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Abstract

An elaboration on (Das et al., 2010), this report formalizes frame-semantic pars-
ing as a structure prediction problem and describes an implemented parser that
transforms an English sentence into a frame-semantic representation. SEMAFOR 1.0
finds words that evoke FrameNet frames, selects frames for them, and locates the
arguments for each frame. The system uses two feature-based, discriminative prob-
abilistic (log-linear) models, one with latent variables to permit disambiguation of
new predicate words. The parser is demonstrated to significantly outperform previ-
ously published results and is released for public use.
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1 Introduction
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Figure 1: A sentence from PropBank and the SemEval’07 training data, and a partial
depiction of gold FrameNet annotations. Each frame is a row below the sentence (or-
dered for readability). Thick lines indicate targets that evoke frames; thin solid/dotted
lines with labels indicate arguments. “N m” under bells is short for the Noise maker
role of the NOISE MAKERS frame—it is a denoted frame element because it is also the
target. The last row indicates that there. . . are is a discontinuous target. In PropBank, the
verb ring is the only annotated predicate for this sentence, and it is not related to other
predicates with similar meanings.

FrameNet (Fillmore et al., 2003) is a rich linguistic resource containing considerable
information about lexical and predicate-argument semantics in English. Grounded in the
theory of frame semantics (Fillmore, 1982), it suggests—but does not formally define—a
semantic representation that blends word-sense disambiguation and semantic role label-
ing.

In this report, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures
such as those shown in Fig. 1. We aim to predict a frame-semantic representation as
a structure, not as a pipeline of classifiers. We use a probabilistic framework that cleanly
integrates the FrameNet lexicon and (currently very limited) available training data. Al-
though our models often involve strong independence assumptions, the probabilistic
framework we adopt is highly amenable to future extension through new features, re-
laxed independence assumptions, and semisupervised learning. Some novel aspects of
our current approach include a latent-variable model that permits disambiguation of
words not in the FrameNet lexicon, a unified model for finding and labeling arguments,
and a precision-boosting constraint that forbids arguments of the same predicate to over-
lap. Our parser, named SEMAFOR,1 achieves the best published results to date on the
SemEval’07 FrameNet task (Baker et al., 2007).

2 Resources and Task

We consider frame-semantic parsing resources.

2.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose frames for
English.2 Listed in the lexicon with each frame are several lemmas (with part of speech)
that can denote the frame or some aspect of it—these are called lexical units (LUs). In
a sentence, word or phrase tokens that evoke a frame are known as targets. The set of
LUs listed for a frame in FrameNet may not be exhaustive; we may see a target in new

1Semantic Analyzer of Frame Representations
2Like the SemEval’07 participants, we used FrameNet v. 1.3 (http://framenet.icsi.berkeley.

edu).
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Figure 2: Partial illustration of frames, roles, and LUs related to the
CAUSE TO MAKE NOISE frame, from the FrameNet lexicon. “Core” roles are filled
ovals. Non-core roles (such as Place and Time) as unfilled ovals. No particular signifi-
cance is ascribed to the ordering of a frame’s roles in its lexicon entry (the selection and
ordering of roles above is for illustative convenience). CAUSE TO MAKE NOISE defines a
total of 14 roles, many of them not shown here.

data that does not correspond to an LU for the frame it evokes. Each frame definition
also includes a set of frame elements, or roles, corresponding to different aspects of the
concept represented by the frame, such as participants, props, and attributes. We use
the term argument to refer to a sequence of word tokens annotated as filling a frame
role. Fig. 1 shows an example sentence from the training data with annotated targets,
LUs, frames, and role-argument pairs. The FrameNet lexicon also provides information
about relations between frames and between roles (e.g., INHERITANCE). Fig. 2 shows a
subset of the relations between three frames and their roles.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexico-
graphic exemplar sentences (primarily from the British National Corpus) annotated for
that frame. Typically chosen to illustrate variation in argument realization patterns for
the frame in question, these sentences only contain annotations for a single frame. We
found that using exemplar sentences directly to train our models hurt performance as
evaluated on SemEval’07 data, even though the number of exemplar sentences is an or-
der of magnitude larger than the number of sentences in our training set (§2.2). This is
presumably because the exemplars are neither representative as a sample nor similar to
the test data. Instead, we make use of these exemplars in features (§4.2).

2.2 Data

Our training, development, and test sets consist of documents annotated with frame-
semantic structures for the SemEval’07 task, which we refer to collectively as the
SemEval’07 data.3 For the most part, the frames and roles used in annotating these
documents were defined in the FrameNet lexicon, but there are some exceptions for
which the annotators defined supplementary frames and roles; these are included in the

3The full-text annotations and other resources for the 2007 task are available at http://framenet.
icsi.berkeley.edu/semeval/FSSE.html.
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FRAMENET LEXICON V. 1.3
lexical exemplars
entries counts coverage
8379 LUs 139K sentences, 3.1M

words
70% LUs

795 frames 1 frame
annotation / sentence

63%
frames

7124 roles 285K overt arguments 56% roles

Table 1: Snapshot of lexicon entries and exemplar sentences. Coverage indicates the
fraction of types attested in at least one exemplar. The lexicon associates an average of
12.8 LUs with a frame, and 66% of those LUs are attested for that frame. The average
ambiguity of an LU is 1.2 frames (the 1322 ambiguous LUs have an average ambiguity
of 2.4 frames).

TARGETS AND ARGUMENTS BY PART OF SPEECH
targets arguments

count % count %
Noun 5155 52 Noun 9439 55
Verb 2785 28 Preposition or

complementizerAdjective 1411 14 2553 15
Preposition 296 3 Adjective 1744 10
Adverb 103 1 Verb 1156 7
Number 63 1 Pronoun 736 4
Conjunction 8 Adverb 373 2
Article 3 Other 1047 6

9824 17048

Table 2: Breakdown of targets and arguments in the SemEval’07 training set in terms of
part of speech. The target POS is based on the LU annotation for the frame instance. For
arguments, this reflects the part of speech of the head word (estimated from automatic
dependency parse); the percentage is out of all overt arguments.

possible output of our parser.
Table 3 provides a snapshot of the SemEval’07 data. We randomly selected four doc-

uments from the original SemEval training data to create a development set for tuning
model hyperparameters. Notice that the test set contains more annotations per word,
both in terms of frames and arguments. Moreover, there are many more out-of-lexicon
frame, role, and LU types in the test set than in the training set. This inconsistency in the
data results in poor recall scores for all models trained on the given data split, a problem
we have not sought to address here.

Table 2 shows the breakdown of the targets and the arguments with respect to part of
speech in the SemEval’07 training data. The statistics indicate that for both, nouns domi-
nate the annotations, followed by verbs. However, unlike other corpora for semantic role
labeling the FrameNet annotations encompass nearly all types of POS for the targets.

Preprocessing. We preprocess sentences in our dataset with a standard set of anno-
tations: POS tags from MXPOST (Ratnaparkhi, 1996) and dependency parses from the
MST parser (McDonald et al., 2005) since manual syntactic parses are not available for
most of the FrameNet-annotated documents. We used WordNet (Fellbaum, 1998) for

5



FULL-TEXT SemEval’07 data
ANNOTATIONS train dev test
Size (words sentences documents)

all 43.3K1.7K 22 6.3K 251 4 2.8K 120 3

ANC (travel) 3.9K 154 2 .8K 32 1 1.3K 67 1

NTI (bureaucratic) 32.2K1.2K 15 5.5K 219 3 1.5K 53 2

PropBank (news) 7.3K 325 5 0 0 0 0 0 0

Annotations (frames/word overt arguments/word)
all 0.23 0.39 0.22 0.37 0.37 0.65

ANC 0.22 0.38 0.15 0.29 0.37 0.60

NTI 0.23 0.40 0.23 0.37 0.38 0.69

PropBank 0.22 0.37

Coverage of lexicon (% frames % roles % LUs)
all 64.1 27.4 21.0 34.0 10.2 7.3 29.3 7.7 4.9

ANC 26.4 7.4 4.8 8.9 2.0 1.1 17.5 3.9 2.3

NTI 52.4 21.1 14.9 31.5 9.2 6.7 19.0 5.0 3.0

PropBank 40.8 12.0 8.4

Out-of-lexicon types (frames roles LUs)
all 14 69 71 2 4 2 39 99 189

ANC 12 39 41 0 0 2 26 63 123

NTI 6 32 33 2 4 0 19 45 70

PropBank 3 11 3

Out-of-lexicon tokens (% frames % roles % LUs)
all 0.7 0.9 1.1 1.0 0.4 0.2 9.8 11.2 25.3

ANC 3.2 4.2 7.6 0.0 0.0 1.8 11.5 13.5 34.8

NTI 0.6 0.6 0.5 1.1 0.4 0.0 8.5 9.4 17.4

PropBank 0.3 0.4 0.2

Table 3: Snapshot of the SemEval’07 annotated data. Our development set en-
compasses the following documents: StephanopoulousCrimes (from ANC), plus
Iran Biological, NorthKorea Introduction, and WMDNews 042106 (NTI). We
use the standard test set, consisting of IntroOfDublin (ANC) and chinaOverview
and workAdvances (NTI). Two ANC documents provided as part of the task were
unannotated; we ignore them throughout.

lemmatization. Our models treat these pieces of information as observations. We also
labeled each verb in the data as having ACTIVE or PASSIVE voice, using code from the
SRL system described by Johansson and Nugues (2008).

2.3 Task and Evaluation

Automatic annotations of frame-semantic structure can be broken into three parts: (1)
targets, the words or phrases that evoke frames; (2) the frame type, defined in the lexi-
con, evoked by each target; and (3) the arguments, or spans of words that serve to fill
roles defined by each evoked frame. These correspond to the three subtasks in our
parser, each described and evaluated in turn: target identification (§3), frame identi-
fication (§4, not unlike word-sense disambiguation), and argument identification (§5,
not unlike semantic role labeling). Our parser is available for download at http:

//www.ark.cs.cmu.edu/SEMAFOR.
The standard evaluation script from the SemEval’07 shared task calculates precision,

recall, and F1-measure for frames and arguments; it also provides a score that gives
partial credit for hypothesizing a frame related to the correct one. We present preci-
sion, recall, and F1-measure microaveraged across the test documents, report labels-only
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matching scores (spans must match exactly), and do not use named entity labels. More
details can be found in Baker et al. (2007). For our experiments, statistical significance
is measured using a reimplementation of Dan Bikel’s randomized parsing evaluation
comparator.4

2.4 Baseline

A strong baseline for frame-semantic parsing is the system presented by (Johansson and
Nugues, 2007, hereafter J&N’07), the best system in the SemEval’07 shared task. That
system is based on a collection of SVMs. For frame identification, they used an SVM
classifier to disambiguate frames for known frame-evoking words. They used WordNet
synsets to extend the vocabulary of frame-evoking words to cover unknown words, and
then used a collection of separate SVM classifiers—one for each frame—to predict a sin-
gle evoked frame for each occurrence of a word in the extended set.

J&N’07 modeled the argument identification problem by dividing it into two tasks:
first, they classified candidate spans as to whether they were arguments or not; then they
assigned roles to those that were identified as arguments. Both phases used SVMs. Thus,
their formulation of the problem involves a multitude of classifiers—whereas ours uses
two log-linear models, each with a single set of weights, to find a full frame-semantic
parse.

3 Target Identification

Target identification is the problem of deciding which word tokens (or word token se-
quences) evoke frames in a given sentence. In other semantic role labeling schemes
(e.g. PropBank), simple part-of-speech criteria typically distinguish predicates from
non-predicates. But in frame semantics, verbs, nouns, adjectives, and even preposi-
tions can evoke frames under certain conditions. One complication is that semantically-
impoverished support predicates (such as make in make a request) do not evoke frames
in the context of a frame-evoking, syntactially-dependent noun (request). Furthermore,
only temporal, locative, and directional senses of prepositions evoke frames.

We found that, because the test set is more completely annotated—that is, it boasts
far more frames per token than the training data (see Table 3)—learned models did not
generalize well and achieved poor test recall. Instead, we followed J&N’07 in using a
small set of rules to identify targets.

First, we created a master list of all the morphological variants of targets that appear
in the exemplar sentences and the SemEval’07 training set. For a sentence in new data,
we considered only those substrings as candidate targets, that appear in this master list.
We also did not attempt to capture discontinuous frame targets: e.g. we treat there would
have been as a single span even though the corresponding LU is there be.V.5

Next, we pruned the candidate target set by applying a series of rules identical to the
ones described by (Johansson and Nugues, 2007, §3.1.1), with two exceptions. First, they
identified locative, temporal, and directional prepositions using a dependency parser so
as to retain them as valid LUs. In contrast, we pruned all types of prepositions because
we found them to hurt our performance on the development set due to errors in syntactic
parsing. In a second departure from their target extraction rules, we did not remove the
candidate targets that had been tagged as support verbs for some other target.

4http://www.cis.upenn.edu/˜dbikel/software.html#comparator
5There are 629 multiword LUs in the lexicon, and they correspond to 4.8% of the targets in the training

set; among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N. In the SemEval’07
training data, there are just 99 discontinuous multiword targets (1% of all targets).
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TARGET IDENTIFICATION P R F1

Our technique (§3) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

Table 4: Target identification results for our system and the baseline. Scores in bold
denote significant improvements over the baseline (p < 0.05).

Note that we used a conservative white list which filters out targets whose morpho-
logical variants were not seen either in the lexicon or the training data. Therefore, our
full parser loses the capability to predict frames for completely unseen LUs, despite the
fact that our our powerful frame identification model (§4) can accurately label frames for
new LUs.

Results. Table 4 shows results on target identification; our system gains 3 F1 points
over the baseline. This is statistically significant with p < 0.01. Our results are also sig-
nificant in terms of precision (p < 0.05) and recall (p < 0.01). There are 85 distinct LUs
for which the baseline fails to identify the correct target while our system succeeds. Con-
siderable proportion of these units have more than one tokens (e.g. chemical and biological
weapon.N, ballistic missile.N, etc.), which J&N’07 do not model. The baseline also does not
label variants of there be.V, e.g. there are and there has been, which we correctly label as
targets. Some examples of other single token LUs that the baseline fails to identify are
names of months, LUs that belong to the ORIGIN frame (e.g. iranian.A) and directions,
e.g., north.A or north-south.A.

4 Frame Identification

Given targets, the parser next identifies their frames.

4.1 Lexical units

FrameNet specifies a great deal of structural information both within and among frames.
For frame identification we make use of frame-evoking lexical units, the (lemmatized
and POS-tagged) words and phrases listed in the lexicon as referring to specific frames.
For example, listed with the BRAGGING frame are 10 LUs, including boast.N, boast.V,
boastful.A, brag.V, and braggart.N. Of course, due to polysemy and homonymy, the same
LU may be associated with multiple frames; for example, gobble.V is listed under both
the INGESTION and MAKE NOISE frames. We thus term gobble.V an ambiguous LU (see
Table 1).6 All targets in the exemplar sentences, and most in our training and test data,
correspond to known LUs (see Table 3).

To incorporate frame-evoking expressions found in the training data but not the
lexicon—and to avoid the possibility of lemmatization errors—our frame identification
model will incorporate, via a latent variable, features based directly on exemplar and
training targets rather than LUs. Let L be the set of (unlemmatized and automatically
POS-tagged) targets found in the exemplar sentences of the lexicon and/or the sentences
in our training set. Let Lf ⊆ L be the subset of these targets annotated as evoking a par-

6In our terminology an LU may be shared by multiple frames (LUs may be defined elswehere as frame-
specific).
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ticular frame f .7 Let Ll and Ll
f denote the lemmatized versions of L and Lf respectively.

Then, we write boasted.VBD ∈ LBRAGGING and boast.VBD ∈ Ll
BRAGGING to indicate that this

inflected verb boasted and its lemma boast have been seen to evoke the BRAGGING frame.
Significantly, however, another target, such as toot your own horn, might be used in other
data to evoke this frame. We thus face the additional hurdle of predicting frames for
unknown words.

The SemEval annotators created 47 new frames not present in the lexicon, out of
which 14 belonged to our training set. We considered these with the 795 frames in the
lexicon when parsing new data. Predicting new frames is a challenge not yet attempted
to our knowledge (including here). Note that the scoring metric (§2.3) gives partial credit
for related frames (e.g., a more general frame from the lexicon).

4.2 Model

For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word
sequence).8 Let tli denote its lemma. We seek a list f = 〈f1, . . . , fm〉 of frames, one per
target. In our model, the set of candidate frames for ti is defined to include every frame
f such that tli ∈ Ll

f —or if tli 6∈ Ll, then every known frame (the latter condition applies
for 4.7% of the gold targets in the development set). In both cases, we let Fi be the set of
candidate frames for the ith target in x.

To allow frame identification for targets whose lemmas were seen in neither the ex-
emplars nor the training data, our model includes an additional variable, `i. This vari-
able ranges over the seen targets in Lfi

, which can be thought of as prototypes for the ex-
pression of the frame. Importantly, frames are predicted, but prototypes are summed over
via the latent variable. The prediction rule requires a probabilistic model over frames for
a target:

fi ← argmax
f∈Fi

∑
`∈Lf

p(f, ` | ti,x) (1)

We adopt a conditional log-linear model: for f ∈ Fi and ` ∈ Lf , pθ(f, ` | ti,x) =

expθ>g(f, `, ti,x)∑
f ′∈Fi

∑
`′∈Lf ′

expθ>g(f ′, `′, ti,x)
(2)

where θ are the model weights, and g is a vector-valued feature function. This discrim-
inative formulation is very flexible, allowing for a variety of (possibly overlapping) fea-
tures; e.g., a feature might relate a frame type to a prototype, represent a lexical-semantic
relationship between a prototype and a target, or encode part of the syntax of the sen-
tence.

Previous work has exploited WordNet for better coverage during frame identification
(Johansson and Nugues, 2007; Burchardt et al., 2005, e.g., by expanding the set of targets
using synsets), and others have sought to extend the lexicon itself (see §6). We differ
in our use of a latent variable to incorporate lexical-semantic features in a discriminative
model, relating known lexical units to unknown words that may evoke frames. Here
we are able to take advantage of the large inventory of partially-annotated exemplar
sentences.

Note that this model makes a strong independence assumption: each frame is pre-
dicted independently of all others in the document. In this way the model is similar to

7On average, there are 34 targets per frame in our dataset. The average frame ambiguity of each target
in L is 1.17.

8Each ti is a word sequence 〈wu, . . . , wv〉, 1 ≤ u ≤ v ≤ n, though in principle targets can be noncontigu-
ous
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• the POS of the parent of the head word of ti
• the set of syntactic dependencies of the head word9 of ti
• if the head word of ti is a verb, then the set of dependency labels of its children
• the dependency label on the edge connecting the head of ti and its parent
• the sequence of words in the prototype, w`

• the lemmatized sequence of words in the prototype
• the lemmatized sequence of words in the prototype and their part-of-speech tags
π`

•WordNet relation10 ρ holds between ` and ti
•WordNet relation10 ρ holds between ` and ti, and the prototype is `
•WordNet relation10 ρ holds between ` and ti, the POS tag sequence of ` is π`, and

the POS tag sequence of ti is πt

Table 5: Features used for frame identification. All also incorporate f , the frame being
scored. ` = 〈w`,π`〉 consists of the words and POS tags11 of a target seen in an exemplar
or training sentence as evoking f . There are a total of 662,020 binary features in our
model.

J&N’07. However, ours is a single conditional model that shares features and weights
across all targets, frames, and prototypes, whereas the approach of J&N’07 consists of
many separately trained models. Moreover, our model is unique in that it uses a latent
variable to smooth over frames for unknown or ambiguous LUs.

Frame identification features depend on the preprocessed sentence x, the prototype `
and its WordNet lexical-semantic relationship with the target ti, and of course the frame
f . Our model instantiates 662,020 binary features.

4.3 Training

Given the training subset of the SemEval’07 data, which is of the form〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

(N = 1663 is the number of sentences), we discriminatively
train the frame identification model by maximizing the following log-likelihood:12

max
θ

N∑
j=1

mj∑
i=1

log
∑

`∈L
f
(j)
i

pθ(f
(j)
i , ` | t(j)i ,x(j)) (3)

Note that the training problem is non-convex because of the summed-out prototype la-
tent variable ` for each frame. To calculate the objective function, we need to cope with a
sum over frames and prototypes for each target (see Eq. 2), often an expensive operation.
We locally optimize the function using a distributed implementation of L-BFGS. This is
the most expensive model that we train: with 100 CPUs, training takes several hours.
(Decoding takes only a few minutes on one CPU for the test set.)

9If the target is not a subtree in the parse, we consider the words that have parents outside the span, and
apply three heuristic rules to select the head: 1) choose the first word if it is a verb; 2) choose the last word
if the first word is an adjective; 3) if the target contains the word of, and the first word is a noun, we choose
it. If none of these hold, choose the last word with an external parent to be the head.

10These are: IDENTICAL-WORD, SYNONYM, ANTONYM (including extended and indirect antonyms), HY-
PERNYM, HYPONYM, DERIVED FORM, MORPHOLOGICAL VARIANT (e.g., plural form), VERB GROUP, ENTAIL-
MENT, ENTAILED-BY, SEE-ALSO, CAUSAL RELATION, and NO RELATION.

11POS tags are found automatically during preprocessing.
12We found no benefit on development data from using an L2 regularizer (zero-mean Gaussian prior).
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FRAME IDENTIFICATION exact frame matching partial frame matching
(§4) targets P R F1 P R F1

Frame identification (oracle targets) ∗ 60.21 60.21 60.21 74.21 74.21 74.21
Frame identification (predicted targets) auto §3 69.75 54.91 61.44 77.51 61.03 68.29
Baseline: J&N’07 auto 66.22 50.57 57.34 73.86 56.41 63.97

Table 6: Frame identification results. Precision, recall, and F1 were evaluated under exact
and partial frame matching; see §2.3. Bold indicates statistically significant results with
respect to the baseline (p < 0.05).

4.4 Results

We evaluate the performance of our frame identification model given gold-standard tar-
gets and automatically identified targets (§3); see Table 6.

To compare the frame identification stage in isolation with that of J&N’07, we ran
our frame identification model with the targets identified by their system as input. With
partial matching, our model achieves a relative improvement of 0.6% F1 over J&N’07
(though this is not significant).

While our frame identification model thus performs on par with the current state
of the art for this task, it improves upon J&N’s formulation of the problem because it
requires only a single model, learns lexical-semantic features as part of that model rather
than requiring a preprocessing step to expand the vocabulary of frame-evoking words,
and is probabilistic, which can facilitate global reasoning.

For gold-standard targets, 210 out of 1058 lemmas were not present in the white list
that we used for target identification (see §3). Our model correctly identifies the frames
for 4 of these 210 lemmas. For 44 of these lemmas, the evaluation script assigns a score of
0.5 or more, suggesting that our model predicts a closely related frame. Finally, for 190
of the 210 lemmas, a positive score is assigned by the evaluation script. This suggests
that the hidden variable model helps in identifying related (but rarely exact) frames for
unseen targets, and explains why under exact—but not partial—frame matching, the F1

score using automatic targets is commensurate with the score for oracle targets.13

For automatically identified targets, the F1 score falls below 70 points because the
model fails to predict frames for unseen lemmas. However, our model outperforms
J&N’07 by 4 F1 points. We measured statistical significance with respect the baseline for
results with the partial frame matching criterion. The F1 score of our model represents a
significant improvement over the baseline (p < 0.01). The precision and recall measures
are significant as well (p < 0.05 and p < 0.01, respectively). Note that the automatic
target identification model leads to an increase in precision, at the expense of recall. This
is because of the fact that the white list for target identification restricts the model to
predict frames only for known LUs, leading to a more precise model.

5 Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of targets t = 〈t1, . . . , tm〉, and a list of evoked
frames f = 〈f1, . . . , fm〉 corresponding to each target, argument identification is the task

13J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame
identification models is difficult. Considering only the predicted arguments for the frames they predicted
correctly, we can estimate that their argument identification model given oracle targets and frames would
have achieved 0.58 precision, 0.48 recall, and 0.53 F1—though we caution that these are not directly compa-
rable with our oracle results.
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of choosing which of each fi’s roles are filled, and by which parts of x. This task is most
similar to the problem of semantic role labeling, but uses frame-specific labels that are
richer than the PropBank annotations.

5.1 Model

LetRfi
= {r1, . . . , r|Rfi

|} denote frame fi’s roles (named frame element types) observed
in an exemplar sentence and/or our training set. A subset of each frame’s roles are
marked as core roles; these roles are conceptually and/or syntactically necessary for any
given use of the frame, though they need not be overt in every sentence involving the
frame. These are roughly analogous to the core arguments A0–A5 and AA in PropBank.
Non-core roles—analogous to the various AMs in PropBank—loosely correspond to syn-
tactic adjuncts, and carry broadly-applicable information such as the time, place, or pur-
pose of an event. The lexicon imposes some additional structure on roles, including
relations to other roles in the same or related frames, and semantic types with respect to
a small ontology (marking, for instance, that the entity filling the protagonist role must
be sentient for frames of cognition). Fig. 2 illustrates some of the structural elements
comprising the frame lexicon by considering the CAUSE TO MAKE NOISE frame.

We identify a set S of spans that are candidates for filling any role r ∈ Rfi
. In

principle, S could contain any subsequence of x, but in this work we only consider the
set of contiguous spans that (a) contain a single word or (b) comprise a valid subtree of
a word and all its descendants in the dependency parse produced by the MST parser.
This covers 81% of arguments in the development data. The empty span, denoted ∅, is
also included in S, since some roles are not explicitly filled; in the development data, the
average number of roles an evoked frame defines is 6.7, but the average number of overt
arguments is only 1.7.14 In training, if a labeled argument is not a valid subtree of the
dependency parse, we add its span to S .

Let Ai denote the mapping of roles in Rfi
to spans in S . Our model makes a predic-

tion for each Ai(rk) (for all roles rk ∈ Rfi
) using:

Ai(rk)← argmax
s∈S

p(s | rk, fi, ti,x) (4)

We use a conditional log-linear model over spans for each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti,x) =
expψ>h(s, rk, fi, ti,x)∑

s′∈S
expψ>h(s′, rk, fi, ti,x)

(5)

Note that our model chooses the span for each role separately from the other roles and
ignores all frames except the frame the role belongs to. Our model departs from the
traditional SRL literature by modeling the argument identification problem in a single
stage, rather than first classifying token spans as arguments and then labeling them.

14In the annotated data, each core role is filled with one of three types of null instantiations indicating how
the role is conveyed implicitly. For instance, the imperative construction implicitly designates a role as filled
by the addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this work
we do not distinguish different types of null instantiations.

15Quantized into groups: (−∞,−20], [−19,−10], [−9,−5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19],
[20,∞).

16We treat as a closed-class POS tag any Penn Treebank tag except for CD which does not start with V, N,
A, or R.
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Features with both null and non-null variants: These features come in two flavors: if the argument is
null, then one version fires; if it is overt (non-null), then another version fires.
 some word in t has lemma λ  some word in t has POS π
G# some word in t has lemma λ, and the sentence

uses PASSIVE voice
G# some word in t has lemma λ, and the sentence

uses ACTIVE voice
G# the head of t has subcategorization sequence
τ = 〈τ1, τ2, . . . 〉

G# some syntactic dependent of the head of t has
dependency type τ

 the head of t has c syntactic dependents  bias feature (always fires)
Span content features: apply to overt argument candidates.
# POS tag π occurs for some word in s
# the head word of s has POS π  |s|, the number of words in the candidate

argument15

# the first word of s has POS π, provided |s| > 0 # the head word of s has syntactic dependency
type τ

# the last word of s has POS π, provided |s| > 0  the syntactic dependency type τs1 of the first
word with respect to its head the first word of s: ws1 , and its POS tag πs1 ,

provided that πs1 is a closed-class POS16  τs2 , provided that |s| ≥ 2
 ws2 and its closed-class POS tag πs2 , provided

that |s| ≥ 2
 τs|s| , provided that |s| ≥ 3
# the first word of s has lemma λ, provided |s| > 0

 the last word of s: ws|s| , and its closed-class POS
tag πs|s| , provided that |s| ≥ 3

# the head word of s has lemma λ
# the last word of s has lemma λ, provided |s| > 0

G# lemma λ is realized in some word in s G# lemma λ is realized in some word in s, the voice
denoted in the span, s’s position with respect to
t (BEFORE, AFTER, or OVERLAPPING)

G# lemma λ is realized in some word in s, the voice
denoted in the span (ACTIVE or PASSIVE)

Syntactic features: apply to overt argument candidates.
# dependency path: sequence of labeled, directed

edges from the head word of s to the head word
of t

# length of the dependency path15

Span context POS features: for overt candidates, up to 6 of these features will be active.
# a word with POS π occurs up to 3 words before

the first word of s
# a word with POS π occurs up to 3 words after the

last word of s
Ordering features: apply to overt argument candidates.
 the position of s with respect to to the span of t:

BEFORE, AFTER, or OVERLAPPING (i.e. there is at
least one word shared by s and t)

# target-argument crossing: there is at least one
word shared by s and t, at least one word in s
that is not in t, and at least one word in t that is
not in s

# linear word distance between the nearest word
of s and the nearest word of t, provided s and t
do not overlap15

# linear word distance between the middle word
of s and the middle word of t, provided s and t
do not overlap15

Table 7: Features used for argument identification. Instantiating the above (binary)
features for our data yields 1,297,857 parameters.

A constraint implicit in our formulation restricts each role to have at most one overt
argument, which is consistent with 96.5% of the role instances in the training data.

Out of the overt argument spans in the training data, 12% are duplicates, having been
used by some other frame in the sentence. Our role-filling model, unlike a sentence-
global argument detection-and-classification approach,17 permits this sort of argument
sharing among frames. The incidence of span overlap among frames is much higher;
Fig. 1 illustrates a case with a high degree of overlap. Word tokens belong to an av-
erage of 1.6 argument spans, including the quarter of words that do not belong to any

17J&N’07, like us, identify arguments for each target.
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argument.
Appending these local inference decisions together gives us the best mapping Ât for

target t. Features for our log-linear model (Eq. 5) depend on the preprocessed sentence
x; the target t; a role r of frame f ; and a candidate argument span s ∈ S.18 For features
using the head word of the target t or a candidate argument span s, we use the heuristic
described in footnote 9 for selecting the head of non-subtree spans. Table 7 lists the
feature templates used in our model. Every feature template has a version which does
not take into account the role being filled (so as to incorporate overall biases). The G#
symbol indicates that the feature template also has a variant which is conjoined with r,
the name of the role being filled; and  indicates that the feature template additionally
has a variant which is conjoined with both r and f , the name of the frame.19 The role
name–only variants provide for smoothing over frames for common types of roles such
as Time and Place; see Matsubayashi et al. (2009) for a detailed analysis of the effects of
using role features at varying levels of granularity.

5.2 Training

We train the argument identification model by:

max
ψ

N∑
j=1

mj∑
i=1

|R
f
(j)
i

|∑
k=1

log pψ(A(j)
i (rk) | f

(j)
i , t

(j)
i ,x(j)) (6)

This objective function is concave, and we globally optimize it using stochastic gradient
ascent (Bottou, 2004). We train this model until the argument identification F1 score
stops increasing on the development data. Best results on this dataset were obtained
with a batch size of 2 and 23 passes through the development data.

Algorithm 1 Joint decoding of frame fi’s arguments. topk(S, pψ, rj) extracts the k most
probable spans from S, under pψ, for role rj . extend(D0:(j−1),S ′) extends each span
vector in D0:(j−1) with the most probable non-overlapping span from S ′, resulting in k
best extensions overall.
Input: k > 0,Rfi

, S, the distribution pψ from Eq. 5 for each role rj ∈ Rfi

Output: Âi, a high-scoring mapping of roles of fi to spans with no token overlap among
the spans

1: Calculate Ai according to Eq. 4
2: ∀r ∈ Rfi

such that Ai(r) = ∅, let Âi(r)← ∅
3: R+

fi
← {r : r ∈ Rfi

,Ai(r) 6= ∅}
4: n← |R+

fi
|

5: Arbitrarily orderR+
fi

as {r1, r2, . . . rn}
6: Let D0:j = 〈D0:j

1 , . . . , D0:j
k 〉 refer to the k-best list of vectors of compatible filler spans

for roles r1 through rj
7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S, pψ, rj))

10: end for
11: ∀j ∈ {1, . . . , n}, Âi(rj)← D0:n

1 [j]
12: return Âi

18In this section we use t, f , and r without subscripts since the features only consider a single role of a
single target’s frame.

19i.e., the  symbol subsumes G#, which in turn subsumes #.
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ARGUMENT IDENTIFICATION exact frame matching
targets frames spans decoding P R F1

Argument identification
(oracle spans)

∗ ∗ ∗ naı̈ve 86.61 75.11 80.45
∗ ∗ ∗ beam §5.3 88.29 74.77 80.97

Argument identification
(full)

∗ ∗ model §5 naı̈ve 77.43 60.76 68.09 partial frame matching
∗ ∗ model §5 beam §5.3 78.71 60.57 68.46 P R F1

Parsing (oracle targets) ∗ model §4 model §5 beam §5.3 49.68 42.82 46.00 57.85 49.86 53.56
Parsing (full) auto §3 model §4 model §5 beam §5.3 58.08 38.76 46.49 62.76 41.89 50.24
Baseline: J&N’07 auto model model N/A 51.59 35.44 42.01 56.01 38.48 45.62

Table 8: Argument identification results. ∗ indicates that gold-standard labels were used
for a given pipeline stage. For full parsing, bolded scores indicate significant improve-
ments relative to the baseline (p < 0.05).

5.3 Approximate Joint Decoding

Naı̈ve prediction of roles using Eq. 4 may result in overlap among arguments filling dif-
ferent roles of a frame, since the argument identification model fills each role indepen-
dently of the others. We want to enforce the constraint that two roles of a single frame
cannot be filled by overlapping spans.20 Toutanova et al. (2005) presented a dynamic
programming algorithm to prevent overlapping arguments for semantic role labeling;
however, their approach used an orthogonal view to the argument identification stage,
wherein they labeled phrase-structure tree constituents with semantic roles. This view
helped them to adopt a dynamic programming approach, which does not suit our model
because we find best possible argument spans for a particular role.

To eliminate illegal overlap, we adopt the beam search technique detailed in Algo-
rithm 1. The algorithm produces a set of k-best hypotheses for a frame instance’s full
set of role-span pairs, but uses an approximation in order to avoid scoring an exponen-
tial number of hypotheses. After determining which roles are most likely not explicitly
filled, it considers each of the other roles in turn: in each iteration, hypotheses incorpo-
rating a subset of roles are extended with high-scoring spans for the next role, always
maintaining k alternatives. We set k = 10000.

5.4 Results

Performance of the argument identification model is presented in Table 8. The ta-
ble shows how performance varies given different types of perfect input: correct tar-
gets, correct frames, and the set of correct spans; correct targets and frames, with the
heuristically-constructed set of candidate spans; correct targets only, with model frames;
and ultimately, no oracle input (the full frame parsing scenario).

The first four rows of results isolate the argument identification task from the frame
identification task. Given gold targets and frames and an oracle set of argument spans,
our local model achieves about 87% precision and 75% recall. Beam search decoding to
eliminate illegal argument assignments within a frame (§5.3) further improves precision
by about 1.6%, with negligible harm to recall. Note that 96.5% recall is possible under
the constraint that roles are not multiply-filled (§5.1); there is thus considerable room for
improvement with this constraint in place. Joint prediction of each frame’s arguments is

20On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments
to be shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation for
this task only considers the primary layer, which is guaranteed to have disjoint arguments.
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# predicted args %

# gold args % 0 1 2 3 4
0 25 2.6 9 .9 4 .4 0 0
1 82 8.5 248 25.8 28 2.9 2 .2 0
2 36 3.7 190 19.8 180 18.7 10 1.0 0
3 7 .7 38 4.0 54 5.6 21 2.2 1 .1

4 3 .3 9 .9 1 .1 7 .7 2 .2

5 0 1 .1 1 .1 2 .2 0

Table 9: Number of overt gold vs. predicted arguments for test set (given gold targets
and frames, no beam decoding). Mass is concentrated on and to the left of the diagonal,
indicating that the model is conservative about predicting arguments.

worth exploring to capture correlations not encoded in our local models or joint decod-
ing scheme.

The 15-point drop in recall when the heuristically-built candidate argument set re-
places the set of true argument spans is unsurprising: an estimated 19% of correct ar-
guments are excluded because they are neither single words nor complete subtrees (see
§5.1).21 Qualitatively, the problem of candidate span recall seems to be largely due to
syntactic parse errors.22 Still, the 10-point decrease in precision when using the syntactic
parse to determine candidate spans suggests that the model has trouble discriminating
between good and bad arguments, and that additional feature engineering or jointly
decoding arguments of a sentence’s frames may be beneficial in this regard.

The fifth and sixth rows show the effect of automatic frame identification on overall
frame parsing performance. There is a 22% decrease in F1 (18% when partial credit is
given for related frames), suggesting that improved frame identification or joint predic-
tion of frames and arguments is likely to have a sizeable impact on overall performance.

The final two rows of the table compare our full model (target, frame, and argument
identification) with the baseline, showing significant improvement of more than 4.4 F1

points for both exact and partial frame matching. As with frame identification, we com-
pared the argument identification stage with that of J&N’07 in isolation, using the auto-
matically identified targets and frames from the latter as input to our model. With par-
tial frame matching, this gave us an F1 score of 48.1% on the test set—significantly better
(p < 0.05) than 45.6%, the full parsing result from J&N’07 (last row in Table 8). This indi-
cates that our argument identification model—which uses a single discriminative model
with a large number of features for role filling (rather than argument labeling)—is more
powerful than the previous state of the art.

6 Related work

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, a great deal
of computational work has investigated predicate-argument structures for semantics.

21Using all constituents from the 10-best syntactic parses would improve oracle recall of spans in the
development set by just a couple of percentage points, at the computational cost of a larger pool of candidate
arguments per role.

22Note that, because of our labels-only evaluation scheme (§2.3), arguments missing a word or containing
an extra word receive no credit. In fact, of the frame roles correctly predicted as having an overt span,
the correct span was predicted 66% of the time, while 10% of the time the predicted starting and ending
boundaries of the span were off by a total of 1 or 2 words.
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# predicted arg lengths %

# gold arg lengths % 0 1 2 3 4 5–9 10–19 20+
0 60 3.3 26 1.4 22 1.2 8 0.4 19 1.1 5 0.3 1 0.1

1 316 17.5 514 47.9 10 0.9 15 1.4 6 0.6 12 1.1 7 0.7 5 0.5

2 94 5.2 41 3.8 71 6.6 1 0.1 2 0.2 10 0.9 7 0.7 0
3 62 3.4 15 1.4 1 0.1 42 3.9 1 0.1 12 1.1 4 0.4 2 0.2

4 28 1.6 13 1.2 2 0.2 6 0.6 17 1.6 4 0.4 4 0.4 1 0.1

5–9 66 3.7 28 2.6 8 0.7 17 1.6 7 0.7 84 7.8 10 0.9 3 0.3

10–19 16 0.9 11 1.0 2 0.2 5 0.5 1 0.1 11 1.0 34 3.2 2 0.2

20+ 9 0.5 3 0.3 0 2 0.2 0 6 0.6 5 0.5 8 0.7

Table 10: Number of words in spans filling the same role for gold and predicted argu-
ments (on test set, given gold targets and frames, no beam decoding). Again, the model
is somewhat conservative, predicting more erroneous short spans than erroneous long
spans—but if a span is predicted for the correct role, it will more likely have the right
(quantized) length than fall into any other single length range. The most frequent mis-
take is predicting null when there should be a one-word argument. 0 refers to the null
span. The percentages in the 0 row and column are not comparable with the percentages
in the rest of the table.

Briefly, we highlight some relevant work, particularly research that has made use of
FrameNet. (Note that much related research has focused on PropBank (Kingsbury and
Palmer, 2002), a set of shallow predicate-argument annotations for Wall Street Journal
articles from the Penn Treebank (Marcus et al., 1993); a recent issue of CL (Màrquez et al.,
2008) was devoted to the subject.)

Most work on frame-semantic role labeling has made use of the exemplar sentences
in the FrameNet corpus (see §2.1), each of which is annotated for a single frame and its
arguments. On the probabilistic modeling front, Gildea and Jurafsky (2002) presented
a discriminative model for arguments given the frame; Thompson et al. (2003) used a
generative model for both the frame and its arguments; and Fleischman et al. (2003) first
used maximum entropy models to find and label arguments given the frame. Shi and
Mihalcea (2004) developed a rule-based system to predict frames and their arguments in
text, and Erk and Padó (2006) introduced the Shalmaneser tool, which employs Naı̈ve
Bayes classifiers to do the same. Other FrameNet SRL systems (Giuglea and Moschitti,
2006, for instance) have used SVMs. Most of this work was done on an older, smaller
version of FrameNet.

Recent work on frame-semantic parsing—in which sentences may contain multiple
frames to be recognized along with their arguments—has used the SemEval’07 data
(Baker et al., 2007). The LTH system of Johansson and Nugues (2007), our baseline
(§2.4), performed the best in the SemEval’07 task. Matsubayashi et al. (2009) trained
a log-linear model on the SemEval’07 data to evaluate argument identification features
exploiting various types of taxonomic relations to generalize over roles. Another line of
work has sought to extend the coverage of FrameNet by exploiting VerbNet, WordNet,
and Wikipedia (Shi and Mihalcea, 2005; Giuglea and Moschitti, 2006; Pennacchiotti et al.,
2008; Tonelli and Giuliano, 2009), and projecting entries and annotations within and
across languages (Boas, 2002; Fung and Chen, 2004; Padó and Lapata, 2005; Fürstenau
and Lapata, 2009). Others have applied frame-semantic structures to question answer-
ing, paraphrase/entailment recognition, and information extraction (Narayanan and
Harabagiu, 2004; Shen and Lapata, 2007; Padó and Erk, 2005; Burchardt, 2006; Bur-
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chardt et al., 2009; Moschitti et al., 2003; Surdeanu et al., 2003). Wu and Fung (2009)
explored PropBank SRL for machine translation. Recent work using PropBank has also
explored online discriminative training (Pradhan et al., 2004), joint inference via rerank-
ing (Toutanova et al., 2005), integer linear programming (Punyakanok et al., 2004), and
other algorithmic techniques.23

7 Conclusion

We have provided a supervised model for rich frame-semantic parsing, based on a com-
bination of knowledge from FrameNet, two probabilistic models trained on SemEval’07
data, and expedient heuristics. Our system achieves improvements over the state of the
art at each stage of processing and collectively, and is amenable to future extension. We
have released a software package that implements the methods described in this report
and is publicly available for use.
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