ𝒅 . The complexity of the Viterbi algorithm 

scales linearly with the length of the sequence (Manning & Schutze, 1999). 

In a nutshell, the perceptron is not a probabilistic model. It keeps scores for sequences and decides 

labels based on the scores.  

The performance of perceptron-trained HMMs is competitive and comparable in performance to that of 

Conditional Random Field models (Ciaramita & Altun, 2006; Collins, 2002).  

2.4 INCORPORATING WORD CLUSTER FEATURE 

The addition of new features such as word clusters in a more restricted task of NER has shown 

considerable improvement in performance in the system (Lin & Wu, 2009). A Word cluster is a grouping 

of words which fall in similar context. An example of a word cluster could be [“pet”, “cat”, “dog”,…].  

The use of word clusters alleviates the problem of lack of annotated data. Word clusters are generated 

from unlabeled data, which is available in plenty. Once word clusters are created, the feature that holds 

“word belonging to a particular cluster”, can be used in a supervised training setting. Hence, even when 

a word is not found in the training data, it may still benefit from the cluster-based features as long as the 

word belongs to the same cluster with some word in the labeled data. For example, if the word “cat” is 

in the training data and the tagger encounters a new word “dog” in the test set, the tagger would not 

know what to do with the unseen word. But if a word cluster contains both of these words, the word 

cluster feature will be fired and the two words can share information. This improves the tagged output 

of the unseen words. In this project the word cluster used were created using Distributed K-means 

clustering  (Lin & Wu, 2009).5  

2.5 THE BASELINE TAGGER 

The baseline tagger used for comparison with modified taggers is a reimplementation6 of the SST. It uses 

the same feature set as that of the SST to tag words which include both proper and common nouns, and 

verbs. The experiments conducted also involve tagging verbs along with nouns. The training data for the 

verbs is extracted the same way as for the nouns.  

                                                                 
5
 Word clusters are generated using Distributed K-means clustering, by Dipanjan Das (LTI). 

6
This re-implementation has been done by  Michael Heilman (LTI, CMU) 
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3 EVALUATION METRICS 
The following evaluations metrics are used to evaluate the performance of our tagger.  

3.1 PRECISION (P) 

Precision measures the percentage of the supersenses identified by the tagger that are correct. Large 

precision indicates almost everything the tagger tags are correctly tagged.  

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑡𝑎𝑔𝑔𝑒𝑑  𝑝𝑟𝑎𝑠𝑒𝑠  𝑏𝑦  𝑡𝑒  𝑡𝑎𝑔𝑔𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑎𝑔𝑔𝑒𝑑  𝑝𝑟𝑎𝑠𝑒𝑠  𝑏𝑦  𝑡𝑒 𝑡𝑎𝑔𝑔𝑒𝑟
 (5) 

Note that a word is a phrase of size 1 token . 

3.2 RECALL (R) 

Recall measures the percentage of the supersenses in the test set that are actually correctly identified. 

In other words, it tells, how few errors of omission are made by the tagger. 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑡𝑎𝑔𝑔𝑒𝑑  𝑝𝑟𝑎𝑠𝑒𝑠  𝑏𝑦  𝑡𝑒 𝑡𝑎𝑔𝑔𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑎𝑛𝑑  𝑙𝑎𝑏𝑒𝑙𝑒𝑑  𝑝𝑟𝑎𝑠𝑒𝑠  𝑓𝑟𝑜𝑚  𝑡𝑒 𝑡𝑒𝑠𝑡  𝑑𝑎𝑡𝑎
 (6) 

Incorrectly tagging a phrase as Y that should have been labeled X will lower recall for X and lower the 

precision for Y.  

Here is an example to illustrate precision and recall for a sentence (O refers to no supersense for the 

particular token): 

 Hand Labeling Machine Tagging  

John B-noun.person B-noun.location 

Smith I-noun.person I-noun.location 

is B-verb.stative B-verb.stative 

in O B-noun.place 

Doha B-noun.location B-noun.person 

Here, number of correctly tagged phrases is 1. Number of tagged phrases is 4. Hence, overall precision is 

1/4. Number of labeled phrases in this case is 3. Hence, overall recall is 1/3.  

Another example: 

 Hand Labeling Machine Tagging  

John B-noun.person B-noun.person 

Smith I-noun.person B-noun.location 

is B-verb.stative O 

in O O 

Doha B-noun.location B-noun.location 

Here, number of correctly tagged  phrases is 1, as “John Smith” is wrongly tagged. Number of tagged 

phrases is 3. Hence overall precision is 1/3. Number of labeled phrases is 3. Hence, overall Recall is 1/3. 
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3.3 F1 

F1 (F-score) is simply the geometric mean of precision and recall, and combines the two scores.  

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 

EQUATION 1  F1 

4 APPROACH  
Our approach towards improving the performance of the SST involves two trials. For both trials, tagger 

performance is evaluated based on affects on F1.  

4.1 VARYING TRAINING DATA SIZE 

In the first trial, we experiment with different sizes of training data to determine if a threshold exists 

after which additional data does not improve the performance of the tagger. Therefore we train the 

system using different size training data and evaluate the trained model with test data. 

4.2 FEATURE ADDITION, REMOVAL AND MODIFICATION  

In the second trial, we investigate the effect of adding, removing and modifying features used in the 

tagging process and gauging which affect the performance of the tagger.  

For this, we devise a series of experiments which involves removing one feature at a time and evaluating 

the tagger output. This task is termed as feature ablation. When a feature affects the F1 by +/-2 points, 

we mark it for future experimentation. As for the other features, we take conjunctions of these features 

and check if they collectively affect F1. Some of the baseline features from SST include most frequent 

sense (from Wordnet), POS tags, word shape (upper-case or lower-case, upper-case after period and so 

on) and label of preceding words. 

Context is an essential feature while tagging words. As shown in the example in the section 1, while 

tagging George Washington, the knowledge about a President being of type person helps with tagging 

George Washington as person. The baseline tagger only looks at +/- 2 words around the current word 

being tagged. We perform additional experiments by reducing the context to not looking at any words 

(removing the existing context features) and then increasing the context to +/- 4 words (adding new 

context features) to see if the extra context helps.  

Like any other entity recognizer, the SST can encounter words that it has never seen in the training 

corpus. A plausible solution to improve performance of the tagger to tag these unseen words correctly is 

to incorporate word cluster features (refer to section 2.4). As a result, we add new word cluster 

features for the current word and words (+/- 2 words) around it. We conjoin other strong features along 

with the word cluster features. These strong features are shortlisted from the feature ablation 

experiments and contextual analysis mentioned earlier.   
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5 EXPERIMENTS AND RESULTS  

5.1 SETUP 

We tested our tagger on the Semcor corpora (Miller, Leacock, Tengi, & Bunker, 1993) containing 

syntactically and semantically tagged text (articles) from the Brown Corpus. This includes the nouns and 

verbs labeled with their supersense. The Semcor data was split into 3 parts: Training, Development and 

Testing. The three parts were created by randomly selecting the articles. The size of the three parts 

were as follows: 

 Training data Development Data Testing data 

Number of sentences 11,973 4113 4052 

Number of Tokens 248,581 92,924 93,269 

5.2 FEATURE EXTRACTION 

The Tagger extracts features with their names and values for a particular token in a sentence. All of 

these are aggregated to get the feature vector or score for the whole sentence. From the programming 

point of view, if we want to add a new feature, we create a mapping of the feature name to the value 

and add it to the feature vector. If we do not want to include a feature, we simply do not add the 

mapping to the feature vector. 

5.3 EXPERIMENT 1- TRAINING DATA SIZE 

In order to find out how the size of training data affects the performance of the tagger, multiple 

percentages of training data were made. The tagger was then trained on each of these parts and 

evaluated. The F1’s were calculated at intervals of 5% of the training data. 

Figure 1 shows the results for  the varying F1 with respect to the amount of training data used. 

 

FIGURE 1  F1 BY % TRAINING DATA 
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The results of the experiment indicate that after about 33% of the training data is used, the overall F1 

does not increase drastically. Results for the individual supersenses (a subset of supersenses shown in 

figure 1) are similar. However, there are fluctuations in the graph for process, while smoother curve for 

Person.   

5.4 EXPERIMENT 2- FEATURE ABLATION 

The experiment to find out which feature impacts the performance of the tagger the most is conducted 

by removing one baseline feature at a time. These features include:  

 The first-sense feature which refers to the most frequent sense of the word or token being 

labeled 

 The POS feature which includes the part-of-speech label of the current word and the two words 

in front and back of the current word or token  

 The word shape feature which includes capitalization of the current word/token, presence of 

punctuation as the previous token along with the next two and previous two tokens 

 The previous label feature which is simply the label of the previous token 

Feature Removed F1 Precision Recall 

Baseline 73.54% 73.12% 73.98% 

    

First Sense (Most frequent sense) 57.11% 57.12% 57.09% 

Part of speech 73.11% 73.11% 72.50% 

Word Shape 73.51% 73.13% 73.90% 

Previous Label 73.51% 73.15% 73.89% 
TABLE 1 FEATURE REMOVED AND RESULTING F1 

Table 2 shows that the First Sense feature has the greatest impact on the performance of the SST, as the 

performance of the tagger suffers severely when it is removed. But at the same time, the removal of 

previous label feature affects the performance minutely. This is striking considering the fact that the 

tagger performs sequence tagging. 

5.5 EXPERIMENT 3- CONTEXT SIZE 

In this experiment, we look at how context size affects the performance of the tagger. The Baseline 

Tagger looks at the current word and two words before and after it. The tagger extracts all other 

features like most frequent sense of current word, POS and word shape of the current word along with 

two words before and after it,  and label for the previous word before the current word. If the context is 

limited to “no words”, then none of the other features are considered. Obviously the current token to 

be tagged is visible. When the context is “current word”, it includes the other features along with the 

current token. For larger context (+/-2, +/-3, +/-4) the POS and word shape of the surrounding words are 

the additional features incorporated into the feature vector. 
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Experiments on context size are tabulated in table 3: 

Context F1 Precision Recall 

Baseline - Current word +/- 2 words 73.54% 73.12% 73.98% 

    

No words 70.19% 69.09% 71.32% 

Current word 70.94% 69.23% 72.75% 

Current word +/- 1 word 73.34% 72.67% 74.02% 

Current word +/- 3 words 73.50% 73.11% 73.89% 

Current word +/- 4 words 73.27% 72.84% 73.71% 
TABLE 2 CONTEXT SIZE AND RESULTING F1, P AND R 

As shown, the highest F1 results from the baseline current word +/- 2 words context size. Reducing the 

context lowers the F1 and increasing does not affect the F1 much.  

5.6 EXPERIMENT 4- ADDITION OF WORD CLUSTER FEATURES 

The first step to adding word cluster feature, is to fetch the word cluster ID of the word that is being 

tagged. The word cluster ID is simply a pointer to which cluster the word belongs to. This experiment 

considers a context of current word +/- 2. Hence, the cluster ID for these words are also needed. The 

next step involves adding the new features for each of these words as mentioned in section 5.2.  

Word clusters of various sizes K = 64, 128, 256, 512, 1024, 2048 were used for this experiment. Table 4 

shows the results for the above experiment. 

K (word cluster size) F1 Precision Recall 

Baseline 73.54% 73.12% 73.98% 

    

64 73.69% 73.26% 74.13% 

128 73.77% 73.37% 74.18% 

256 73.77% 73.39% 74.15% 

512 73.73% 73.37% 74.09% 

1024 73.91% 73.52% 74.30% 

2048 73.80% 73.46% 74.15% 
TABLE 3 WORD CLUSTER WITH VARYING K AND RESULTING F1, P AND R 

Generally, the addition of word cluster feature has not led to poor results. As for K = 1024, the 

performance of the tagger shows promising results.  

The obvious next step is to conjoin some strong features with the word cluster feature to expect good 

results. So following this experiment, we added the “First Sense” feature in conjunction with the existing 

word cluster feature. We chose the “First Sense” feature as it is the strongest of the features as shown 

in Experiment 2. We again evaluated the tagger with the same set of clusters and led to the following 

results in table 5: 
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 K (word cluster size) F1 Precision Recall 

Baseline 73.54% 73.12% 73.98% 

    

64 73.69% 73.32% 74.02% 

128 73.74% 73.32% 74.16% 

256 73.80% 73.38% 74.22% 

512 73.76% 73.39% 74.13% 

1024 73.74% 73.42% 74.07% 

2048 73.73% 73.34% 74.12% 
TABLE 5 WORD CLUSTER AND FIRST SENSE FEATURE WITH VARYING K AND RESULTING F1, P AND R 

These results also suggest the addition of word cluster features leads to slightly improved results but 

“First Sense” feature did not provide any extra help. 

In both of the above evaluations, the SST had cluster features for all the words (current, previous and 

next, previous 2 and next 2). Next step, we took the case which had the best performance- the one with 

K=1024 and removed the cluster features for two words to the right and left of the current word. We 

evaluated the trained model and the result was as follows: 

F1  = 73.98%  P = 73.58% R = 74.37% 

After this, we removed the cluster features for one word to the right and left of the current word. The 

result was as follows: 

F1  = 73.83%  P = 73.45% R = 74.21% 

5.7 EXPERIMENT 5- ADDITION OF BIGRAM FEATURE 

We also trained the tagger with Bigram feature (the feature considers groups of two words; for e.g.: 

current stem = “are” AND next stem =”going”) . The F1 for this turned out to be 74.10%. The precision 

was 73.60% while the recall is 74.53% 

The downside of training with the Bigram feature is that in the worst case, it would add  𝑉 2 features to 

the model, where V is the vocabulary. This eventually leads to more time for training. This experiment 

took around four hours as opposed to the previous ones which took only  about two hours. Also note 

that the result achieved by including Bigram feature (with F1 = 74.10%) is almost equivalent to the result 

achieved by including word cluster feature for the current word and two words around it (with F1 = 

73.98%). 
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6 INFERENCE AND ERROR ANALYSIS 

6.1 LOOKING AT THE BASELINE 

Figure 2 shows the F1 for some of the supersenses after using the baseline tagger. 

 

FIGURE 2 F1 BY SUPERSENSES  

We can clearly see that supersense noun.process, noun.location, noun.quantity and some other 

supersense have low F1. This could be attributed to the fact that these supersenses have lesser number 

of training instances. Another possible reason could be that the most frequent sense for certain words 

from Wordnet is not the right sense for these words. The following sub-sections will address the two 

issues in hand. 

6.1.1 INPUT DATA ANALYSIS 

When we look at the number of instances of a supersense in the training set and compare with the F1 

(which is also present in figure 1). Table 6 contains the noun supersenses along with the number of 

instances in the training set, F1 and number of those instances in the test set. The table is sorted by the 

size of the instances in training set. The general trend would be – more the number of training 

instances, higher the F1. But this is not true in some cases like in that of noun.shape, noun.motive  and  

noun.process. While noun.process has more instances in training set, its F1 is way lower than that of 

noun.shape or noun.motive. The small size of the test set affects the F1 vastly, even if a minor change in 

number of correctly tagged changes. This explains the fluctuations for noun.process curve in figure 1.   
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Noun Supersense Number of instances in training set F1 (%) Number of Instances in test set 

noun.person 8534 73.03 3080 

noun.artifact 5498 80.99 1859 

noun.act 4516 79.35 1870 

noun.communication 4134 67.44 1448 

noun.group 3840 83.39 1096 

noun.cognition 3574 73.54 1530 

noun.location 2773 70.82 887 

noun.attribute 2600 62.83 990 

noun.time 2367 75.54 988 

noun.state 1912 80.24 727 

noun.body 1560 70.27 662 

noun.quantity 1133 65.62 409 

noun.possession 1127 69.23 209 

noun.substance 1081 61.41 594 

noun.event 1051 84.35 398 

noun.object 905 72.19 300 

noun.phenomenon 647 77.71 304 

noun.animal 638 71.24 339 

noun.relation 573 48.62 157 

noun.feeling 481 64.82 163 

noun.food 410 58.21 157 

noun.plant 350 50.00 87 

noun.process 317 68.65 119 

noun.shape 219 81.98 53 

noun.motive 107 83.39 19 
TABLE 6 NUMBER OF INSTANCES OF NOUN SUPERSENSE IN TRAINING AND TEST SET ALONG WITH F1 

6.1.2 FIRST SENSE NOT THE WINNER ALWAYS 

Digging deeper into the test data, words like “reaction” were tagged as noun.act or noun.phenomenon 

(which is the most frequent sense) while the right supersense was noun.process. Similarly, for “air”, the 

tagger marked it as noun.substance which is the most frequent sense while the original label for it is 

noun.location. 

6.2 CONTEXT SIZE ANALYSIS 

Experiment 3 led to the conclusion that further away the word is (for larger context) the less likely there 

will be any semantic relation. Therefore context of current word +/-2 seems to be optimal. 

6.3 WORD CLUSTER FEATURE BENEFITS 

Although the improvements with addition of word cluster features did not result in a very high F1, there 

are many instances where the word cluster feature has helped while the baseline tagger failed. Some of 

the examples are: 
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Sports Writer Ensign Ritche of Ogden Standard Examiner went to his compartment to talk with him. 

The Baseline Tagger and Tagger with word cluster feature using cluster of size 1024 labeled “Sports 

Writer” as: 

 Baseline With Word Cluster Feature 

Sports B-noun.act B-noun.person 

Writer B-noun.person I-noun.person 

In cluster 81, “Sports Writer” is with other occupations like “chemist”, “cartographer”, “scholar”, 

“meteorologist” and many more. Another example: 

Jim Landis’ 380 foot home run over left in first inning… 

The tagger with word cluster features recognizes “home run” as B-noun.act  and I-noun.act respectively. 

On the other hand the baseline missed out on “run” after tagging “home” as B-noun.act. 

 

7 CONCLUSION AND FUTURE WORK 
In this work, we highlighted how syntactic, contextual and word cluster features affect the performance 

of a system for tagging words with high level sense information. This project will help further research 

by suggesting areas to explore or not: 

 We have demonstrated that lack of large annotated data is not a major issue. Nevertheless, this 

does not mean more annotated training data is not needed. But this suggests that a big project 

to annotate more data would likely be fruitful. 

 The fact that previous label did not greatly affect the performance of the tagger seems to 

suggest that a sequence labeling approach is not necessary for good performance (as long as the 

constraint of proper BIO output is satisfied).  

 Feature ablation methods like the ones described in the experiments help find out which 

features are important and hereby suggest areas to work (e.g.: new features to extend or add). 

Addition of word cluster and bigram features is an option to be considered. 

  More research can be encouraged in creating word clusters using different techniques and of 

different granularities.  

More importantly, it boils down to finding out which features are significant and when they should be 

used so as to achieve high performance standards in an entity recognizer or supersense tagger. 
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