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Abstract

Estimating label proportions in a target cor-
pus is a type of measurement that is useful
for answering certain types of social-scientific
questions. While past work has described a
number of relevant approaches, nearly all are
based on an assumption which we argue is
invalid for many problems, particularly when
dealing with human annotations. In this paper,
we identify and differentiate between two rele-
vant data generating scenarios (intrinsic vs. ex-
trinsic labels), introduce a simple but novel
method which emphasizes the importance of
calibration, and then analyze and experimen-
tally validate the appropriateness of various
methods for each of the two scenarios.

1 Introduction

A methodological tool often used in the social sci-
ences and humanities (and practical settings like
journalism) is content analysis – the manual cat-
egorization of pieces of text into a set of cate-
gories which have been developed to answer a sub-
stantive research question (Krippendorff, 2012).
Automated content analysis holds great promise
for augmenting the efforts of human annotators
(O’Connor et al., 2011; Grimmer and Stewart,
2013). While this task bears similarity to text cat-
egorization problems such as sentiment analysis,
the quantity of real interest is often the proportion
of documents in a dataset that should receive each
label (Hopkins and King, 2010). This paper tack-
les the problem of estimating label proportions in
a target corpus based on a small sample of human
annotated data.

As an example, consider the hypothetical ques-
tion (not explored in this work) of whether hate
speech is increasingly prevalent in social media
posts in recent years. “Hate speech” is a difficult-
to-define category only revealed (at least initially)
through human judgments (Davidson et al., 2017).

Note that the goal would not be to identify individ-
ual instances, but rather to estimate a proportion,
as a way of measuring the prevalence of a social
phenomenon. Although we assume that trained
annotators could recognize this phenomenon with
some acceptable level of agreement, relying solely
on manual annotation would restrict the number
of messages that could be considered, and would
limit the analysis to the messages available at the
time of annotation.1

We thus treat proportion estimation as a mea-
surement problem, and seek a way to train an in-
strument from a limited number of human anno-
tations to measure label proportions in an unanno-
tated target corpus.

This problem can be cast within a supervised
learning framework, and past work has demon-
strated that it is possible to improve upon a naı̈ve
classification-based approach, even without access
to any labeled data from the target corpus (For-
man, 2005, 2008; Bella et al., 2010; Hopkins and
King, 2010; Esuli and Sebastiani, 2015). How-
ever, as we argue (§2), most of this work is based
on a set of assumptions that we believe are in-
valid in a significant portion of text-based research
projects in the social sciences and humanities.

Our contributions in this paper include:

• identifying two different data-generating sce-
narios for text data (intrinsic vs. extrinsic la-
bels) and and establishing their importance to
the problem of estimating proportions (§2);

• analyzing which methods are suitable for
each setting, and proposing a simple alterna-
tive approach for extrinsic labels (§3); and

• an empirical comparison of methods that val-
idates our analysis (§4).

1For additional examples see Grimmer et al. (2012), Hop-
kins and King (2010), and references therein.



Complicating matters somewhat is the fact that
annotation may take place before the entire col-
lection is available, so that the subset of instances
that are manually annotated may represent a bi-
ased sample (§2). Because this is so frequently the
case, all of the results in this paper assume that we
must confront the challenges of transfer learning
or domain adaptation. (The simpler case, where
we can sample from the true population of inter-
est, is revisited in §5.)

2 Problem Definition

Our setup is similar to that faced in transfer learn-
ing, and we use similar terminology (Pan and
Yang, 2010; Weiss et al., 2016). We assume that
we have a source and a target corpus, comprised
of NS and NT documents respectively, the latter
of which are not available for annotation. We will
represent each corpus as a set of documents, i.e.,
X(S) = 〈x(S)

1 , ...,x
(S)
Ns
〉, and similarly for X(T ).

We further assume that we have a set of K mu-
tually exclusive categories, Y = {1, . . . ,K}, and
that we wish to estimate the proportion of doc-
uments in the target corpus that belong to each
category. These would typically correspond to a
quantity we wish to measure, such as what frac-
tion of news articles frame a policy issue in a par-
ticular way, what fraction of product reviews are
considered helpful, or what fraction of social me-
dia messages convey positive sentiment. Gener-
ally speaking, these categories will be designed
based on theoretical assumptions, an understand-
ing of the design of the platform that produced the
data, and/or initial exploration of the data itself.

In idealized text classification scenarios, it is
conventional to assume training data with already-
assigned gold-standard labels. Here, we are in-
terested in scenarios where we must generate our
labels via an annotation process.2 Specifically, as-
sume that we have some annotation function, A,
which produces a distribution over the K mutu-
ally exclusive labels, conditional on text. Given
a document, xi, the annotation process samples a
label from the annotation function, defined as:

A(xi, k) , p(yi = k | xi). (1)

Typically, the annotation function would repre-
sent the behavior of a human annotator (or group
of annotators), but it could also represent a less

2This could include gathering multiple independent anno-
tations per instance, but we will typically assume only one.

controlled real-world process, such as users rat-
ing a review’s helpfulness. Note that our setup
does include the special case in which true gold-
standard labels are available for each instance
(such as the authors of documents in an author-
ship attribution problem). In such a case, A is de-
terministic (assuming unique inputs).

Given that our objective is to mimic the annota-
tion process, we seek to estimate the proportion of
documents in the target corpus expected to be cat-
egorized into each of the K categories, if we had
an unlimited budget and full access to the target
corpus at the time of annotation. That is, we wish
to estimate q(T ), which we define as:

q(y = k |X(T )) , 1
NT

∑NT
i=1 p(yi = k | x(T )

i ).

(2)

Given a set of documents sampled from the
source corpus and L applications of the annotation
function, we can obtain, at some cost, a labeled
training corpus of L documents, i.e., D(train) =
〈(x1, y1), . . . , (xL, yL)〉. Because the source and
target corpora are not in general drawn from the
same distribution, we seek to make explicit our as-
sumptions about how they differ.3 Past literature
on transfer learning has identified several patterns
of dataset shift (Storkey, 2009). Here we focus
on two particularly important cases, linking them
to the relevant data generating processes, and ana-
lyze their relevance to estimating proportions.

Two kinds of distributional shift. There are
two natural assumptions we could make about
what is constant between the two corpora. We
could assume that there is no change in the dis-
tribution of text given a document’s label, that is
p(S)(x | y) = p(T )(x | y). Alternately, we could
assume that there is no change in the distribution
of labels given text, i.e., p(S)(y | x) = p(T )(y |
x). The former is assumed in the case of prior
probability shift, where we assume that p(y) dif-
fers but p(x | y) is constant, and the later is as-
sumed in the case of covariate shift, where we as-
sume that p(x) differs but p(y | x) is constant
(Storkey, 2009).

These two assumptions correspond to two fun-
damentally different types of scenarios that we
need to consider, which are summarized in Table
1. The first is where we are dealing with what we

3Clearly, if we make no assumptions about how the source
and target distributions are related, there is no guarantee that
supervised learning will work (Ben-David et al., 2012).



Label type Intrinsic Extrinsic
Data generating

x ∼ p(x | y) y ∼ p(y | x)process
Assumed to differ

p(y) p(x)across domains
Assumed constant

p(x | y) p(y | x)across domains
Corresponding Prior Covariate

distributional probability shift
shift shift

Table 1: Data generating scenarios and corresponding
distributional properties.

will call intrinsic labels, that is labels which are in-
herent to each instance, and which in some sense
precede and predict the generation of the text of
that instance. A classic example of this scenario is
the case of authorship attribution (e.g., Mosteller
and Wallace, 1964), in which different authors are
assumed to have different propensities to use dif-
ferent styles and vocabularies. The identity of the
author of a document is arguably an intrinsic prop-
erty of that document, and it is easy to see a text as
having been generated conditional on its author.

The contrasting scenario is what we will refer
to as extrinsic labels; this scenario is our primary
interest. We assume here that the labels are not
inherent in the documents, but rather have been
externally generated, conditional on the text as
a stimulus to some behavioral process.4 We ar-
gue that this is the relevant assumption for most
annotation-based projects in the social sciences,
where the categories of interest do not correspond
to pre-existing categories that might have existed
in the minds of authors before writing, or affected
the writing process. Rather, these are theorized
categories that have been developed specifically to
analyze or measure some aspect of the document’s
effect that is of interest to the researcher.

We won’t always know the true distributional
properties of our datasets, but distinguishing be-
tween intrinsic and extrinsic labels provides a
guide. The critical point is that these two dif-
ferent labeling scenarios have different implica-
tions for robustness to distributional shift. In the
case of extrinsic labels, especially when work-
ing with trained annotators, it is reasonable to as-
sume that the behavior of the annotation func-
tion is determined purely by the text, such that
p(y | x) is unchanged between source and target,
and any change in label proportions is explained

4Fong and Grimmer (2016) also consider this process in
attempting to identify the causal effects of texts.

by a change in the underlying distribution of text,
p(x). With intrinsic labels, by contrast, it may be
the case that p(x | y) is the same for the source
and the target, assuming there are no additional
factors influencing the generation of text. In that
case, a shift in the distribution of features would
be fully explained by a difference in the underly-
ing label proportions.

The idea that there are different data generat-
ing processes is obviously not new.5 What is
novel here, however, is asking how these different
assumptions affect the estimation of proportions.
Virtually all past work on estimating proportions
has only considered prior probability shift, assum-
ing that p(x | y) is constant.6 Existing meth-
ods take advantage of this assumption, and can
be shown empirically to work well when it is sat-
isfied (e.g., through artificial modification of real
datasets to alter label proportions in a corpus). We
expect them to fail, however, in the case of extrin-
sic annotations, as there is no reason to think that
the required assumption should necessarily hold.

By contrast, the problem of covariate shift is
in some sense less of a problem because we di-
rectly observe X(T ). Since the annotation func-
tion is assumed to be unchanging, we could per-
fectly predict the expected label proportions in the
target corpus if we could learn the annotation func-
tion using labeled data from the source corpus.
The problem thus becomes how to learn a well-
calibrated approximation of the annotation func-
tion from a limited amount of labeled data.

3 Methods

Given a labeled training set and a target corpus,
the naı̈ve approach is to train a classifier through
any conventional means, predict labels on the tar-
get corpus, and return the relative prevalence of
predicted labels. Following Forman (2005), we re-
fer to this approach as classify and count (CC). If
using a probabilistic classifier, averaging the pre-
dicted posterior probabilities rather than predicted
labels will be referred to as probabilistic classify
and count (PCC; Bella et al., 2010).

Both approaches can fail, however. In the case
of intrinsic labels, this is because these approaches
will not account for the shift in prior label prob-

5Peters et al. (2014) describe these, somewhat confus-
ingly, as causal and anti-causal problems.

6For example, Hopkins and King (2010) argue that blog-
gers first decide on the sentiment they wish to convey and
then write a blog post conditional on that sentiment.



ability, p(y), which is assumed to have occurred
(Hopkins and King, 2010). In the case of covari-
ate shift, the difference in p(x) will result in a
model that is not optimal (in terms of classifica-
tion performance) for the target domain. In both
cases, there is also the problem of classifier bias
or miscalibration. Particularly in the case of un-
balanced labels, a standard classifier is likely to be
biased, overestimating the probability of the more
common labels, and vice versa (Zhao et al., 2017).
Here we present a simple but novel method for ex-
trinsic labels, followed by a number of baseline
approaches against which we will compare. (See
supplementary material for additional details.)

3.1 Proposed method: calibrated
probabilistic classify and count (PCCcal)

One simple solution, which we propose here, is to
attempt to train a well-calibrated classifier. To be
clear, calibration refers to the long-run accuracy
of predicted probabilities. That is, a probabilistic
classifier, hθ(x), is well calibrated at the level µ
if, among all instances for which the classifier pre-
dicts class k with a probability of µ, the proportion
that are truly assigned to class k is also equal to µ.7

It has previously been shown (DeGroot and
Fienberg, 1983; Bröcker, 2009) that any proper
scoring rule (e.g., cross entropy, Brier score, etc.)
can be factored into two components representing
calibration and refinement, the later of which ef-
fectively measures how close predicted probabili-
ties are to zero or one. Minimizing a correspond-
ing loss function thus involves a trade-off between
these two components.

Optimizing only for calibration is not helpful,
as a trivial solution is to simply predict a probabil-
ity distribution equal to the observed label propor-
tions in the training data for all instances (which is
perfectly calibrated on the labeled sample). The
alternative we propose here is to train a classi-
fier using a typical objective (here, regularized log
loss) but use calibration on held-out data as a cri-
terion for model selection, i.e., when we tune hy-
perparameters via cross validation. We refer to
this method as calibrated PCC (PCCcal). Specif-
ically, we select regularization strength via grid
search, choosing the value that leads to the lowest
average calibration error across training / held-out
splits. Of course, other hyperparameters could be

7For example, a weather forecaster will be well-calibrated
if it rains on 60% of days for which the forecaster predicted a
60% chance of rain, etc.

included in model selection as well.
To estimate calibration error (CE) during cross-

validation, we use an approximation due to
Nguyen and O’Connor (2015), adaptive binning.
In the case of binary labels, this is computed as:

CE , 1
B

∑B
j=1

(
1

|Bj |
∑

i∈Bj
yi − pθ(xi)

)2
, (3)

using B bins, where bin Bj contains instances for
which pθ(xi) are in the jth quantile, where pθ(xi)
is the predicted probability of a positive label for
instance i. For added robustness, we take the av-
erage of CE for B ∈ {3, 4, 5, 6, 7}.

In our experiments, we consider two variants
of PCC: the first, PCCF1 , which is a baseline,
is tuned conventionally for classification perfor-
mance, whereas the other (PCCcal) is tuned for cal-
ibration, as measured using CE, but is otherwise
identically trained. As a base classifier we make
use of l1-regularized logistic regression, operating
on n-gram features.8

3.2 Existing methods appropriate for
extrinsic labels

The idea of extrinsic labels has not been previ-
ously considered by past work on estimating pro-
portions, but it is closely related to the problems
of calibration and covariate shift. Here we briefly
summarize two representative methods, which we
consider as baselines (see supplementary material
for details).

Platt scaling. One approach to calibration is to
train a model using conventional methods and to
then learn a secondary calibration model. One of
the most common and successful variations on this
approach is Platt scaling, which learns a logistic
regression classifier on held-out training data, tak-
ing the scores from the primary classifier as in-
put. This model is then applied to the scores re-
turned by the primary classifier on the target cor-
pus (Platt, 1999). To estimate proportions, the pre-
dicted probabilities are then averaged, as in PCC.

Reweighting for covariate shift. Although they
are not typically thought of in the context of es-
timating proportions, several methods have been
proposed to deal directly with the problem of co-
variate shift, including kernel mean matching and

8More complex models could be considered, but we use
logistic regression because it is a well-understood and widely
applicable model that has been shown to be relatively well-
calibrated in general (Niculescu-Mizil and Caruana, 2005).



its extensions (Huang et al., 2006; Sugiyama et al.,
2011). Here, we consider the two-stage method
from Bickel et al. (2009), which uses a logistic
regression model to distinguish between source
and target domains, and then uses the probabili-
ties from this model to re-weight labeled training
instances, to more heavily favor those that are rep-
resentative of the target domain. The appeal of this
method is that all unlabeled data can be used to es-
timate this shift.

3.3 Existing methods appropriate for
intrinsic labels

As previously mentioned, virtually all of the past
work on estimating proportions makes the as-
sumption that p(x | y) is constant between source
and target. Under this assumption, it can be shown
that p(y(θ) = j | y = k) is also constant for all j
and k, where y(θ) is the predicted label from hθ,
and y is the true (intrinsic) label. If these values
were known, then the label proportions in the tar-
get corpus could be found by taking the model’s
estimate of label proportions in the target corpus,
(CC), and then solving a linear system of equa-
tions as a post-classification correction. Although
a number of variations on this model have been
proposed, all are based on the same assumption,
thus we take a method known as adjusted classify
and count (ACC) as an exemplar, which directly
estimates the relevant quantities using a confusion
matrix (Forman, 2005). In the case of binary clas-
sification, this reduces to:

q̂ACC(y = 1 |X(T )) =

1
NT

∑NT
i=1 y

(θ)
i − FPR

TPR − FPR
,

(4)

where FPR = p̂(y(θ) = 1 | y = 0) and TPR =
p̂(y(θ) = 1 | y = 1) are both estimated using
held-out data.

4 Experiments

For our experiments, we focus on the case of bi-
nary classification where the difference between
the source and target corpora results from a differ-
ence in time—that is, the training documents are
sampled from one time period, and the goal is to
estimate label proportions on documents from a
future time period. We include examples of both
intrinsic and extrinsic labels to demonstrate the
importance of this distinction to the effectiveness
of different methods.

As described below, we create multiple subtasks
from each dataset by using different partitions of
the data. In all cases, we report absolute error (AE)
on the proportion of positive instances, averaged
across the subtasks of each dataset.

Although we do not have access to the true an-
notation function, we approximate the expected
label proportions in the target corpus by averag-
ing the available labels, which should be a very
close approximation when the number of avail-
able labels is large (which informed our choice of
datasets for these experiments). For a single sub-
task, the absolute error is thus evaluated as

AE =
∣∣∣q̂(y = 1 |X(T ))− 1

NT

∑NT
i=1 y

(T )
i

∣∣∣ . (5)

For all experiments, we also report the AE we
would obtain from using the observed label pro-
portions in the training sample as a prediction (la-
beled “Train”). Although this does not correspond
to an interesting prediction (as it only says the fu-
ture will always look exactly like the past), it does
represent a fundamental baseline. If a method is
unable to do better than this, it suggests that the
method has too much measurement error to be
useful.

To test for statistically significant differences
between methods, we use an omnibus application
of the Wilcoxon signed-rank test to compare one
method against all others, including a Bonferroni
correction for the total number of tests per hypoth-
esis. With 4 datasets, each with 2 sample sizes,
comparing against 6 other methods this results in
a significance threshold of approximately 0.001.

Finally, in order to connect this work with past
literature on estimating proportions, we also in-
clude a side experiment with one intrinsically-
labeled dataset where we have artificially modi-
fied the label proportions in the target corpus by
dropping positive or negatively-labeled instances
in order to simulate a large prior probability shift
between the source and target domains.

4.1 Datasets
We briefly describe the datasets we have used here
and provide additional details in the supplemen-
tary material. Note that although this work is
primarily focused on applications in which the
amount of human-annotated data is likely to be
small, fair evaluation of these methods requires
datasets that are large enough that we can approx-
imate the expected label proportion in the target



corpus using the available labels; as such, the fol-
lowing datasets were chosen so as to have a rep-
resentative sample of sufficiently large intrinsi-
cally and extrinsically-labeled data, where docu-
ments were time-stamped, with label proportions
that differ between time periods.

Media Frames Corpus (MFC): As a primary
example of extrinsic labels, we use a dataset
of several thousand news articles that have been
annotated in terms of a set of broad-coverage
framing dimensions (such as economics, moral-
ity, etc.). We treat annotations as indicating the
presence or absence of each dimension, and con-
sider each one as a separate sub-task. As with all
datasets, we create a source and target corpus by
dividing the datasets by year.

Particularly for this dataset, it seems reasonable
to posit that the annotation function was relatively
constant between source and target, as the anno-
tators worked without explicit knowledge of the
article’s date (Card et al., 2015).

Amazon reviews: As a secondary example of
extrinsic labels, we make use of a subset of Ama-
zon reviews for five different product categories,
each of which has tens of thousands of reviews.
For this dataset, we ignore the star rating associ-
ated with the review, and instead focus on predict-
ing the proportion of people that would rate the re-
view as helpful. Here we create separate subtasks
for each product category by considering each pair
of adjacent years as a source and target corpus, re-
spectively (McAuley et al., 2015).

Yelp reviews: As a primary example of a large
dataset with intrinsic labels, we make use of the
Yelp10 dataset, treating the source location of the
review as the label of interest. Specifically, we cre-
ate binary classification tasks by choosing pairs of
cities with approximately the same number of re-
views, and again use year of publication to divide
the data into source and target corpora, creating
multiple subtasks per pair of cities.

Twitter sentiment: Finally, we include a Twit-
ter sentiment analysis dataset which was collected
and automatically labeled, using the presence of
certain emoticons as implicit labels indicating pos-
itive or negative sentiment (with the emoticons
then removed from the text). Because of the way
this data was collected, and the relatively narrow
time coverage, it seems plausible to treat the sen-

timent as an intrinsic label. As with the above
datasets, we create subtasks by considering all
pairs of temporally adjacent days with sufficient
tweets, and treating them as a paired source and
target corpora, respectively. (Go et al., 2009).

4.2 Results

The results on the datasets with extrinsic and in-
trinsic labels are presented in Figures 1 and 2, re-
spectively.

As expected, the results differ in important
ways between intrinsically and extrinsically la-
beled datasets, although there are some results
which hold in all cases. In all settings, CC is worse
on average than predicting the observed propor-
tions in the training data (significantly worse for
the Amazon and Twitter datasets), reinforcing the
idea that averaging the predictions from a classi-
fier will lead to a biased estimate of label propor-
tions. This same finding holds for PCCF1 when the
amount of labeled data is small (L = 500), sug-
gesting that simply averaging the predicted prob-
abilities is not reliable without a sufficiently large
labeled dataset.

For the datasets with extrinsic labels, PCCcal

performs best on average in all settings. For the
MFC dataset, PCCcal is significantly better than
all methods except Platt scaling when L = 500
and significantly better than all methods except
reweighting and PCCF1 when L = 2000 (after
a Bonferroni correction, as in all cases). As ex-
pected, ACC is actually worse on average than
CC on the extrinsic datasets, presumably because
of the mismatched assumptions. Reweighting for
covariate shift offers mediocre performance in all
settings, perhaps because, while it attempts to ac-
count for covariate shift, it may still suffer from
miscalibration.

On the datasets with intrinsic labels, by con-
trast, no one method dominates the others. As
expected, ACC does poorly when the amount of
labeled data is small (L = 500); it does improve
upon CC when L = 4000, but not by enough to
do significantly better than other methods, perhaps
calling into question the validity of the assumption
that p(x | y) is constant in these datasets.

Surprisingly, both Platt scaling and PCCcal also
offer competitive performance in the experiments
with intrinsic labels. However, this is likely the
case in part because the change in label propor-
tions is relatively small from year to year (or day
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Figure 1: Absolute error (AE) on datasets with extrinsic labels. Each dot represents the result for a single subtask,
and bars show the mean. PCCcal (bottom row) performs best on average in all cases and is significantly better than
most other methods on MFC.
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Twitter (L=500)

0.0 0.1 0.2 0.3
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Figure 2: Absolute error (AE) on datasets with intrinsic labels. No method is significantly better than all others.

to day in the case of Twitter). This is illustrated
by Figure 3, which presents the results of the side-
experiment with artificially modified (intrinsic) la-
bel proportions using a subset of the Twitter data.
These results confirm past findings, and show that
ACC drastically outperforms other methods such
as PCCF1 , if we selectively drop instances so as
to enforce a large difference in label proportions
between source and target. This is the expected
result, as ACC is the only method tailored to deal
with prior probability shift (which is being arti-
ficially simulated). Unfortunately, its advantage
is not maintained when the difference between
source and target is small, which is the case for
all of the naturally-occurring differences we found
in the Yelp and Twitter datasets. Although past
work has relied heavily on these sorts of simu-
lated differences and artificial experiments, it is
unclear whether they are a good substitute for real-
world data, given that we mostly observed rela-
tively small differences in practice.

Finally, we also tested the effect of using l2 in-
stead of l1 regularization, but found that it tended
to produce significantly worse estimates of pro-
portions using CC and PCCF1 on the datasets with

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Modified target label proportion

0.00

0.05

0.10

0.15

AE

PCCF1

ACC

Figure 3: Absolute error (AE) for predictions on one
day of Twitter data (L = 5000) when artificially modi-
fying target proportions. The proportion of positive la-
bels in the source corpus is 0.625. ACC performs sig-
nificantly better given an large artificially-created dif-
ference in label proportions between source and target,
but not when the difference is small.

extrinsic labels, and statistically indistinguishable
results using other methods, suggesting that either
type of regularization could serve as a basis for
PCCcal or Platt scaling.

5 Discussion

As anyone who has worked with human annota-
tions can attest, the process of collecting annota-
tions is messy and time-consuming, and tends to



involve large numbers of disagreements (Artstein
and Poesio, 2008). Although it is conventional
to treat disagreements as errors on the behalf of
some subset of annotators, this paper provides an
alternative way of understanding these. By treat-
ing annotation as a stochastic process, conditional
on text, we can explain not only the disagree-
ments between annotators, but also the lack of
self-consistency that is also sometimes observed.
Although the assumption that p(y | x) does not
change is clearly a simplification, it seems reason-
able when working with trained annotators. Cer-
tainly this assumption seems much better justified
than the conventional assumption that p(x | y) is
constant, since the latter does not account for dif-
ferences in the distribution of text arising from dif-
ferences in subject matter, etc.

Although we have demonstrated that using a
method that is appropriate to the data generating
process is beneficial, it is important to note that
all methods presented here can still result in rela-
tively large errors in the worst cases. In part this is
due to the difficulty of learning a conditional dis-
tribution involving high-dimensional data (such as
text) with only a limited number of annotations.
Even with much more annotated data, however,
previously unseen features could still have a po-
tentially large impact on future annotations. Ulti-
mately, we should be cautious about all such pre-
dictions, and always validate where possible, by
eventually sampling and annotating data from the
target corpus.

What if we can sample from the target corpus?
Although there are many situations in which do-
main adaptation is unavoidable (such as predict-
ing public opinion from Twitter in real time with
models trained on the past), at least some re-
search projects in the humanities and social sci-
ences might reasonably have access to all data of
interest from the beginning of the project, such as
when working with a historical corpus. Although a
full proof is beyond the scope of this paper, in this
case, the best approach is almost certainly to sim-
ply sample a random set of documents, label them
using the annotation function, and report the rela-
tive prevalence of each label (Hopkins and King,
2010).

Although this simple random sampling (SRS)
approach ignores the text, it is an unbiased estima-
tor with variance that can easily calculated, at least
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Figure 4: Comparison of SRS and PCC in simulation
when we know the true model and sample from the tar-
get corpus (averaged over 200 repetitions).

in approximation.9 More importantly, because it
is independent of the dimensionality of the data,
it works well on high-dimensional data, such as
text, whereas classification-based approaches will
struggle. We can illustrate this by comparing SRS
and PCC in simulation. Figure 4 shows the mean
AE (averaged over 200 trials) for a case in which
we know the true model (including the prior on the
weights, and thus the appropriate amount of regu-
larization) and only need to learn the values of the
weights. Even in this idealized scenario, SRS re-
mains better than PCC for all values of L. (See
supplementary material for details).

Depending on the level of accuracy required,
simply sampling a few hundred documents and la-
beling them should be sufficient to get a reason-
ably reliable estimate of the overall label propor-
tions, along with an approximate confidence inter-
val. Unfortunately, this option is only available
when we have full access to the target corpus at
the time of annotation.

Additional related work. There is a small lit-
erature on the problem of estimating proportions
in a target dataset (see §1); as we have empha-
sized, almost all of it makes the assumption that
p(x | y) is the same for both source and tar-
get. Moreover, most of the methods that have
been proposed have been tested using relatively
small datasets, or datasets where the target cor-
pus has been artificially modified by altering the
label proportions in the target corpus (as we did
in the side experiment reported in Figure 3). It

9If we were sampling with replacement, the variance in
the binary case would be given by the standard formula
V[q̂SRS] = p̄(1−p̄)

L
, where p̄ = 1

NT

∑NT
i=1 p(yi = 1 | xi).

This may not be possible, however, as annotators seeing a
document for the second or third time would likely be af-
fected by their own past decisions. Nevertheless, using this
as the basis for a plug-in estimator should still be a reasonable
approximation when the target corpus is large. Please refer to
supplementary material for additional details.



seems unclear that this is a good simulation of the
kind of shift in distribution that one is likely to en-
counter in practice. An exception to this is Esuli
and Sebastiani (2015), who test their method on
the RCV1-v2 corpus, also splitting by time. They
perform a large number of experiments, but un-
fortunately, nearly all of their experiments involve
only a very small difference in label proportions
between the source and target (with the vast ma-
jority < 0.01), which limits the generalizability of
their findings. Additional methods for calibration
could also be considered, such as the isotonic re-
gression approach of Zadrozny and Elkan (2002),
but in practice we would expect the results to be
very similar to Platt scaling.

Another line of work has approached the prob-
lem of aggregating labels from multiple annotators
(Raykar et al., 2009; Hovy et al., 2013; Yan et al.,
2013). That is, if we believe that some annota-
tors are more reliable than others, it might make
sense to try to determine this in an unsupervised
manner, and give more weight to the annotations
from the reliable annotators. This seems particu-
larly appropriate when dealing with uncooperative
annotators, as might be encountered, for example,
in crowdsourcing (Snow et al., 2008; Zhang et al.,
2016). However, with a team of trained annota-
tors, we believe that honest disagreements could
contain valuable information better not ignored.

Finally, this work also relates to the problem
of active learning, where the goal is to interac-
tively choose instances to be labeled, in a way
that maximizes accuracy while minimizing the to-
tal cost of annotation (Beygelzimer et al., 2009;
Baldridge and Osborne, 2004; Rai et al., 2010;
Settles, 2012). This is an interesting area that
might be productively combined with the ideas in
this paper. In general, however, the use of active
learning involves additional logistical complica-
tions and does not always work better than ran-
dom sampling in practice (Attenberg and Provost,
2011).

6 Conclusions

When estimating proportions in a target corpus,
it is important to take seriously the data gener-
ating process. We have argued that in the case
of data annotated by humans in terms of cate-
gories designed to help answer social-scientific re-
search questions, labels should be treated as ex-
trinsic, generated probabilistically conditional on

text, rather than as a combination of correct and
incorrect judgements about a label intrinsic to the
document. Moreover, it is reasonable to assume
in this case that p(y | x) is unchanging between
source and target, and methods that aim to learn
a well-calibrated classifier, such as PCCcal, are
likely to perform best. By contrast, if p(x | y) is
unchanging between source and target, then vari-
ous correction methods from the literature on es-
timating proportions, such as ACC, can perform
well, especially when differences are large. Ul-
timately, any of these methods can still result in
large errors in the worst cases. As such, validation
remains important when treating the estimation of
proportions as a type of measurement.
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