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1 Introduction

Structured prediction (SP) problems are characterized by strong interdependence among the output
variables, usually with sequential, graphical, or combinatorial structure [17, 7]. Obtaining good
predictors often requires a large effort in feature/kernel design and tuning (usually done via cross-
validation). Because discriminative training of structured predictors can be quite slow, specially in
large scale settings, it is appealing to learn the kernel function simultaneously.

In multiple kernel learning (MKL, [8]), the kernel is learned as a linear combination of prespecified
base kernels. This framework has been made scalable with the advent of wrapper-based methods,
in which a standard learning problem (e.g., an SVM) is repeatedly solved in an inner loop up to
a prescribed accuracy [14, 11, 6]. Unfortunately, extending such methods to large-scale SP raises
practical hurdles: since the output space is large, so are the kernel matrices, and the number of
support vectors; moreover, it becomes prohibitive to tackle the inner problem in its batch form, and
one usually resorts to online algorithms [12, 3, 13]. The latter are fast learners but slow optimizers
[2]; using them in the inner loop with early stopping may misguide the overall MKL optimization.

We propose instead a stand-alone online MKL algorithm which exploits the large-scale tradeoffs
directly. The algorithm iterates between subgradient and proximal steps, and has important advan-
tages: (i) it is simple, flexible, and compatible with sparse and non-sparse variants of MKL, (ii) it
is adequate for SP, (iii) it offers regret, convergence, and generalization guarantees. Experimentally,
the proposed algorithm yields near-optimal solutions faster than wrapper-based approaches (adapted
to SP). We use the two following SP experimental testbeds: sequence labeling for handwritten text
recognition, and natural language dependency parsing. The potential of our approach is shown in
learning combinations of kernels from tens of thousands of training instances, with encouraging
results in terms of speed, accuracy, and interpretability.

2 Structured Prediction (SP) and Multiple Kernel Learning (MKL)

In SP, to each input 2 € X corresponds a set of possible outputs, Y(z) C JY; e.g., in se-
quence labeling, * € X is an observed sequence and y € Y(z) is a sequence of labels. Let
U=E{(z,y)| r€X,yeY(x)}. Given adataset D = {(21,%1),. .., (zn,yn)} C U, the goal is to
learn a compatibility function fg : U — R whose maximization yields accurate predictions on new
inputs, () = argmaxy,cy(,) fo(,y), according to some cost function £ : ) x Y — R In this
paper, we bring in the MKL framework [1, 8] and define

fo(a,y) 2 (0, (2, 1)1 = w1 (O B (2,9)) 30, (1)

where H = @%:1 H, is a direct sum of RKHS, and 8 and ¢ are block-structured (parameter and
feature) vectors. Learning is carried out by minimizing the regularized empirical risk,

mingyey AQfo] + & S L(fos i, yi), )

where L is a convex loss (e.g., the structured SVM hinge loss, L( fg; z,y) £ max,cy(z) fo(r,y')—
folx,y) + 2y, y)), Q : H — Ry is aregularizer, and A > 0. Some examples are:



Algorithm 1 Online Proximal MKL

—_

input: D, kernels {K,, }M_,, regularizers {\;Q;}/_,, number of rounds 7', sequence (1;)7_,

Jj=1

2: Initialize 6; = 0; set N = | D

3: fort =1to T do

4:  Take a training pair (2, ;) and obtain a subgradient go, = 9L(fa,; 2+, yt)
5: Subgradient step: 8; = 0; — 1:g,,

6: forj=1toJdo

7: Proximal step: 0f+J/J = PIrox,, o, (0t+(j 1/7)

8: end for ~ _

9:  Projection step (optional): 6,41 = 0,41 - min{1,~/|041(}

10: end for

11:

output: the last model fq.., or the averaged model fthzl 0,/T

e (y-regularization, Q[fe] = ||@]|?/2, recovers the standard SVM with kernel Zm 1 Kms

e block-norm ¢z 1 regularization, Qfo] = 3613, = (5%, [6,us,,)2. vields sparse MKL.
which is equivalent to learning a kernel of the form Eﬁle B K with 8 > 0 and ||B|1 < 1;

o block-norm ¢5 , regularization, [ fg] = %HOH%q = %(2%21 10,14, )2/4, generalizes the two
previous cases, and for 1 < ¢ < 2 yields non-sparse MKL [6], where the kernel coefficients are
constrained as 3 > 0 and ||8]|, < 1 with p = ¢/(2 — ¢). The algorithm we propose also tackles
the case ¢ > 2, which cannot be handled with the procedure described in [6];

e sums of block-norm regularizers, Q[fg] = 3 Z}]=1 a;16113, ¢, With o > 0, are a further general-
ization that subsume the elastic MKL of [18]. Our algorithm can also handle these.

Decomposition over parts. As usually in SP [17], features decompose over parts; e.g., if the
structure is expressed with a Markov network (V, E), then each part is associated with either a
vertex or an edge, and the feature vector is written as ¢(z,y) = (¢ (x,y), pp(z,y)), with:

dy(z,y) Z’¢XV 2,1) ® Qy,y(yi) and @p(z,y) Z Yx,5(®,15) © Cy p(i, y;)- 3)

eV ije
We make the common simplifying assumption that CYV is the identity feature mapping, that
Yx g = 1, and that {y  is the identity feature mapping scaled by a positive 3y. We then learn
the kernel Kx v ((z,i), (2/,i')) = (Px.v(z,i),¢x v (2',")) as a combination of basis kernels
{Kx v.m}M_,. This yields a kernel decomposition of the form

K(u,u') = Zi,i’eV:yi:y,’v/ Z —1 B Ex vm((2,1), (2',1") + Bo - {i,1" 1y = Yo, y; = y;"}|~

In our sequence labeling experiments, vertices and edges correspond to label unigrams and bigrams.
We explore two strategies: learning 1, .. ., By, with By = 1 fixed, or also learning ;.

3 An Online Algorithm for MKL

To handle (2), we propose Alg. 1, which can be seen as extending FOBOS [5] by allowing multiple
proximal steps to deal with composite regularizers, Q[fg] = Z‘j]:l Q;[fe]. Like SGD, Alg. 1
is suitable for problems with large /V; the proximal steps make it effective for (non-differentiable)
sparsity-inducing regularizers. As in PEGASOS [13], if a bound is known on the optimum, ||6*|| < 7,
a projection step (line 9) is used. Naturally, Alg. 1 is entirely (or partially) kernelizable.

Subgradient step (line 4). First, local scores are computed for each part using the current param-
eters. Then, the highest score output, §; € argmaxy,cy () fo(t, y;) + £(y;, ye), is found (e.g., by
dynamic programming). Finally, a subgradient is given as gg = fo(+, §:) — fo(zt, yt)-

Proximal step (line 7). Given Q2 : H — R, the Q-proximity operator [4] is defined as pron(é) =

arg ming 1|6 — 6|2 +2(0). The block structure of the parameter vector makes this step particularly
efficient, thanks to the following result:

Proposition 1 Let Q(0) = w((||0.|)))_,) depend on each block only through its {2-norm. Then,
[proxg (0)]m = [prox, ([01l;- -, [Oar[])]m (O /[|0m]))-



Kernel Training Test Acc. Table 1: Results for handwriting recognition.
e R‘;“st:;‘es 71(pser ihgrg% Averages over 10 runs on the same folds as in
Quadratic (Q) 16sec.  85.5+ 0.3% [17], training on one and testing on the others.
Gaussian((G) (Z?2 = GS;/ 123sec.  84.1 i 0.43 The linear and quadratic kernels are normal-
Average (L + Q + 3 118 sec. 84.3 £ 0.3% : : :
MKL 1L 4 5@ + BaC 2795, 875103y 1zed to unit diagonal. In all cases, 20 epochs
MKL B0, B1 L + B2Q + BsG | 282sec. 87.5+0.4%  were used. Results are for the best regular-
fl’sphﬂ(eL(?_l)B " 185sec- ;g-é i g-g;'//o ization coefficient C' = 1/(Am) (chosen from

verage 1 sec. . .37 2 3 4

MKL 1 L + 82 B, 15sec.  852+03%  (0-1,1,10,10%,10%,10%}).
MKL Bo, S1L + B2B1 16 sec. 85.2 + 0.3%

Hence, any ¢} -proximity operator can be reduced to an £ one. For sparse MKL (¢ = 1,7 = 2) this

computation can be carried out in time O(M ) [9] (O hides logarithmic terms). For non-sparse MKL,
we replace E%, q b Eg’ o (equivalent up to a change in the regularization constant). The 63’ o~Proximity
operator is separable, hence can be computed coordinatewise.

Kernelization. The computation of local scores, which precedes the gradient step, only involves
inner products. Hence, the whole algorithm can be kernelized. We only need to keep track of the
£o-norm of each block, which can be updated after each gradient step via

10l = 18cmll® = 206(Or,m: B (@t y0)) + 17 D (2, Ge) = o (e 90) |1
= |0t = 20¢ frn () + 17 (K (g, ) + Ko (G, ) — 2K (ue, ) (4)
and rescaled after each proximal and projection steps.

Regret, Convergence and Generalization Bounds. Let the loss L be convex and G-Lipschitz on
the y-radius ¢>-ball (e.g., hinge or logistic), the regularizers {2; be convex and satisfy additional mild
conditions (satisfied, e.g., by 2; = Aj||0|\;’,§, for p;, q; > 1). We show [9] that Alg. 1 converges to €

precision, with high confidence, in O(1/¢2) iterations (as the best batch MKL algorithms). If L or
are strongly convex (e.g., if at least one regularizer €} is a squared {3 4-norm, for ¢ > 1), the bound

improves to O(1/€). The generalization bounds are of the same order. This follows from the fact,
shown in [9], that using rate 1; = 19/+/ yields cumulative regret (w.r.t. the best fixed hypothesis)
Regr < ((292)/n0 + G*no) VT in the presence of o-strong convexity, a rate 77, = 1/(ot) yields
Regr < G%(1+1ogT)/(20).

4 Experiments

Handwriting recognition. We use an OCR dataset [17] with 6,877 words written by 150 people
(52,152 characters). Each character is a 16 x 8 binary image with one of 26 labels (a-z). Our
first experiment (upper part of Tab. 1) compares linear, quadratic, and Gaussian kernels, used in-
dividually, combined via a simple average, or with MKL via Alg. 1. The results show that MKL
outperforms the others, and that learning the bigram weight 5y did not make any difference.

The second experiment shows that Alg. | handles both feature and kernel sparsity by learning a
combination of a linear kernel (explicit features) with a generalized B -spline kernel (K (x,x’) =
max{0,1 — ||x — x'||/h}, with h such that the kernel matrix has ~ 95% zeros). The idea is to
combine a simple feature-based kernel with one depending only on a few nearest neighbors. The
results (Tab. 1, bottom part) show that MKL outperforms the individual kernels and the averaged
kernel. The runtime is much shorter than in the previous experiment, with a mild accuracy decrease.

The third experiment compares Alg. 1 with two wrapper-based schemes: a Gauss-Seidel method al-
ternating between optimizing the SVM and the kernel weights, and a gradient method (SimpleMKL
[11]). In both cases, the SVMs were tackled with structured PEGASOS. As shown in Fig. 1, Alg. |
converges in a small number of epochs to a near-optimal region, suggesting its usefulness in settings
where each epoch is costly.

Dependency parsing. We train non-projective dependency parsers on the dataset of the CoNLL-
2008 shared task [15] (39,278 training, 2,399 test sentences). The output to be predicted from each
input sentence is the set of dependency arcs, which must define a directed spanning tree (example in
Fig. 2). We use arc-factored models, and define a total of 507 feature groups (our linear kernels to be
combined) conjoining words, lemmas, parts-of-speech, distance and direction of attachment. This



Sparse MKL, C=100
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yields a problem with > 50 million instantiated features. The feature vectors associated with each
candidate arc, however, are very sparse and this is exploited in the implementation. We run Alg. 1
with explicit features. Although MKL did not outperform an SVM, it showed a good performance
at pruning irrelevant feature templates (Fig. 2, bottom right). Besides interpretability, this pruning is
also appealing in a two-stage architecture, where a standard learner at a second stage will only need
to handle a small fraction of the groups initially hypothesized, perhaps giving speedups in inference.
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