
Dual Decomposition with Many Overlapping Components
André F. T. Martins∗† Noah A. Smith∗ Pedro M. Q. Aguiar‡ Mário A. T. Figueiredo†
∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

‡Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal
†Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal

{afm,nasmith}@cs.cmu.edu, aguiar@isr.ist.utl.pt, mtf@lx.it.pt

Abstract

Dual decomposition has been recently pro-
posed as a way of combining complemen-
tary models, with a boost in predictive power.
However, in cases where lightweight decom-
positions are not readily available (e.g., due to
the presence of rich features or logical con-
straints), the original subgradient algorithm
is inefficient. We sidestep that difficulty by
adopting an augmented Lagrangian method
that accelerates model consensus by regular-
izing towards the averaged votes. We show
how first-order logical constraints can be han-
dled efficiently, even though the correspond-
ing subproblems are no longer combinatorial,
and report experiments in dependency pars-
ing, with state-of-the-art results.

1 Introduction

The last years have witnessed increasingly accurate
models for syntax, semantics, and machine transla-
tion (Chiang, 2007; Finkel et al., 2008; Petrov and
Klein, 2008; Smith and Eisner, 2008; Martins et
al., 2009a; Johansson and Nugues, 2008; Koo et al.,
2010). The predictive power of such models stems
from their ability to break locality assumptions. The
resulting combinatorial explosion typically demands
some form of approximate decoding, such as sam-
pling, heuristic search, or variational inference.

In this paper, we focus on parsers built from lin-
ear programming relaxations, the so-called “turbo
parsers” (Martins et al., 2009a; Martins et al., 2010).
Rush et al. (2010) applied dual decomposition as
a way of combining models which alone permit
efficient decoding, but whose combination is in-
tractable. This results in a relaxation of the origi-
nal problem that is elegantly solved with the sub-
gradient algorithm. While this technique has proven
quite effective in parsing (Koo et al., 2010; Auli
and Lopez, 2011) as well as machine translation
(Rush and Collins, 2011), we show here that its

success is strongly tied to the ability of finding a
“good” decomposition, i.e., one involving few over-
lapping components (or slaves). With many compo-
nents, the subgradient algorithm exhibits extremely
slow convergence (cf. Fig. 2). Unfortunately, a
lightweight decomposition is not always at hand, ei-
ther because the problem does not factor in a natural
way, or because one would like to incorporate fea-
tures that cannot be easily absorbed in few tractable
components. Examples include features generated
by statements in first-order logic, features that vio-
late Markov assumptions, or history features such as
the ones employed in transition-based parsers.

To tackle the kind of problems above, we adopt
DD-ADMM (Alg. 1), a recently proposed algorithm
that accelerates dual decomposition (Martins et al.,
2011). DD-ADMM retains the modularity of the
subgradient-based method, but it speeds up consen-
sus by regularizing each slave subproblem towards
the averaged votes obtained in the previous round
(cf. Eq. 14). While this yields more involved sub-
problems (with a quadratic term), we show that ex-
act solutions can still be efficiently computed for
all cases of interest, by using sort operations. As
a result, we obtain parsers that can handle very rich
features, do not require specifying a decomposition,
and can be heavily parallelized. We demonstrate the
success of the approach by presenting experiments
in dependency parsing with state-of-the-art results.

2 Background

2.1 Structured Prediction
Let x ∈ X be an input object (e.g., a sentence), from
which we want to predict a structured output y ∈
Y (e.g., a parse tree). The output set Y is assumed
too large for exhaustive search to be tractable. We
assume to have a model that assigns a score f(y) to
each candidate output, based on which we predict

ŷ = arg max
y∈Y

f(y). (1)

Designing the model must obey certain practical
considerations. If efficiency is the major concern,
a simple model is usually chosen so that Eq. 1 can
be solved efficiently, at the cost of limited expressive
power. If we care more about accuracy, a model with
richer features and more involved score functions
may be designed. Decoding, however, will be more
expensive, and approximations are often necessary.
A typical source of intractability comes from the
combinatorial explosion inherent in the composition
of two or more tractable models (Bar-Hillel et al.,
1964; Tromble and Eisner, 2006). Recently, Rush
et al. (2010) have proposed a dual decomposition
framework to address NLP problems in which the
global score decomposes as f(y) = f1(z1)+f2(z2),
where z1 and z2 are two overlapping “views” of the
output, so that Eq. 1 becomes:

maximize f1(z1) + f2(z2)
w.r.t. z1 ∈ Y1, z2 ∈ Y2

s.t. z1 ∼ z2.
(2)

Above, the notation z1 ∼ z2 means that z1 and
z2 “agree on their overlaps,” and an isomorphism
Y ' {〈z1, z2〉 ∈ Y1×Y2 | z1 ∼ z2} is assumed. We
next formalize these notions and proceed to compo-
sitions of an arbitrary number of models. Of special
interest is the unexplored setting where this number
is very large and each component very simple.

2.2 Decomposition into Parts
A crucial step in the design of structured predictors
is that of decomposing outputs into parts (Taskar et
al., 2003). We assume the following setup:

Basic parts. We let R be a set of basic parts, such
that each element y ∈ Y can be identified with a
subset of R. The exact meaning of a “basic part”
is problem dependent. For example, in dependency
parsing, R can be the set of all possible dependency
arcs (see Fig. 1); in phrase-based parsing, it can be
the set of possible spans; in sequence labeling, it can
be the set of possible labels at each position. Our
only assumption is that we can “read out” y from
the basic parts it contains. For convenience, we rep-
resent y as a binary vector, y = 〈y(r)〉r∈R, where
y(r) = 1 if part r belongs to y, and 0 otherwise.

Decomposition. We generalize the decomposition
in Eq. 2 by considering sets Y1, . . . ,YS for S ≥ 2.

Figure 1: Parts used by our parser. Arcs are the ba-
sic parts: any dependency tree can be “read out” from
the arcs it contains. Consecutive siblings and grandpar-
ent parts introduce horizontal and vertical Markovization
(McDonald et al., 2006; Carreras, 2007). We break the
horizontal Markov assumption via all siblings parts and
the vertical one through parts which indicate a directed
path between two words. Inspired by transition-based
parsers, we also adopt head bigram parts, which look at
the heads attached to consecutive words. Finally, we fol-
low Martins et al. (2009a) and have parts which indicate
if an arc is non-projective (i.e., if it spans words that do
not descend from its head).

Each Ys is associated with its own set of parts Rs, in
the same sense as above; we represent the elements
of Ys as binary vectors zs = 〈zs(r)〉r∈Rs . Examples
are vectors indicating a tree structure, a sequence,
or an assignment of variables to a factor, in which
case it may happen that only some binary vectors
are legal. Some parts in Rs are basic, while others
are not. We denote by R̄s = Rs ∩ R the subset of
the ones that are. In addition, we assume that:

• R1, . . . ,RS jointly cover R, i.e., R ⊆
⋃S
s=1 Rs;

• Only basic parts may overlap, i.e., Rs ∩ Rt ⊆
R, ∀s, t ∈ {1, . . . , S};
• Each zs ∈ Ys is completely defined by its entries

indexed by elements of R̄s, from which we can
guess the ones in Rs \ R̄s. This implies that each
y ∈ Y has a unique decomposition 〈z1, . . . , zS〉.

Fig. 1 shows several parts used in dependency pars-
ing models; in phrase-based parsing, these could be
spans and production rules anchored in the surface
string; in sequence labeling, they can be unigram,
bigram, and trigram labels.1

1There is a lot of flexibility about how to decompose the
model into S components: each set Rs can correspond to a sin-

Global consistency. We want to be able to read
out y ∈ Y by “gluing” together the components
〈z1, . . . , zS〉. This is only meaningful if they are
“globally consistent,” a notion which we make pre-
cise. Two components zs ∈ Ys and zt ∈ Yt are said
to be consistent (denoted zs ∼ zt) if they agree on
their overlaps, i.e., if zs(r) = zt(r), ∀r ∈ Rs ∩ Rt.
A complete assignment 〈z1, . . . , zS〉 is globally con-
sistent if all pairs of components are consistent. This
is equivalent to the existence of a witness vector
〈u(r)〉r∈R such that zs(r) = u(r),∀s, r ∈ R̄s.

With this setup, assuming that the score function
decomposes as f(z) =

∑S
s=1 fs(zs), the decoding

problem (which extends Eq. 2 for S ≥ 2) becomes:

P : maximize
∑S
s=1 fs(zs)

w.r.t. zs ∈ Ys, ∀s
〈u(r)〉r∈R ∈ R|R|,

s.t. zs(r) = u(r), ∀s, r ∈ R̄s.

(3)

We call the equality constraints expressed in the last
line the “agreement constraints.” It is these con-
straints that complicate the problem, which would
otherwise be exactly separable into S subproblems.
The dual decomposition method (Komodakis et al.,
2007; Rush et al., 2010) builds an approximation by
dualizing out these constraints, as we describe next.

2.3 Dual Decomposition
We describe dual decomposition in a slightly differ-
ent manner than Rush et al. (2010): we will first
build a relaxation of P (called P ′), in which the en-
tire approximation is enclosed. Then, we dualize P ′,
yielding problem D. In the second step, the duality
gap is zero, i.e., P ′ and D are equivalent.2

Relaxation. For each s ∈ {1, . . . , S} we consider
the convex hull of Ys,

Zs =

{ ∑
zs∈Ys

p(zs)zs

∣∣∣∣ p(zs) ≥ 0,
∑
zs∈Ys

p(zs) = 1

}
.

(4)

gle factor in a factor graph (Smith and Eisner, 2008), or to a
entire subgraph enclosing several factors (Koo et al., 2010), or
even to a formula in Markov logic (Richardson and Domingos,
2006). In these examples, the basic parts may correspond to
individual variable-value pairs.

2Instead of following the path P → P ′ → D, Rush et al.
(2010) go straight from P to D via a Lagrangian relaxation.
The two formulations are equivalent for linear score functions.

We have that Ys = Zs ∩ Z|Rs|; hence, problem P
(Eq. 3) is equivalent to one in which each Ys is re-
placed by Zs and the z-variables are constrained to
be integer. By dropping the integer constraints, we
obtain the following relaxed problem:

P ′ : maximize
∑S
s=1 fs(zs)

w.r.t. zs ∈ Zs, ∀s
〈u(r)〉r∈R ∈ R|R|,

s.t. zs(r) = u(r), ∀s, r ∈ R̄s.

(5)

If the score functions fs are convex, P ′ becomes a
convex program (unlike P , which is discrete); being
a relaxation, it provides an upper bound of P .

Lagrangian. Introducing a Lagrange multiplier
λs(r) for each agreement constraint in Eq. 5, one
obtains the Lagrangian function

L(z, u, λ) =
∑S

s=1

(
fs(zs) +

∑
r∈R̄s

λs(r)zs(r)
)

−
∑

r∈R

(∑
s:r∈R̄s

λs(r)
)
u(r), (6)

and the dual problem (the master)

D : minimize
∑S
s=1 gs(λs)

w.r.t. λ = 〈λ1, . . . , λS〉
s.t.

∑
s:r∈R̄s

λs(r) = 0, ∀r ∈ R,
(7)

where the gs(λs) are the solution values of the fol-
lowing subproblems (the slaves):

maximize fs(zs) +
∑
r∈R̄s

λs(r)zs(r)
w.r.t. zs ∈ Zs.

(8)

We assume that strong duality holds (w.r.t. Eqs. 5–
7), hence we have P ≤ P ′ = D.3

Solving the dual. Why is the dual formulation D
(Eqs. 7–8) more appealing than P ′ (Eq. 5)? The an-
swer is that the components 1, . . . , S are now de-
coupled, which makes things easier provided each
slave subproblem (Eq. 8) can be solved efficiently.
In fact, this is always a concern in the mind of
the model’s designer when she chooses a decom-
position (the framework that we describe in §3,
in some sense, alleviates her from this concern).
If the score functions are linear, i.e., of the form
fs(zs) =

∑
r∈Rs

θs(r)zs(r) for some vector θs =
〈θs(r)〉r∈Rs , then Eq. 8 becomes a linear program,
for which a solution exists at a vertex of Zs (which

3This is guaranteed if the score functions fs are linear.

in turn is an element of Ys). Depending on the struc-
ture of the problem, Eq. 8 may be solved by brute
force, dynamic programming, or specialized combi-
natorial algorithms (Rush et al., 2010; Koo et al.,
2010; Rush and Collins, 2011).

Applying the projected subgradient method (Ko-
modakis et al., 2007; Rush et al., 2010) to the mas-
ter problem (Eq. 7) yields a remarkably simple algo-
rithm, which at each round t solves the subproblems
in Eq. 8 for s = 1, . . . , S, and then gathers these
solutions (call them zt+1

s) to compute an “averaged”
vote for each basic part,

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

zt+1
s (r), (9)

where δ(r) = |{s : r ∈ Rs}| is the number of com-
ponents which contain part r. An update of the La-
grange variables follows,

λt+1
s (r) = λts(r)− ηt(zt+1

s (r)− ut+1(r)), (10)

where ηt is a stepsize. Intuitively, the algorithm
pushes for a consensus among the slaves (Eq. 9),
via an adjustment of the Lagrange multipliers which
takes into consideration deviations from the aver-
age (Eq. 10). The subgradient method is guaran-
teed to converge to the solution of D (Eq. 7), for
suitably chosen stepsizes (Shor, 1985; Bertsekas et
al., 1999); it also provides a certificate of optimal-
ity in case the relaxation is tight (i.e., P = D) and
the exact solution has been found. However, con-
vergence is slow when S is large (as we will show
in the experimental section), and no certificates are
available when there is a relaxation gap (P < P ′).
In the next section, we describe the DD-ADMM al-
gorithm (Martins et al., 2011), which does not have
these drawbacks and shares a similar simplicity.

3 Alternating Directions Method

There are two reasons why subgradient-based dual
decomposition is not completely satisfying:

• it may take a long time to reach a consensus;

• it puts all its resources in solving the dual problem
D, and does not attempt to make progress in the
primal P ′, which is closer to our main concern.4

4Our main concern is P ; however solving P ′ is often a
useful step towards that goal, either because a good rounding
scheme exists, or because one may build tighter relaxations to
approach P (Sontag et al., 2008; Rush and Collins, 2011).

Taking a look back at the relaxed primal problem
P ′ (Eq. 5), we see that any primal feasible solution
must satisfy the agreement constraints. This sug-
gests that penalizing violations of these constraints
could speed up consensus.

Augmented Lagrangian. By adding a penalty
term to Eq. 6, we obtain the augmented Lagrangian
function (Hestenes, 1969; Powell, 1969):

Aρ(z, u, λ) = L(z, u, λ)− ρ

2

S∑
s=1

∑
r∈R̄s

(zs(r)− u(r))2,

(11)
where the parameter ρ ≥ 0 controls the intensity
of the penalty. Augmented Lagrangian methods
are well-known in the optimization community (see,
e.g., Bertsekas et al. (1999), §4.2). They alternate
updates to the λ-variables, while seeking to maxi-
mize Aρ with respect to z and u. In our case, how-
ever, this joint maximization poses difficulties, since
the penalty term couples the two variables. The al-
ternating directions method of multipliers (ADMM),
coined by Gabay and Mercier (1976) and Glowinski
and Marroco (1975), sidesteps this issue by perform-
ing alternate maximizations,

zt+1 = arg max
z

Aρ(z, ut, λt), (12)

ut+1 = arg max
u

Aρ(zt+1, u, λt), (13)

followed by an update of the Lagrange multipliers
as in Eq. 10. Recently, ADMM has attracted inter-
est, being applied in a variety of problems; see the
recent book by Boyd et al. (2011) for an overview.
As derived in the App. A, the u-updates in Eq. 13
have a closed form, which is precisely the averag-
ing operation performed by the subgradient method
(Eq. 9). We are left with the problem of comput-
ing the z-updates. Like in the subgradient approach,
the maximization in Eq. 12 can be separated into S
independent slave subproblems, which now take the
form:

maximize fs(zs) +
∑

r∈R̄s
λs(r)zs(r)

−ρ
2

∑
r∈R̄s

(zs(r)− ut(r))2

w.r.t. zs ∈ Zs(x).
(14)

Comparing Eq. 8 and Eq. 14, we observe that the
only difference is the presence in the latter of a

quadratic term which regularizes towards the pre-
vious averaged votes ut(r). Because of this term,
the solution of Eq. 14 for linear score functions may
not be at a vertex (in contrast to the subgradient
method). We devote §4 to describing exact and effi-
cient ways of solving the problem in Eq. 14 for im-
portant, widely used slaves. Before going into de-
tails, we mention another advantage of ADMM over
the subgradient algorithm: it knows when to stop.

Primal and dual residuals. Recall that the sub-
gradient method provides optimality certificates
when the relaxation is tight (P = P ′) and an ex-
act solution of P has been found. While this is good
enough when tight relaxations are frequent, as in the
settings explored by Rush et al. (2010), Koo et al.
(2010), and Rush and Collins (2011), it is hard to
know when to stop when a relaxation gap exists.
We would like to have similar guarantees concern-
ing the relaxed primal P ′.5 A general weakness of
subgradient algorithms is that they do not have this
capacity, and so are usually stopped by specifying a
maximum number of iterations. In contrast, ADMM
allows to keep track of primal and dual residuals
(Boyd et al., 2011). This allows providing certifi-
cates not only for the exact solution of P (when the
relaxation is tight), but also to terminate when a near
optimal solution of the relaxed problem P ′ has been
found. The primal residual rtP measures the amount
by which the agreement constraints are violated:

rtP =

∑S
s=1

∑
r∈R̄s

(zts(r)− ut(r))2∑
r∈R δ(r)

; (15)

the dual residual rtD is the amount by which a dual
optimality condition is violated (see Boyd et al.
(2011), p.18, for details). It is computed via:

rtD =
∑

r∈R δ(r)(u
t(r)− ut−1(r))2∑

r∈R δ(r)
, (16)

Our stopping criterion is thus that these two residu-
als are below a threshold, e.g., 1 × 10−3. The com-
plete algorithm is depicted as Alg. 1. As stated in

5This problem is more important than it may look. Problems
with many slaves tend to be less exact, hence relaxation gaps
are frequent. Also, when decoding is embedded in training, it is
useful to obtain the fractional solution of the relaxed primal P
(rather than an approximate integer solution). See Kulesza and
Pereira (2007) and Martins et al. (2009b) for details.

Algorithm 1 ADMM-based Dual Decomposition
1: input: score functions 〈fs(.)〉Ss=1, parameters ρ, η,

thresholds εP and εD.
2: initialize t← 1
3: initialize u1(r)← 0.5 and λ1

s(r)← 0, ∀s, ∀r ∈ R̄s
4: repeat
5: for each s = 1, . . . , S do
6: make a zs-update, yielding zt+1

s (Eq. 14)
7: end for
8: make a u-update, yielding ut+1 (Eq. 9)
9: make a λ-update, yielding λt+1 (Eq. 10)

10: t← t+ 1
11: until rt+1

P < εP and rt+1
D < εD (Eqs. 15–16)

12: output: relaxed primal and dual solutions u, z, λ

Martins et al. (2011), convergence to the solution of
P ′ is guaranteed with a fixed stepsize ηt = τρ, with
τ ∈ [1, 1.618] (Glowinski and Le Tallec, 1989, Thm.
4.2). In our experiments, we set τ = 1.5, and adapt
ρ as described in (Boyd et al., 2011, p.20).6

4 Solving the Subproblems

In this section, we address the slave subproblems of
DD-ADMM (Eq. 14). We show how these subprob-
lems can be solved efficiently for several important
cases that arise in NLP applications. Throughout,
we assume that the score functions fs are linear, i.e.,
they can be written as fs(zs) =

∑
r∈Rs

θs(r)zs(r).
This is the case whenever a linear model is used, in
which case θs(r) = 1

δ(r)w · φ(x, r), where w is a
weight vector and φ(x, r) is a feature vector. It is
also the scenario studied in previous work in dual
decomposition (Rush et al., 2010). Under this as-
sumption, and discarding constant terms, the slave
subproblem in Eq. 14 becomes:

max
zs∈Zs

∑
r∈Rs\R̄s

θs(r)zs(r)−
ρ

2

∑
r∈R̄s

(zs(r)− as(r))2.

(17)
where as(r) = ut(r)+ρ−1(θs(r)+λts(r)). Since Zs
is a polytope, Eq. 17 is a quadratic program, which
can be solved with a general purpose solver. How-
ever, that does not exploit the structure of Zs and is
inefficient when |Rs| is large. We next show that for
many cases, a closed-form solution is available and

6Briefly, we initialize ρ = 0.03 and then increase/decrease
ρ by a factor of 2 whenever the primal residual becomes > 10
times larger/smaller than the dual residual.

can be computed inO(|Rs|) time, up to log factors.7

Pairwise Factors. This is the case where RPAIR =
{r1, r2, r12}, where r1 and r2 are basic parts and
r12 is their conjunction, i.e., we have YPAIR =
{〈z1, z2, z12〉 | z12 = z1 ∧ z2}. This factor is use-
ful to make conjunctions of variables participate in
the score function (see e.g. the grandparent, sibling,
and head bigram parts in Fig. 1). The convex hull
of YPAIR is the polytope ZPAIR = {〈z1, z2, z12〉 ∈
[0, 1]3 | z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1}, as
shown by Martins et al. (2010). In this case, problem
(17) can be written as

max θ12z12 − ρ
2 [(z1 − a1)2 + (z2 − a2)2]

w.r.t. 〈z1, z2, z12〉 ∈ [0, 1]3

s.t. z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1
(18)

and has a closed form solution (see App. B).

Uniqueness Quantification and XOR. Many
problems involve constraining variables to take a
single value: for example, in dependency parsing,
a modifier can only take one head. This can be
expressed as the statement ∃!y : Q(y) in first-order
logic,8 or as a one-hot XOR factor in a factor
graph (Smith and Eisner, 2008; Martins et al.,
2010). In this case, RXOR = {r1, . . . , rn}, and
YXOR = {〈z1, . . . , zn〉 ∈ {0, 1}n |

∑n
i=1 zi = 1}.

The convex hull of YXOR is ZXOR = {〈z1, . . . , zn〉 ∈
[0, 1]n |

∑n
i=1 zi = 1}. Assume for the sake of

simplicity that all parts in RXOR are basic.9 Up to a
constant, the slave subproblem becomes:

minimize 1
2

∑n
i=1(zi − ai)2

w.r.t. 〈z1, . . . , zn〉 ∈ [0, 1]n

s.t.
∑n
i zi = 1.

(19)

This is the problem of projecting onto the probabil-
ity simplex, which can be done in O(n log n) time
via a sort operation (see App. C).10

7This matches the asymptotic time that would be necessary
to solve the corresponding problems in the subgradient method,
for which algorithms are straightforward to derive. The point is
that with ADMM fewer instances of these subproblems need to
be solved, due to faster convergence of the master problem.

8The symbol ∃! means “there is one and only one.”
9A similar derivation can be made otherwise.

10Also common is the need for constraining existence of “at
most one” element. This can be reduced to uniqueness quantifi-
cation by adding a dummy NULL label.

Existential Quantification and OR. Sometimes,
only existence is required, not necessarily unique-
ness. This can be expressed with disjunctions, ex-
istential quantifiers in first-order logic (∃y : Q(y)),
or as a OR factor. In this case, ROR = {r1, . . . , rn},
YOR = {〈z1, . . . , zn〉 ∈ {0, 1}n |

∨n
i=1 zi = 1},

and the convex hull is ZOR = {〈z1, . . . , zn〉 ∈
[0, 1]n |

∑n
i=1 zi ≥ 1} (see Tab. 1 in Martins et al.

(2010)). The slave subproblem becomes:

minimize 1
2

∑n
i=1(zi − ai)2

w.r.t. 〈z1, . . . , zn〉 ∈ [0, 1]n

s.t.
∑n
i zi ≥ 1.

(20)

We derive a procedure in App. D to compute this
projection in O(n log n) runtime, also with a sort.

Negations. The two cases above can be extended
to allow some of their inputs to be negated. By a
change of variables in Eqs. 19–20 it is possible to
reuse the same black box that solves those problems.
The procedure is as follows:

1. For i = 1, . . . , n, set a′i = 1−ai if the ith variable
is negated, and a′i = ai otherwise.

2. Obtain 〈z′1, . . . , z′n〉 as the solution of Eqs. 19 or
20 providing 〈a′1, . . . , a′n〉 as input.

3. For i = 1, . . . , n, set zi = 1−z′i if the ith variable
is negated, and zi = z′i otherwise.

The ability to handle negated variables adds a
great degree of flexibility. From De Morgan’s
laws, we can now handle conjunctions and impli-
cations (since

∧n
i=1Qi(x) ⇒ R(x) is equivalent to∨n

i=1 ¬Qi(x) ∨R(x)).

Logical Variable Assignments. All previous ex-
amples involve taking a group of existing variables
and defining a constraint. Alternatively, we may
want to define a new variable which is the result of
an operation involving other variables. For exam-
ple, R(x) := ∃!y : Q(x, y). This corresponds to the
XOR-WITH-OUTPUT factor in Martins et al. (2010).
Interestingly, this can be expressed as a XOR where
R(x) is negated (i.e., either ¬R(x) holds or exactly
one y satisfies Q(x, y), but not both).

A more difficult problem is that of the OR-WITH-
OUTPUT factor, expressed by the formula R(x) :=
∃y : Q(x, y). We have ROR-OUT = {r0, . . . , rn},
and YOR-OUT = {〈z0, . . . , zn〉 ∈ {0, 1}n | z0 =

Slaves Runtime Description
Tree ∃!h : arc(h,m), m 6= 0 O(n) O(n logn) Each non-root word has a head

flow(h,m, k)⇒ arc(h,m) O(n3) O(1) Only active arcs may carry flow
path(m, d) := ∃!h : flow(h,m, d), m 6= 0 O(n2) O(n logn)
path(h, d) := ∃!m : flow(h,m, d) O(n2) O(n logn) Paths and flows are consistent
path(0,m) := TRUE, flow(h,m,m) := TRUE (see Martins et al. (2010))

All siblings sibl(h,m, s) := arc(h,m) ∧ arc(h, s) O(n3) O(1) By definition
Grandp. grand(g, h,m) := arc(g, h) ∧ arc(h,m) O(n3) O(1) By definition

Head Bigram bigram(b, h,m) := arc(b,m− 1) ∧ arc(h,m), m 6= 0 O(n3) O(1) By definition
Consec. Sibl. lastsibl(h,m,m) := arc(h,m)

∃!m ∈ [h, k] : lastsibl(h,m, k) O(n2) O(n logn) Head automaton model
lastsibl(h,m, k) := lastsibl(h,m, k + 1) (see supplementary material)

⊕ nextsibl(h,m, k + 1) O(n3) O(1)
arc(h,m) := ∃!s ∈ [h,m] : nextsibl(h, s,m) O(n2) O(n logn)

Nonproj. Arc nonproj(h,m) := arc(h,m) ∧ ∃k ∈ [h,m] : ¬path(h, k) O(n2) O(n logn) By definition

Table 1: First-order logic formulae underlying our dependency parser. The basic parts are the predicate variables
arc(h,m) (indicating an arc linking head h to modifier m), path(a, d) (indicating a directed path from ancestor
a to descendant d), nextsibl(h,m, s) (indicating that 〈h,m〉 and 〈h, s〉 are consecutive siblings), nonproj(h,m)
(indicating that 〈h,m〉 is a non-projective arc), as well as the auxiliary variables flow(h,m, d) (indicating that arc
〈h,m〉 carries flow to d), and lastsibl(h,m, k) (indicating that, up to position k, the last seen modifier of h occurred
at position m). The non-basic parts are the pairwise factors sibl(h,m, s), grand(g, h,m), and bigram(b, h,m); as
well as each logical formula. Columns 3–4 indicate the number of parts of each kind, and the time complexity for
solving each subproblem. For a sentence of length n, there are O(n3) parts and the total complexity is O(n3 log n).

∨n
i=1 zi}. The convex hull of YOR-OUT is the follow-

ing set: ZOR-OUT = {〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≥∑n
i=1 zi, z0 ≤ zi, ∀i = 1, . . . , n} (Martins et al.,

2010, Tab.1). The slave subproblem is:

minimize 1
2

∑n
i=0(zi − ai)2

w.r.t. 〈z0, . . . , zn〉 ∈ [0, 1]n

s.t. z0 ≥
∑n
i=1 zi; z0 ≤ zi, ∀i = 1, . . . , n.

(21)
The problem in Eq. 21 is more involved than the
ones in Eqs. 19–20. Yet, there is still an efficient
procedure with runtime O(n log n) (see App. E).
By using the result above for negated variables, we
are now endowed with a procedure for many other
cases, such that AND-WITH-OUTPUT and formu-
las with universal quantifiers (e.g., R(x) := ∀y :
Q(x, y)). Up to a log-factor, the runtimes will be
linear in the number of predicates.

Larger Slaves. The only disadvantage of DD-
ADMM in comparison with the subgradient algo-
rithm is that there is not an obvious way of solving
the subproblem in Eq. 14 exactly for large combi-
natorial factors, such as the TREE constraint in de-
pendency parsing, or a sequence model. Hence, our
method seems to be more suitable for decomposi-
tions which involve “simple slaves,” even if their
number is large. However, this does not rule out the
possibility of using this method otherwise. Eckstein

and Bertsekas (1992) show that the ADMM algo-
rithm may still converge when the z-updates are in-
exact. Hence the method may still work if the slaves
are solved numerically up to some accuracy. We de-
fer this to future investigation.

5 Experiments: Dependency Parsing

We used 14 datasets with non-projective depen-
dencies from the CoNLL-2006 and CoNLL-2008
shared tasks (Buchholz and Marsi, 2006; Surdeanu
et al., 2008). We also used a projective English
dataset derived from the Penn Treebank by applying
the standard head rules of Yamada and Matsumoto
(2003).11 We did not force the parser to output pro-
jective trees or unique roots for any of the datasets;
everything is learned from the data. We trained by
running 10 iterations of the cost-augmented MIRA
algorithm (Crammer et al., 2006) with LP-relaxed
decoding, as in Martins et al. (2009b). Follow-
ing common practice (Charniak and Johnson, 2005;
Carreras et al., 2008), we employed a coarse-to-fine
procedure to prune away unlikely candidate arcs, as
described by Koo and Collins (2010). To ensure
valid parse trees at test time, we rounded fractional

11As usual, we train on sections §02–21, use §22 as validation
data, and test on §23. We ran SVMTool (Giménez and Marquez,
2004) to obtain automatic part-of-speech tags for §22–23.

solutions as described in Martins et al. (2009a) (yet,
solutions were integral most of the time).

The parts used in our full model are the ones
depicted in Fig. 1. Note that a subgradient-based
method could handle some of those parts efficiently
(arcs, consecutive siblings, grandparents, and head
bigrams) by composing arc-factored models, head
automata, and a sequence labeler. However, no
lightweight decomposition seems possible for incor-
porating parts for all siblings, directed paths, and
non-projective arcs. Tab. 1 shows the first-order
logical formulae that encode the constraints in our
model. Each formula gives rise to a subproblem
which is efficiently solvable (see §4). By ablating
some of rows of Tab. 1 we recover known methods:

• Resorting to the tree and consecutive sibling for-
mulae gives one of the models in Koo et al.
(2010), with the same linear relaxation (a proof
of this fact is included in App. F);

• Resorting to tree, all siblings, grandparent, and
non-projective arcs, recovers a multi-commodity
flow configuration proposed by Martins et al.
(2009a); the relaxation is also the same.12

The experimental results are shown in Tab. 2.
For comparison, we include the best published re-
sults for each dataset (at the best of our knowledge),
among transition-based parsers (Nivre et al., 2006;
Huang and Sagae, 2010), graph-based parsers (Mc-
Donald et al., 2006; Koo and Collins, 2010), hybrid
methods (Nivre and McDonald, 2008; Martins et al.,
2008), and turbo parsers (Martins et al., 2010; Koo
et al., 2010). Our full model achieved the best re-
ported scores for 7 datasets. The last two columns
show a consistent improvement (with the exceptions
of Chinese and Arabic) when using the full set of
features over a second order model with grandparent
and consecutive siblings, which is our reproduction
of the model of Koo et al. (2010).13

12Although Martins et al. (2009a) also incorporated consec-
utive siblings in one of their configurations, our constraints are
tighter than theirs. See App. F.

13Note however that the actual results of Koo et al. (2010)
are higher than our reproduction, as can be seen in the second
column. The differences are due to the features that were used
and on the way the models were trained. The cause is not search
error: exact decoding with an ILP solver (CPLEX) revealed no
significant difference with respect to our G+CS column. We
leave further analysis for future work.

Best known UAS G+CS Full
Arabic 80.18 [Ma08] 81.12 81.10 (-0.02)
Bulgar. 92.88 [Ma10] 93.04 93.50 (+0.46)
Chinese 91.89 [Ma10] 91.05 90.62 (-0.43)
Czech 88.78 [Ma10] 88.80 89.46 (+0.66)
English 92.57 [Ko10] 92.45 92.68 (+0.23)
Danish 91.78 [Ko10] 91.70 91.86 (+0.16)
Dutch 85.81 [Ko10] 84.77 85.53 (+0.76)
German 91.49 [Ma10] 91.29 91.89 (+0.60)
Japane. 93.42 [Ma10] 93.62 93.72 (+0.10)
Portug. 93.03 [Ko10] 92.05 92.29 (+0.24)
Slovene 86.21 [Ko10] 86.09 86.95 (+0.86)
Spanish 87.04 [Ma10] 85.99 86.74 (+0.75)
Swedish 91.36 [Ko10] 89.94 90.16 (+0.22)
Turkish 77.55 [Ko10] 76.24 76.64 (+0.40)
PTB §23 93.04 [KC10] 92.19 92.53 (+0.34)

Table 2: Unlabeled attachment scores, excluding punc-
tuation. In the second column, [Ma08] denotes Martins
et al. (2008), [KC10] is Koo and Collins (2010), [Ma10]
is Martins et al. (2010), and [Ko10] is Koo et al. (2010).
In columns 3–4, “Full” is our full model, and “G+CS” is
our reproduction of the model of Koo et al. (2010), i.e.,
the same as “Full” but with all features ablated excepted
for grandparents and consecutive siblings.

AF +G+CS +AS +NP Full
PTB §22 91.02 92.13 92.32 92.36 92.41
PTB §23 91.36 92.19 92.41 92.50 92.53

Table 3: Feature ablation experiments. AF is an arc-
factored model; +G+CS adds grandparent and consec-
utive siblings; +AS adds all-siblings; +NP adds non-
projective arcs; Full adds the bigram and directed paths.

Feature ablation and error analysis. We con-
ducted a simple ablation study by training several
models on the English PTB with different sets of
features. Tab. 3 shows the results. As expected, per-
formance keeps increasing as we use models with
greater expressive power. We show some concrete
examples in App. G of sentences that the full model
parsed correctly, unlike less expressive models.

Convergence speed and optimality. Fig. 2 com-
pares the performance of DD-ADMM and the sub-
gradient algorithms in the validation section of the
PTB.14 For the second order model, the subgradient

14The learning rate in the subgradient method was set as ηt =
η0/(1+Nincr(t)), as in Koo et al. (2010), whereNincr(t) is the
number of dual increases up to the tth iteration, and η0 is chosen
to maximize dual decrease after 20 iterations (in a per sentence
basis). Those preliminary iterations are not plotted in Fig. 2.

method has more slaves than in Koo et al. (2010):
it has a slave imposing the TREE constraint (whose
subproblems consists on finding a minimum span-
ning tree) and several for the all-sibling parts, yield-
ing an average number of 310.5 and a maximum
of 4310 slaves. These numbers are still manage-
able, and we observe that a “good” UAS is achieved
relatively quickly. The ADMM method has many
more slaves due to the multicommodity flow con-
straints (average 1870.8, maximum 65446), yet it
attains optimality sooner, as can be observed in the
right plot. For the full model, the subgradient-based
method becomes extremely slow, and the UAS score
severely degrades (after 1000 iterations it is 2%
less than the one obtained with the ADMM-based
method, with very few instances having been solved
to optimality). The reason is the number of slaves:
in this configuration and dataset the average number
of slaves per instance is 3327.4, and the largest num-
ber is 113207. On the contrary, the ADMM method
keeps a robust performance, with a large fraction of
optimality certificates in early iterations.

Runtime and caching strategies. Despite its suit-
ability to problems with many overlapping compo-
nents, our parser is still 1.6 times slower than Koo
et al. (2010) (0.34 against 0.21 sec./sent. in PTB
§23), and is far beyond the speed of transition-based
parsers (e.g., Huang and Sagae (2010) take 0.04
sec./sent. on the same data, although accuracy is
lower, 92.1%). Our implementation, however, is not
fully optimized. We next describe how considerable
speed-ups are achieved by caching the subproblems,
following a strategy similar to Koo et al. (2010).

Fig. 3 illustrates the point. After a few iterations,
many variables u(r) see a consensus being achieved
(i.e., ut(r) = zt+1

s (r),∀s) and enter an idle state:
they are left unchanged by the u-update in Eq. 9,
and so do the Lagrange variables λt+1

s (r) (Eq. 10).
If by iteration t all variables in a subproblem s are
idle, then zt+1

s (r) = zts(r), hence the subproblem
does not need to be resolved.15 Fig. 3 shows that

15Even if not all variables are idle in s, caching may still be
useful: note that the z-updates in Eq. 14 tend to be sparse for the
subproblems described in §4 (these are Euclidean projections
onto polytopes with 0/1 vertices, which tend to hit corners). An-
other trick that may accelerate the algorithm is warm-starting:
since many subproblems involve a sort operation, storing the
sorted indexes may speedup the next round.

200 400 600 800 1000
Iterations

0

20

40

60

80

100

%
 a

ct
iv

e

Full ADMM

% active msgs
% active subproblems
% active vars

Figure 3: Fraction of active variables, subproblems and
messages along DD-ADMM iterations (full model). The
number of active messages denotes the total number of
variables (active or not) that participate in an active factor.

10-3 10-2 10-1 100 101

Time ADMM (sec.)

10-3

10-2

10-1

100

101

Ti
m

e
CP

LE
X

(s
ec

.)

Elapsed Times

Figure 4: Runtimes of DD-ADMM and CPLEX on PTB
§22 (each point is a sentence). Average runtimes are
0.362 (DD-ADMM) and 0.565 sec./sent. (CPLEX).

many variables and subproblems are left untouched
after the first few rounds.

Finally, Fig. 4 compares the runtimes of our im-
plementation of DD-ADMM with those achieved by
a state-of-the-art LP solver, CPLEX, in its best per-
forming configuration: the simplex algorithm ap-
plied to the dual LP. We observe that DD-ADMM
is faster in some regimes but slower in others. For
short sentences (< 15 words), DD-ADMM tends to
be faster. For longer sentences, CPLEX is quite ef-
fective as it uses good heuristics for the pivot steps
in the simplex algorithm; however, we observed that
it sometimes gets trapped on large problems. Note
also that DD-ADMM is not fully optimized, and that
it is much more amenable to parallelization than the
simplex algorithm, since it is composed of many in-
dependent slaves. This suggests potentially signifi-
cant speed-ups in multi-core environments.

6 Related Work

Riedel and Clarke (2006) first formulated depen-
dency parsing as an integer program, along with
logical constraints. The multicommodity flow for-

0 200 400 600 800 1000
Iterations

85

86

87

88

89

90

91

92
UA

S
(%

)

Accuracy

ADMM Full
Subgrad Full
ADMM Sec Ord
Subgrad Sec Ord

0 200 400 600 800 1000
Iterations

0

20

40

60

80

100

Ce
rt

ifi
ca

te
s

(%
)

Stopping Criteria

ADMM Full (Tol<0.001)
ADMM Full (Exact)
Subgrad Full (Exact)
ADMM Sec Ord (Tol<0.001)
ADMM Sec Ord (Exact)
Subgrad Sec Ord (Exact)

Figure 2: UAS including punctuation (left) and fraction of optimality certificates (right) accross iterations of the
subgradient and DD-ADMM algorithms, in PTB §22. “Full” is our full model; “Sec Ord” is a second-order model
with grandparents and all siblings, for which the subgradient method uses a coarser decomposition with a TREE factor.
Since subgradient and DD-ADMM are solving the same problems, the solid lines (as the dashed ones) would meet in
the limit, however subgradient converges very slowly for the full model. The right plot shows optimality certificates
for both methods, indicating that an exact solution of P has been found; for DD-ADMM we also plot the fraction of
instances that converged to an accurate solution of P ′ (primal and dual residuals < 10−3) and hence can be stopped.

mulation was introduced by Martins et al. (2009a),
along with some of the parts considered here. Koo
et al. (2010) proposed a subgradient-based dual de-
composition method that elegantly combines head
automata with maximum spanning tree algorithms;
these parsers, as well as the loopy belief propagation
method of Smith and Eisner (2008), are all instances
of turbo parsers (Martins et al., 2010).

DD-ADMM has been proposed and theoretically
analyzed by Martins et al. (2011) for problems rep-
resentable as factor graphs. The general ADMM
method has a long-standing history in optimization
(Hestenes, 1969; Powell, 1969; Glowinski and Mar-
roco, 1975; Gabay and Mercier, 1976; Boyd et al.,
2011). Other methods have been recently proposed
to accelerate dual decomposition, such as Jojic et al.
(2010) and Meshi and Globerson (2011) (the latter
applying ADMM in the dual rather than the primal).

While our paper shows limitations of the sub-
gradient method when there are many overlapping
components, this method may still be advantageous
over ADMM in problems that are nicely decom-
posable, since it often allows reusing existing com-
binatorial machinery. Yet, the scenario we con-
sider here is realistic in NLP, where we often have
to deal with not-lightly-decomposable constrained
problems (e.g., exploiting linguistic knowledge).

7 Conclusion

We have introduced new feature-rich turbo parsers.
Since exact decoding is intractable, we solve an LP
relaxation through a recently proposed consensus al-

gorithm, DD-ADMM, which is suitable for prob-
lems with many overlapping components. We study
the empirical runtime and convergence properties of
DD-ADMM, complementing the theoretical treat-
ment in Martins et al. (2011). DD-ADMM com-
pares favourably against the subgradient method in
several aspects: it is faster to reach a consensus, it
has better stopping conditions, and it works better
in non-lightweight decompositions. While its slave
subproblems are more involved, we derived closed-
form solutions for many cases of interest, such as
first-order logic formulas and combinatorial factors.

DD-ADMM may be useful in other frameworks
involving logical constraints, such as the models
for compositional semantics presented by Liang
et al. (2011). Non-logical constraints may also
yield efficient subproblems, e.g., the length con-
straints in summarization and compression (Clarke
and Lapata, 2008; Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011). Finally, DD-ADMM can
be adapted to tighten its relaxations towards exact
decoding, as in Sontag et al. (2008) and Rush and
Collins (2011). We defer this for future work.

Acknowledgments
We thank all reviewers for their comments, Eric Xing for
helpful discussions, and Terry Koo and Sasha Rush for
answering questions about their parser and for providing
code. A. M. was supported by a FCT/ICTI grant through
the CMU-Portugal Program, and by Priberam. This
work was partially supported by the FET programme
(EU FP7), under the SIMBAD project (contract 213250).
N. S. was supported by NSF CAREER IIS-1054319.

References
M. Auli and A. Lopez. 2011. A Comparison of Loopy

Belief Propagation and Dual Decomposition for Inte-
grated CCG Supertagging and Parsing. In Proc. of
ACL.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On for-
mal properties of simple phrase structure grammars.
Language and Information: Selected Essays on their
Theory and Application, pages 116–150.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proc. of ACL.

D. Bertsekas, W. Hager, and O. Mangasarian. 1999.
Nonlinear programming. Athena Scientific.

D.P. Bertsekas, A. Nedic, and A.E. Ozdaglar. 2003. Con-
vex analysis and optimization. Athena Scientific.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
2011. Distributed Optimization and Statistical Learn-
ing via the Alternating Direction Method of Multipli-
ers. Now Publishers (to appear).

J.P. Boyle and R.L. Dykstra. 1986. A method for find-
ing projections onto the intersections of convex sets in
Hilbert spaces. In Advances in order restricted statis-
tical inference, pages 28–47. Springer Verlag.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In CoNLL.

X. Carreras, M. Collins, and T. Koo. 2008. TAG, Dy-
namic Programming, and the Perceptron for Efficient,
Feature-rich Parsing. In CONLL.

X. Carreras. 2007. Experiments with a higher-order pro-
jective dependency parser. In CoNLL.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-
best parsing and MaxEnt discriminative reranking. In
Proc. ACL, pages 173–180. Association for Computa-
tional Linguistics Morristown, NJ, USA.

D. Chiang. 2007. Hierarchical phrase-based translation.
computational linguistics, 33(2):201–228.

J. Clarke and M. Lapata. 2008. Global Inference for Sen-
tence Compression An Integer Linear Programming
Approach. JAIR, 31:399–429.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. 2006. Online Passive-Aggressive Algo-
rithms. JMLR, 7:551–585.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
2008. Efficient projections onto the L1-ball for learn-
ing in high dimensions. In ICML.

J. Eckstein and D. Bertsekas. 1992. On the Douglas-
Rachford splitting method and the proximal point al-
gorithm for maximal monotone operators. Mathemat-
ical Programming, 55(1):293–318.

J. R. Finkel, A. Kleeman, and C. D. Manning. 2008. Effi-
cient, feature-based, conditional random field parsing.
Proceedings of ACL-08: HLT, pages 959–967.

D. Gabay and B. Mercier. 1976. A dual algorithm for
the solution of nonlinear variational problems via finite
element approximation. Computers and Mathematics
with Applications, 2(1):17–40.

J. Giménez and L. Marquez. 2004. Svmtool: A gen-
eral pos tagger generator based on support vector ma-
chines. In Proc. of LREC.

R. Glowinski and P. Le Tallec. 1989. Augmented La-
grangian and operator-splitting methods in nonlinear
mechanics. Society for Industrial Mathematics.

R. Glowinski and A. Marroco. 1975. Sur
l’approximation, par éléments finis d’ordre un, et la
résolution, par penalisation-dualité, d’une classe de
problèmes de Dirichlet non linéaires. Rev. Franc. Au-
tomat. Inform. Rech. Operat., 9:41–76.

M. Hestenes. 1969. Multiplier and gradient methods.
Jour. Optim. Theory and Applic., 4:302–320.

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. In Proc. of ACL,
pages 1077–1086.

R. Johansson and P. Nugues. 2008. Dependency-based
Semantic Role Labeling of PropBank. In EMNLP.

V. Jojic, S. Gould, and D. Koller. 2010. Accelerated dual
decomposition for MAP inference. In ICML.

N. Komodakis, N. Paragios, and G. Tziritas. 2007.
MRF optimization via dual decomposition: Message-
passing revisited. In ICCV.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. In Proc. of ACL, pages 1–11.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Son-
tag. 2010. Dual decomposition for parsing with non-
projective head automata. In EMNLP.

A. Kulesza and F. Pereira. 2007. Structured Learning
with Approximate Inference. NIPS.

P. Liang, M.I. Jordan, and D. Klein. 2011. Learning
dependency-based compositional semantics. In Proc.
Association for Computational Linguistics (ACL).

A. F. T. Martins and N. A. Smith. 2009. Summarization
with a joint model for sentence extraction and com-
pression. In NAACL-HLT Workshop on Integer Linear
Programming for NLP.

A. F. T. Martins, D. Das, N. A. Smith, and E. P. Xing.
2008. Stacking dependency parsers. In EMNLP.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2009a.
Concise integer linear programming formulations for
dependency parsing. In ACL-IJCNLP.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2009b.
Polyhedral outer approximations with application to
natural language parsing. In ICML.

A. F. T. Martins, N. A. Smith, E. P. Xing, M. A. T.
Figueiredo, and P. M. Q. Aguiar. 2010. Turbo parsers:
Dependency parsing by approximate variational infer-
ence. In EMNLP.

A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar,
N. A. Smith, and E. P. Xing. 2011. An Augmented
Lagrangian Approach to Constrained MAP Inference.
In ICML.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency analysis with a two-stage discrim-
inative parser. In CoNLL.

O. Meshi and A. Globerson. 2011. An Alternating Direc-
tion Method for Dual MAP LP Relaxation. In ECML
PKDD.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers. In
ACL-HLT.

J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines. In Procs. of CoNLL.

S. Petrov and D. Klein. 2008. Sparse multi-scale gram-
mars for discriminative latent variable parsing. In
Proc. of EMNLP.

M. Powell. 1969. A method for nonlinear constraints in
minimization problems. In R. Fletcher, editor, Opti-
mization, pages 283–298. Academic Press.

M. Richardson and P. Domingos. 2006. Markov logic
networks. Machine Learning, 62(1):107–136.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In EMNLP.

A. M. Rush and M. Collins. 2011. Exact decoding of
syntactic translation models through lagrangian relax-
ation. In ACL.

A. Rush, D. Sontag, M. Collins, and T. Jaakkola. 2010.
On dual decomposition and linear programming relax-
ations for natural language processing. In EMNLP.

N. Shor. 1985. Minimization methods for non-
differentiable functions. Springer.

D. Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. In EMNLP.

D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and
T Jaakkola. 2008. Tightening LP relaxations for MAP
using message-passing. In UAI.

M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and
J. Nivre. 2008. The CoNLL-2008 shared task on
joint parsing of syntactic and semantic dependencies.
CoNLL.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In NIPS.

R.W. Tromble and J. Eisner. 2006. A fast finite-state
relaxation method for enforcing global constraints on
sequence decoding. In Proc. of NAACL, pages 423–
430.

M. Wainwright and M. Jordan. 2008. Graphical Models,
Exponential Families, and Variational Inference. Now
Publishers.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
IWPT.

A Derivation of the u-updates in
DD-ADMM

By equating to zero∇uAρ, we obtain

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

(
zt+1
s (r)− ρ−1λts(r)

)
. (22)

Second, note that if we initialize λ to zero, it will
always satisfy

∑
s:r∈R̄s

λs(r) = 0, ∀r ∈ R. (This
can be easily proved by induction by inspecting the
updates in Eqs. 10 and 22.) Those conditions are
simply the constraints of problem D (Eq. 7); hence,
each iterate of the ADMM is guaranteed to produce
a dual feasible solution. Furthermore, this property
allows us to simplify the u-updates (Eq. 22) to:

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

zt+1
s (r); (23)

this is precisely the average operation used in the
subgradient algorithm (cf. Eq. 9).

B Pairwise Factors

Define a12 = ρ−1θ12, and assume that a12 ≥ 0,
without loss of generality (if a12 < 0, we recover
this case by redefining a′1 = a1 + a12, a′2 = 1− a2,
a′12 = −a12, z′2 = 1 − z2, z′12 = z1 − z12). Then,
the lower bound constraints z12 ≥ z1 + z2 − 1 and
z12 ≥ 0 are always inactive and can be ignored. By
inspecting the KKT conditions we obtain the follow-
ing closed-form solution: z?12 = min{z?1 , z?2} and
〈z?1 , z?2〉 =

([a1]U, [a2 + a12]U) if a1 > a2 + a12

([a1 + a12]U, [a2]U) if a2 > a1 + a12

([(a1 + a2 + a12)/2]U ,
[(a1 + a2 + a12)/2]U) otherwise,

(24)
where [x]U = min{max{x, 0}, 1} denotes the pro-
jection (clipping) onto the unit interval. Hence, for
this case, Eq. 14 can be solved in constant time.

C Uniqueness Quantification and XOR

The algorithm for computing a projection onto the
simplex is depicted as Alg. 2 (Duchi et al., 2008).

D Existential Quantification and OR

The following procedure computes this projection:

1. For i = 1, . . . , n, set zi = [ai]U.

Algorithm 2 Projection onto simplex
Input: 〈a1, . . . , an〉
Sort 〈a1, . . . , an〉 into 〈b1, . . . , bn〉: b1 ≥ . . . ≥ bn
Find ρ = max

{
j ∈ [n] | bj − 1

j

(∑j
r=1 br − 1

)
> 0
}

Define τ = 1
ρ (
∑ρ
r=1 br − 1)

Output: 〈z1, . . . , zn〉 with zi = max{ai − τ, 0}.

2. If
∑n

i=1 zi ≥ 1, return 〈z1, . . . , zn〉. Else, project
〈a1, . . . , an〉 onto the simplex.

The runtime is also O(n log n).
To see that this procedure is correct, we need the

following
Lemma 1. Consider a problem of the form

P : min
x∈X

f(x) s.t. g(x) ≤ 0, (25)

where X is nonempty convex subset of Rd and f :
X → R and g : X → R are convex functions. Sup-
pose that the problem (25) is feasible and bounded
below, and let A be the set of solutions of the relaxed
problem minx∈X f(x), i.e. A = Argminx∈X f(x).
Then:

1. if for some x̃ ∈ A we have g(x̃) ≤ 0, then x̃ is
also a solution of the original problem P ;

2. otherwise (if for all x̃ ∈ A we have g(x̃) > 0),
the inequality constraint is necessarily active in
P , i.e., problem P is equivalent to minx∈X f(x)
s.t. g(x) = 0.

Proof. Let f∗ be the optimal value of P . The first
statement is obvious: since x̃ is a solution of a re-
laxed problem we have f(x̃) ≤ f∗; hence if x̃ is
feasible this becomes an equality. For the second
statement, assume that ∃x ∈ X s.t. g(x) < 0
(otherwise, the statement holds trivially). The non-
linear Farkas’ lemma (Prop. 3.5.4, p. 204, of Bert-
sekas et al. (2003)) implies that there exists some
λ∗ ≥ 0 s.t. f(x) − f∗ + λ∗g(x) ≥ 0 holds for
all x ∈ X. In particular, this also holds for an op-
timal x∗ (i.e., such that f∗ = f(x∗)), which im-
plies that λ∗g(x∗) ≥ 0. However, since λ∗ ≥ 0
and g(x∗) ≤ 0 (since x∗ has to be feasible), we also
have λ∗g(x∗) ≤ 0, i.e., λ∗g(x∗) = 0. Now suppose
that λ∗ = 0. Then we have f(x)− f∗ ≥ 0, ∀x ∈ X,
which implies that x∗ ∈ A and contradicts the as-
sumption that g(x̃) > 0,∀x̃ ∈ A. Hence we must
have g(x∗) = 0.

Hence, the validity of the second step stems from
the fact that, if the relaxed problem in the first step
does not return a feasible point, then the constraint∑n

i=1 zi ≥ 1 has to be active, i.e., we must have∑n
i=1 zi = 1. This, in turn, implies that zi ≤ 1, ∀i,

hence the problem reduces to the XOR case.

E Logical Variable Assignments

Note that ZOR-OUT = Z′ ∩ Z′′ where Z′ =
{〈z0, . . . , zn〉 | z0 ≤ zi, ∀i = 1, . . . , n} and Z′′ =
{〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≥

∑n
i=1 zi}.

The following procedure computes the desired
projection:

1. Set 〈z′0, . . . , z′n〉 as the projection of 〈a0, . . . , an〉
onto Z′. This can be done with a sort in
O(n log n), via Alg. 3.

2. Clip onto the unit cube: for i = 1, . . . , n, set zi =
[z′i]U. If the result lies in Z′′, return 〈z0, . . . , zn〉.
Otherwise, go to step 3.

3. Project 〈a0, . . . , an〉 onto {〈z0, . . . , zn〉 ∈
[0, 1]n | z0 =

∑n
i=1 zi}. Note that this corre-

sponds to the slave subproblem of the XOR-WITH-
OUTPUT factor, hence can be solved inO(n log n)
by projecting onto the simplex.

The total runtime is O(n log n).
To prove the correctness of this procedure, we

will show that steps 1–2 are computing a projection
onto the set: Z̃ = {〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≤
zi, ∀i = 1, . . . , n}. If that is true, then Lemma 1
ensures that the procedure is correct. Note that steps
1–2 are a composition of two projections. In gen-
eral, the composition of individual projections is not
equivalent to projecting onto the intersection. In
particular, commuting the two steps would make
our procedure incorrect. However, it turns out that
the sequence of these two projections correspond to
the first iteration of Dykstra’s projection algorithm
(Boyle and Dykstra, 1986) applied to sets Z′ and
[0, 1]n; and that Dykstra’s converges in one iteration
for this particular case (Martins et al., 2011, supple-
mentary material).

F Linear Program for the Head
Automaton

In this section, we derive the linear program associ-
ated with the sibling-based head automaton used by

Algorithm 3 Projection onto Z′

Input: 〈a0, . . . , an〉
Sort a1, . . . , an into b1 ≥ . . . ≥ bn
Find ρ = min

{
j ∈ [n] | 1

j

(
a0 +

∑j−1
r=1 br

)
> bj

}
Define τ = 1

ρ

(
a0 +

∑ρ−1
r=1 br

)
Output: 〈z0, . . . , zn〉 with z0 = τ and zi =
min{ai, τ}, i = 1, . . . , n.

Koo et al. (2010). Let 〈t0, . . . , tn〉 be a sentence with
nwords, where t0 is a dummy root symbol. For each
word i, we will cast the head automaton problem as
an LP. Without loss of generality, assume that i = 0
and the sequence of siblings lie on the right side of
the root; the general case follows easily. Let:

• sj be the score associated with word tj being a
modifier of t0,

• s0j be the score associated with word tj being
the first modifier of t0,

• sjk be the score associated with words tj and
tk being consecutive siblings.

The problem is equivalent to that of finding a Viterbi
path 〈y1, . . . , yn〉 for a chain model whose possi-
ble states for Yj are {0, . . . , j}; the event Yj = a
means that “the last modifier, up to tj , is ta.” Be-
tween words tj and tj+1, only two transitions may
occur: either Yj+1 = yj (which happens if tj+1 is
not a modifier), or Yj+1 = j + 1 (which happens
otherwise). Since this is a chain model, the marginal
polytope is exactly characterized by local consis-
tency constraints (Wainwright and Jordan, 2008) and
hard constraints. Let µi(a) be the posterior marginal
for the event Yi = a, and µi,i+1(a, b) the posterior
marginal for the event Yi = a ∧ Yi+1 = b. Local
consistency constraints assert that∑i

a=0 µi(a) = 1, i ∈ [n] (26)∑i+1
b=0 µi,i+1(a, b)

= µi(a), i ∈ [n], a ∈ [i] (27)∑i
a=0 µi,i+1(a, b)

= µi+1(b), i ∈ [n], b ∈ [i+ 1] (28)

µi(a) ≥ 0, i ∈ [n], a ∈ [i] (29)

µi,i+1(a, b) ≥ 0, i ∈ [n], a ∈ [i], b ∈ [i+ 1].
(30)

Hard constraints assert that impossible configura-
tions must receive zero marginals:

µi,i+1(a, b) = 0, i ∈ [n], a ∈ [i], b /∈ {a, i+ 1}.
(31)

Plugging (31) in (27)–(28) yields:

µi,i+1(a, a) + µi,i+1(a, i+ 1) = µi(a),
i ∈ [n], a ∈ [i] (32)

µi,i+1(b, b) = µi+1(b),
i ∈ [n], b ∈ [i+ 1] (33)∑i

a=0 µi,i+1(a, i+ 1) = µi+1(i+ 1),
i ∈ [n], (34)

and plugging further (33) in (32) yields:

µi+1(a) + µi,i+1(a, i+ 1) = µi(a),
i ∈ [n], a ∈ [i]. (35)

The marginal polytope is thus characterized by (26),
(35), (34), and (29)–(30). We next make the variable
replacements

• zi , µi(i), the posterior marginal for the event
that ti is a modifier;

• za(i+1) , µi,i+1(a, i + 1), the posterior
marginal for the event that ta and ti+1 are con-
secutive siblings;

• ωai , µi(a), the posterior marginal for the
event that, up to ti, the last modifier is ta.

The overall optimization problem becomes that of
maximizing

n∑
j=1

sjzj +
n∑
j=0

n∑
k=j+1

sjkzjk (36)

subject to:

ωii = zi, i ∈ [n] (37)
i∑

a=0

ωai = 1, i ∈ [n] (38)

ωa(i+1) + za(i+1) = ωai, i ∈ [n], a ∈ [i] (39)
i∑

a=0

za(i+1) = zi+1, i ∈ [n] (40)

ωai ≥ 0, i ∈ [n], a ∈ [i] (41)

za(i+1) ≥ 0, i ∈ [n], a ∈ [i]. (42)

Introducing head automata for each word t0, . . . , tn
yields O(n3) variables and constraints. Therefore
this formulation is as costly as the one employed in
Martins et al. (2009a), while much simpler and, un-
like the latter, exact.

Examining constraints (38) and (41), we recog-
nize the linear equations that define the marginal
polytope ZXOR (cf. Eq. 19). Similarly, constraints
(39) and (41–42) define the marginal polytope of a
XOR-WITH-OUTPUT factor, and so do (40) and (42).
Writing the corresponding logical constraints yields
the expressions in the fifth row of Table 1.

We now show that, if we take the multi-
commodity flow formulation of Martins et al.
(2009a) and replace the consecutive-sibling con-
straints there by the ones in (37)–(42), then the re-
sulting LP has exactly the same solution that is found
by the dual decomposition method of Koo et al.
(2010) with sibling head automata.16 This is done by
showing that the two local polytope approximations
are the same. Moreover, both are tighter approxi-
mations than the one resulting from the single com-
modity flow formulation of Martins et al. (2009a).

The local polytope in Koo et al. (2010) is of the
form

Z̄ =

(ztree, zhead)
∣∣∣∣ ztree ∈ Ztree

zhead ∈ Zhead

ztree ∼ zhead

 , (43)

where Ztree is the directed spanning tree polytope,
and Zhead is the marginal polytope associated with
the head automata, which is characterized by (37)–
(42);17 the requirement for overlap agreement is the
same in Martins et al. (2009a) and Koo et al. (2010),
hence we only need to concern about the directed
spanning tree polytope Ztree. The multi-commodity
flow formulation of Martins et al. (2009a) adds ex-
tra variables for flows in the arcs, and it is shown
that for an arc-factored model the formulation is ex-
act. This means that by projecting out the flow vari-
ables, the constraint space in Martins et al. (2009a)

16However, this does not apply to the head automata model
of Koo et al. (2010) with siblings and grandparents, whose re-
laxation appears to be tighter than just adding grandparent vari-
ables and constraints as in Martins et al. (2009a).

17To be precise, (37)–(42) define a polytope in a larger space
(with extra dimensions for the auxiliary ω-variables). However
the projection of this polytope onto the subspace where the z-
variables live equals Zhead.

becomes exactly the spanning tree polytope Ztree.
Therefore, the local polytope Z̄mc in Martins et al.
(2009a) with the corrections above equals the one in
(43). In contrast, the formulation with single com-
modities is not exact for the arc-factored model, and
as a consequence, the polytope Z̄sc is an outer bound
of Z. In sum, we have the chain:

Z ⊆ Z̄ = Z̄mc ⊆ Z̄sc (44)

where Z is the true (intractable) marginal polytope
for this problem.

G Error Analysis

Fig. 5 shows examples of parses that were correctly
predicted by the full model, but not by the G+CS
model.

In (A), the G+CS model has predicted 1987 as the
head of about. The full model got it right, arguably
due to the nonprojectivity features that find the non-
projective arc lesson→about to be likely.

In (B), the G+CS model attached further to re-
tailers. The word further forms an adverbial phrase
which enjoys considerable freedom about where it
can be placed in a sentence. Hence, features that
look at all siblings attached to a head word (rather
than just consecutive ones) may help parsing sen-
tences without a rigid word ordering.

(C) is an example where path features seem to
help. The G+CS model predicted 3 arcs incor-
rectly, because it assumed that policy won’t become
clear for months was a phrase (hence it predicted
*→translate→wo(n’t)→policy). The full model
may have found unlikely the long path that would
descend from translate, and prefered a more hori-
zontal parse.

Example (D) seems simple to parse; the word
snowball, however, was incorrectly tagged as a verb
by the part-of-speech tagger and confused the G+CS
model, which predicted to→snowball→effect. The
full model got it right, arguably because of the bi-
gram features, which give a low score to configura-
tions in which two consecutive words (in this case
a and snowball) have crossing dependency attach-
ments in opposite sides. This shows that a parser
with many features may gain robustness to errors in
the pipeline.

(A) * He added : ‘‘ We learned a lesson in 1987 about volatility

(B) * ‘‘ This further confuses retailers , ’’ she says

(C) * How such remarks translate into policy wo n’t become clear for months

(D) * In 1987 , such selling contributed to a snowball effect

Figure 5: Sentences of the English non-projective dataset (CoNLL 2008) that were correctly parsed by the full model,
but not by the G+CS model. Arcs shown in blue are those that were missed by the G+CS model. See text for an
explanation.

