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1 Introduction
Structured prediction (SP) problems are characterized by strong interdependence among the output
variables, usually with sequential, graphical, or combinatorial structure [17, 7]. Obtaining good
predictors often requires a large effort in feature/kernel design and tuning (usually done via cross-
validation). Because discriminative training of structured predictors can be quite slow, specially in
large scale settings, it is appealing to learn the kernel function simultaneously.

In multiple kernel learning (MKL, [8]), the kernel is learned as a linear combination of prespecified
base kernels. This framework has been made scalable with the advent of wrapper-based methods,
in which a standard learning problem (e.g., an SVM) is repeatedly solved in an inner loop up to
a prescribed accuracy [14, 11, 6]. Unfortunately, extending such methods to large-scale SP raises
practical hurdles: since the output space is large, so are the kernel matrices, and the number of
support vectors; moreover, it becomes prohibitive to tackle the inner problem in its batch form, and
one usually resorts to online algorithms [12, 3, 13]. The latter are fast learners but slow optimizers
[2]; using them in the inner loop with early stopping may misguide the overall MKL optimization.

We propose instead a stand-alone online MKL algorithm which exploits the large-scale tradeoffs
directly. The algorithm iterates between subgradient and proximal steps, and has important advan-
tages: (i) it is simple, flexible, and compatible with sparse and non-sparse variants of MKL, (ii) it
is adequate for SP, (iii) it offers regret, convergence, and generalization guarantees. Experimentally,
the proposed algorithm yields near-optimal solutions faster than wrapper-based approaches (adapted
to SP). We use the two following SP experimental testbeds: sequence labeling for handwritten text
recognition, and natural language dependency parsing. The potential of our approach is shown in
learning combinations of kernels from tens of thousands of training instances, with encouraging
results in terms of speed, accuracy, and interpretability.

2 Structured Prediction (SP) and Multiple Kernel Learning (MKL)
In SP, to each input x ∈ X corresponds a set of possible outputs, Y(x) ⊆ Y; e.g., in se-
quence labeling, x ∈ X is an observed sequence and y ∈ Y(x) is a sequence of labels. Let
U , {(x, y) | x∈X , y∈Y(x)}. Given a dataset D , {(x1, y1), . . . , (xN , yN )} ⊆ U , the goal is to
learn a compatibility function fθ : U →R whose maximization yields accurate predictions on new
inputs, ŷ(x) = arg maxy∈Y(x) fθ(x, y), according to some cost function ` : Y × Y → R+. In this
paper, we bring in the MKL framework [1, 8] and define

fθ(x, y) , 〈θ,φ(x, y)〉H =
∑M
m=1〈θm,φm(x, y)〉Hm

, (1)

where H =
⊕M

m=1Hm is a direct sum of RKHS, and θ and φ are block-structured (parameter and
feature) vectors. Learning is carried out by minimizing the regularized empirical risk,

minfθ∈H λΩ[fθ] + 1
N

∑N
i=1 L(fθ;xi, yi), (2)

where L is a convex loss (e.g., the structured SVM hinge loss, L(fθ;x, y) , maxy′∈Y(x) fθ(x, y′)−
fθ(x, y) + `(y′, y)), Ω : H → R+ is a regularizer, and λ ≥ 0. Some examples are:
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Algorithm 1 Online Proximal MKL

1: input: D, kernels {Km}Mm=1, regularizers {λjΩj}Jj=1, number of rounds T , sequence (ηt)
T
t=1

2: Initialize θ1 = 0; set N = |D|
3: for t = 1 to T do
4: Take a training pair (xt, yt) and obtain a subgradient gθt

= ∂L(fθt
;xt, yt)

5: Subgradient step: θ̃t = θt − ηtgθt

6: for j = 1 to J do
7: Proximal step: θ̃t+j/J = proxηtλΩj

(θ̃t+(j−1)/J)
8: end for
9: Projection step (optional): θt+1 = θ̃t+1 ·min{1, γ/‖θ̃t+1‖}

10: end for
11: output: the last model fθT+1

or the averaged model f∑T
t=1 θt/T

• `2-regularization, Ω[fθ] = ‖θ‖2/2, recovers the standard SVM with kernel
∑M
m=1Km;

• block-norm `2,1 regularization, Ω[fθ] = 1
2‖θ‖

2
2,1 = 1

2 (
∑M
m=1 ‖θm‖Hm

)2, yields sparse MKL,
which is equivalent to learning a kernel of the form

∑M
m=1 βmKm with β ≥ 0 and ‖β‖1 ≤ 1;

• block-norm `2,q regularization, Ω[fθ] = 1
2‖θ‖

2
2,q = 1

2 (
∑M
m=1 ‖θm‖

q
Hm

)2/q , generalizes the two
previous cases, and for 1 < q ≤ 2 yields non-sparse MKL [6], where the kernel coefficients are
constrained as β ≥ 0 and ‖β‖p ≤ 1 with p = q/(2− q). The algorithm we propose also tackles
the case q > 2, which cannot be handled with the procedure described in [6];

• sums of block-norm regularizers, Ω[fθ] = 1
2

∑J
j=1 σj‖θ‖22,qj , with σj ≥ 0, are a further general-

ization that subsume the elastic MKL of [18]. Our algorithm can also handle these.

Decomposition over parts. As usually in SP [17], features decompose over parts; e.g., if the
structure is expressed with a Markov network (V,E), then each part is associated with either a
vertex or an edge, and the feature vector is written as φ(x, y) = (φV (x, y),φE(x, y)), with:

φV (x, y) =
∑
i∈V

ψX,V (x, i)⊗ ζY,V (yi) and φE(x, y) =
∑
ij∈E

ψX,E(x, ij)⊗ ζY,E(yi, yj). (3)

We make the common simplifying assumption that ζY,V is the identity feature mapping, that
ψX,E ≡ 1, and that ζY,E is the identity feature mapping scaled by a positive β0. We then learn
the kernel KX,V ((x, i), (x′, i′)) = 〈φX,V (x, i),φX,V (x′, i′)〉 as a combination of basis kernels
{KX,V,m}Mm=1. This yields a kernel decomposition of the form

K(u, u′) =
∑
i,i′∈V :yi=y′i′

∑M
m=1 βmKX,V,m((x, i), (x′, i′)) + β0 · |{i, i′ : yi = y′i′ , yj = y′j′}|.

In our sequence labeling experiments, vertices and edges correspond to label unigrams and bigrams.
We explore two strategies: learning β1, . . . , βM , with β0 = 1 fixed, or also learning β0.

3 An Online Algorithm for MKL
To handle (2), we propose Alg. 1, which can be seen as extending FOBOS [5] by allowing multiple
proximal steps to deal with composite regularizers, Ω[fθ] =

∑J
j=1 Ωj [fθ]. Like SGD, Alg. 1

is suitable for problems with large N ; the proximal steps make it effective for (non-differentiable)
sparsity-inducing regularizers. As in PEGASOS [13], if a bound is known on the optimum, ‖θ∗‖ ≤ γ,
a projection step (line 9) is used. Naturally, Alg. 1 is entirely (or partially) kernelizable.
Subgradient step (line 4). First, local scores are computed for each part using the current param-
eters. Then, the highest score output, ŷt ∈ argmaxy′t∈Y(x) fθ(xt, y

′
t) + `(y′t, yt), is found (e.g., by

dynamic programming). Finally, a subgradient is given as gθ = fθ(xt, ŷt)− fθ(xt, yt).

Proximal step (line 7). Given Ω : H → R, the Ω-proximity operator [4] is defined as proxΩ(θ̃) =

arg minθ
1
2‖θ−θ̃‖

2+Ω(θ). The block structure of the parameter vector makes this step particularly
efficient, thanks to the following result:
Proposition 1 Let Ω(θ) ≡ ω((‖θm‖)Mm=1) depend on each block only through its `2-norm. Then,
[proxΩ(θ)]m = [proxω(‖θ1‖, . . . , ‖θM‖)]m(θm/‖θm‖).
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Kernel Training Test Acc.
Runtimes (per char.)

Linear (L) 6 sec. 71.8± 3.9%
Quadratic (Q) 116 sec. 85.5± 0.3%
Gaussian (G) (σ2 = 5) 123 sec. 84.1± 0.4%
Average (L+Q+G)/3 118 sec. 84.3± 0.3%
MKL β1L+ β2Q+ β3G 279 sec. 87.5± 0.3%
MKL β0, β1L+ β2Q+ β3G 282 sec. 87.5± 0.4%
B1-Spline (B1) 8 sec. 75.4± 0.9%
Average (L+ B1)/2 15 sec. 83.0± 0.3%
MKL β1L+ β2B1 15 sec. 85.2± 0.3%
MKL β0, β1L+ β2B1 16 sec. 85.2± 0.3%

Table 1: Results for handwriting recognition.
Averages over 10 runs on the same folds as in
[17], training on one and testing on the others.
The linear and quadratic kernels are normal-
ized to unit diagonal. In all cases, 20 epochs
were used. Results are for the best regular-
ization coefficient C = 1/(λm) (chosen from
{0.1, 1, 10, 102, 103, 104}).

Hence, any `r2,q-proximity operator can be reduced to an `rq one. For sparse MKL (q = 1, r = 2) this
computation can be carried out in time Õ(M) [9] (Õ hides logarithmic terms). For non-sparse MKL,
we replace `22,q by `q2,q (equivalent up to a change in the regularization constant). The `q2,q-proximity
operator is separable, hence can be computed coordinatewise.

Kernelization. The computation of local scores, which precedes the gradient step, only involves
inner products. Hence, the whole algorithm can be kernelized. We only need to keep track of the
`2-norm of each block, which can be updated after each gradient step via

‖θ̃t,m‖2 = ‖θt,m‖2 − 2ηt〈θt,m,φm(xt, yt)〉+ η2
t ‖φm(xt, ŷt)− φm(xt, yt)‖2

= ‖θt,m‖2 − 2ηtfm(ût) + η2
t (Km(ut, ut) +Km(ût, ût)− 2Km(ut, ût)) (4)

and rescaled after each proximal and projection steps.

Regret, Convergence and Generalization Bounds. Let the loss L be convex and G-Lipschitz on
the γ-radius `2-ball (e.g., hinge or logistic), the regularizers Ωj be convex and satisfy additional mild
conditions (satisfied, e.g., by Ωj = λj‖θ‖

qj
pj , for pj , qj ≥ 1). We show [9] that Alg. 1 converges to ε

precision, with high confidence, inO(1/ε2) iterations (as the best batch MKL algorithms). If L or Ω
are strongly convex (e.g., if at least one regularizer Ωj is a squared `2,q-norm, for q > 1), the bound
improves to Õ(1/ε). The generalization bounds are of the same order. This follows from the fact,
shown in [9], that using rate ηt = η0/

√
t yields cumulative regret (w.r.t. the best fixed hypothesis)

RegT ≤
(
(2γ2)/η0 +G2η0

)√
T ; in the presence of σ-strong convexity, a rate ηt = 1/(σt) yields

RegT ≤ G2(1 + log T )/(2σ).

4 Experiments
Handwriting recognition. We use an OCR dataset [17] with 6,877 words written by 150 people
(52,152 characters). Each character is a 16 × 8 binary image with one of 26 labels (a-z). Our
first experiment (upper part of Tab. 1) compares linear, quadratic, and Gaussian kernels, used in-
dividually, combined via a simple average, or with MKL via Alg. 1. The results show that MKL
outperforms the others, and that learning the bigram weight β0 did not make any difference.

The second experiment shows that Alg. 1 handles both feature and kernel sparsity by learning a
combination of a linear kernel (explicit features) with a generalized B1-spline kernel (K(x,x′) =
max{0, 1 − ‖x − x′‖/h}, with h such that the kernel matrix has ∼ 95% zeros). The idea is to
combine a simple feature-based kernel with one depending only on a few nearest neighbors. The
results (Tab. 1, bottom part) show that MKL outperforms the individual kernels and the averaged
kernel. The runtime is much shorter than in the previous experiment, with a mild accuracy decrease.

The third experiment compares Alg. 1 with two wrapper-based schemes: a Gauss-Seidel method al-
ternating between optimizing the SVM and the kernel weights, and a gradient method (SimpleMKL
[11]). In both cases, the SVMs were tackled with structured PEGASOS. As shown in Fig. 1, Alg. 1
converges in a small number of epochs to a near-optimal region, suggesting its usefulness in settings
where each epoch is costly.

Dependency parsing. We train non-projective dependency parsers on the dataset of the CoNLL-
2008 shared task [15] (39,278 training, 2,399 test sentences). The output to be predicted from each
input sentence is the set of dependency arcs, which must define a directed spanning tree (example in
Fig. 2). We use arc-factored models, and define a total of 507 feature groups (our linear kernels to be
combined) conjoining words, lemmas, parts-of-speech, distance and direction of attachment. This
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Figure 1: Comparison between Alg. 1
and two wrapper based methods in the
OCR dataset, with C = 100. With only
20–30 passes over the data, Alg. 1 ap-
proaches a region very close to the op-
timum; in contrast, the wrapper-based
methods need about 100 epochs.
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Abstract

We formalize weighted dependency pars-

ing as searching for maximum spanning

trees (MSTs) in directed graphs. Using

this representation, the parsing algorithm

of Eisner (1996) is sufficient for search-

ing over all projective trees inO(n3) time.
More surprisingly, the representation is

extended naturally to non-projective pars-

ing using Chu-Liu-Edmonds (Chu and

Liu, 1965; Edmonds, 1967) MST al-

gorithm, yielding an O(n2) parsing al-
gorithm. We evaluate these methods

on the Prague Dependency Treebank us-

ing online large-margin learning tech-

niques (Crammer et al., 2003; McDonald

et al., 2005) and show that MST parsing

increases efficiency and accuracy for lan-

guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-

est lately for applications such as relation extrac-

tion (Culotta and Sorensen, 2004), machine trans-

lation (Ding and Palmer, 2005), synonym genera-

tion (Shinyama et al., 2002), and lexical resource

augmentation (Snow et al., 2004). The primary

reasons for using dependency structures instead of

more informative lexicalized phrase structures is

that they are more efficient to learn and parse while

still encoding much of the predicate-argument infor-

mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to

their arguments, have a long history (Hudson, 1984).

Figure 1 shows a dependency tree for the sentence

John hit the ball with the bat. We restrict ourselves

to dependency tree analyses, in which each word de-

pends on exactly one parent, either another word or a

dummy root symbol as shown in the figure. The tree

in Figure 1 is projective, meaning that if we put the

words in their linear order, preceded by the root, the

edges can be drawn above the words without cross-

ings, or, equivalently, a word and its descendants

form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-

lyze most sentence types. In fact, the largest source

of English dependency trees is automatically gener-

ated from the Penn Treebank (Marcus et al., 1993)

and is by convention exclusively projective. How-

ever, there are certain examples in which a non-

projective tree is preferable. Consider the sentence

John saw a dog yesterday which was a Yorkshire Ter-

rier. Here the relative clause which was a Yorkshire

Terrier and the object it modifies (the dog) are sep-

arated by an adverb. There is no way to draw the

dependency tree for this sentence in the plane with

no crossing edges, as illustrated in Figure 2. In lan-

guages with more flexible word order than English,

such as German, Dutch and Czech, non-projective

dependencies are more frequent. Rich inflection

systems reduce reliance on word order to express

Figure 2: Top: a dependency
parse tree (see [10]). Bottom
left: group weights along the
epochs of Alg. 1. Bottom right:
results of standard SVMs trained
on sets of feature templates of sizes
{107, 207, 307, 407, 507}, either
selected via a standard SVM or
by MKL (the UAS—unlabeled at-
tachment score—is the fraction of
non-punctuation words whose head
was correctly assigned.)

yields a problem with > 50 million instantiated features. The feature vectors associated with each
candidate arc, however, are very sparse and this is exploited in the implementation. We run Alg. 1
with explicit features. Although MKL did not outperform an SVM, it showed a good performance
at pruning irrelevant feature templates (Fig. 2, bottom right). Besides interpretability, this pruning is
also appealing in a two-stage architecture, where a standard learner at a second stage will only need
to handle a small fraction of the groups initially hypothesized, perhaps giving speedups in inference.
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Informática. E. X. was supported by AFOSR FA9550010247, ONR N000140910758, NSF CAREER DBI-
0546594, NSF IIS-0713379, and an Alfred P. Sloan Fellowship. M. F. and P. A. were supported by the
FET programme (EU FP7), under the SIMBAD project (contract 213250), and by a FCT grant PTDC/EEA-
TEL/72572/2006.

References
[1] Bach, F., Lanckriet, G., and Jordan, M. (2004). Multiple kernel learning, conic duality, and the SMO

algorithm. In ICML.
[2] Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. NIPS, 20.
[3] Collins, M., Globerson, A., Koo, T., Carreras, X., and Bartlett, P. (2008). Exponentiated gradient algo-

rithms for conditional random fields and max-margin Markov networks. JMLR.
[4] Combettes, P. and Wajs, V. (2006). Signal recovery by proximal forward-backward splitting. Multiscale

Modeling and Simulation, 4(4):1168–1200.
[5] Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward backward splitting.

JMLR, 10:2873–2908.
[6] Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. (2010). Non-Sparse Regularization and Efficient

Training with Multiple Kernels. Arxiv preprint arXiv:1003.0079.
[7] Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In ICML.
[8] Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004). Learning the

kernel matrix with semidefinite programming. JMLR, 5:27–72.
[9] Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2010). Online

MKL for Structured Prediction. Arxiv preprint arXiv:1010.2770.
[10] McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using

spanning tree algorithms. In Proc. of HLT-EMNLP.
[11] Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008). SimpleMKL. JMLR, 9:2491–2521.

4



[12] Ratliff, N., Bagnell, J., and Zinkevich, M. (2006). Subgradient methods for maximum margin structured
learning. In ICML Workshop on Learning in Structured Outputs Spaces.

[13] Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated sub-gradient solver for
svm. In ICML.
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