
Backpropagating through Structured Argmax using a SPIGOT

Hao Peng♦ Sam Thomson♣ Noah A. Smith♦
♦ Paul G. Allen School of Computer Science & Engineering, University of Washington

♣ School of Computer Science, Carnegie Mellon University
{hapeng,nasmith}@cs.washington.edu, sthomson@cs.cmu.edu

Abstract

We introduce the structured projec-
tion of intermediate gradients optimiza-
tion technique (SPIGOT), a new method
for backpropagating through neural net-
works that include hard-decision struc-
tured predictions (e.g., parsing) in in-
termediate layers. SPIGOT requires no
marginal inference, unlike structured at-
tention networks (Kim et al., 2017) and
some reinforcement learning-inspired so-
lutions (Yogatama et al., 2017). Like so-
called straight-through estimators (Hinton,
2012), SPIGOT defines gradient-like quan-
tities associated with intermediate nondif-
ferentiable operations, allowing backprop-
agation before and after them; SPIGOT’s
proxy aims to ensure that, after a param-
eter update, the intermediate structure will
remain well-formed.

We experiment on two structured NLP
pipelines: syntactic-then-semantic depen-
dency parsing, and semantic parsing fol-
lowed by sentiment classification. We
show that training with SPIGOT leads to
a larger improvement on the downstream
task than a modularly-trained pipeline, the
straight-through estimator, and structured
attention, reaching a new state of the art
on semantic dependency parsing.

1 Introduction

Learning methods for natural language process-
ing are increasingly dominated by end-to-end dif-
ferentiable functions that can be trained using
gradient-based optimization. Yet traditional NLP
often assumed modular stages of processing that
formed a pipeline; e.g., text was tokenized, then
tagged with parts of speech, then parsed into a

phrase-structure or dependency tree, then semanti-
cally analyzed. Pipelines, which make “hard” (i.e.,
discrete) decisions at each stage, appear to be in-
compatible with neural learning, leading many re-
searchers to abandon earlier-stage processing.

Inspired by findings that continue to see benefit
from various kinds of linguistic or domain-specific
preprocessing (He et al., 2017; Oepen et al., 2017;
Ji and Smith, 2017), we argue that pipelines can
be treated as layers in neural architectures for NLP
tasks. Several solutions are readily available:
• Reinforcement learning (most notably the

REINFORCE algorithm; Williams, 1992), and
structured attention (SA; Kim et al., 2017).
These methods replace argmax with a sam-
pling or marginalization operation. We
note two potential downsides of these ap-
proaches: (i) not all argmax-able operations
have corresponding sampling or marginaliza-
tion methods that are efficient, and (ii) in-
spection of intermediate outputs, which could
benefit error analysis and system improve-
ment, is more straightforward for hard deci-
sions than for posteriors.
• The straight-through estimator (STE; Hin-

ton, 2012) treats discrete decisions as if
they were differentiable and simply passes
through gradients. While fast and surpris-
ingly effective, it ignores constraints on the
argmax problem, such as the requirement
that every word has exactly one syntactic par-
ent. We will find, experimentally, that the
quality of intermediate representations de-
grades substantially under STE.

This paper introduces a new method, the struc-
tured projection of intermediate gradients opti-
mization technique (SPIGOT; §2), which defines a
proxy for the gradient of a loss function with re-
spect to the input to argmax. Unlike STE’s gradi-
ent proxy, SPIGOT aims to respect the constraints



in the argmax problem. SPIGOT can be applied
with any intermediate layer that is expressible as
a constrained maximization problem, and whose
feasible set can be projected onto. We show em-
pirically that SPIGOT works even when the max-
imization and the projection are done approxi-
mately.

We offer two concrete architectures that employ
structured argmax as an intermediate layer: se-
mantic parsing with syntactic parsing in the mid-
dle, and sentiment analysis with semantic parsing
in the middle (§3). These architectures are trained
using a joint objective, with one part using data for
the intermediate task, and the other using data for
the end task. The datasets are not assumed to over-
lap at all, but the parameters for the intermediate
task are affected by both parts of the training data.

Our experiments (§4) show that our architecture
improves over a state-of-the-art semantic depen-
dency parser, and that SPIGOT offers stronger per-
formance than a pipeline, SA, and STE. On sen-
timent classification, we show that semantic pars-
ing offers improvement over a BiLSTM, more so
with SPIGOT than with alternatives. Our analy-
sis considers how the behavior of the intermedi-
ate parser is affected by the end task (§5). Our
code is open-source and available at https://
github.com/Noahs-ARK/SPIGOT.

2 Method

Our aim is to allow a (structured) argmax layer
in a neural network to be treated almost like any
other differentiable function. This would allow us
to place, for example, a syntactic parser in the mid-
dle of a neural network, so that the forward calcu-
lation simply calls the parser and passes the parse
tree to the next layer, which might derive syntactic
features for the next stage of processing.

The challenge is in the backward computation,
which is key to learning with standard gradient-
based methods. When its output is discrete as we
assume here, argmax is a piecewise constant func-
tion. At every point, its gradient is either zero or
undefined. So instead of using the true gradient,
we will introduce a proxy for the gradient of the
loss function with respect to the inputs to argmax,
allowing backpropagation to proceed through the
argmax layer. Our proxy is designed as an im-
provement to earlier methods (discussed below)
that completely ignore constraints on the argmax
operation. It accomplishes this through a projec-

tion of the gradients.
We first lay out notation, and then briefly review

max-decoding and its relaxation (§2.1). We define
SPIGOT in §2.2, and show how to use it to back-
propagate through NLP pipelines in §2.3.

Notation. Our discussion centers around two
tasks: a structured intermediate task followed by
an end task, where the latter considers the out-
puts of the former (e.g., syntactic-then-semantic
parsing). Inputs are denoted as x, and end task
outputs as y. We use z to denote intermedi-
ate structures derived from x. We will often re-
fer to the intermediate task as “decoding”, in the
structured prediction sense. It seeks an output
ẑ = argmaxz∈Z S from the feasible set Z , max-
imizing a (learned, parameterized) scoring func-
tion S for the structured intermediate task. L de-
notes the loss of the end task, which may or may
not also involve structured predictions. We use
∆k−1 = {p ∈ Rk | 1>p = 1,p ≥ 0} to
denote the (k − 1)-dimensional simplex. We de-
note the domain of binary variables as B = {0, 1},
and the unit interval as U = [0, 1]. By projection
of a vector v onto a set A, we mean the closest
point in A to v, measured by Euclidean distance:
projA(v) = argminv′∈A ‖v′ − v‖2.

2.1 Relaxed Decoding

Decoding problems are typically decomposed into
a collection of “parts”, such as arcs in a depen-
dency tree or graph. In such a setup, each element
of z, zi, corresponds to one possible part, and zi
takes a boolean value to indicate whether the part
is included in the output structure. The scoring
function S is assumed to decompose into a vector
s(x) of part-local, input-specific scores:

ẑ = argmax
z∈Z

S(x, z) = argmax
z∈Z

z>s(x) (1)

In the following, we drop s’s dependence on x for
clarity.

In many NLP problems, the output space Z can
be specified by linear constraints (Roth and Yih,
2004):

A

[
z
ψ

]
≤ b, (2)

where ψ are auxiliary variables (also scoped by
argmax), together with integer constraints (typi-
cally, each zi ∈ B).

https://github.com/Noahs-ARK/SPIGOT
https://github.com/Noahs-ARK/SPIGOT


ẑ

z̃

ẑ� ⌘rẑL

�rsL
ẑ

ẑ� ⌘rẑL

�rsL

Figure 1: The original feasible set Z (red ver-
tices), is relaxed into a convex polytope P (the
area encompassed by blue edges). Left: making
a gradient update to ẑ makes it step outside the
polytope, and it is projected back to P , resulting
in the projected point z̃. ∇sL is then along the
edge. Right: updating ẑ keeps it within P , and
thus∇sL = η∇ẑL.

The problem in Equation 1 can be NP-complete
in general, so the {0, 1} constraints are often re-
laxed to [0, 1] to make decoding tractable (Mar-
tins et al., 2009). Then the discrete combinatorial
problem over Z is transformed into the optimiza-
tion of a linear objective over a convex polytope
P={p ∈ Rd |Ap≤b}, which is solvable in poly-
nomial time (Bertsimas and Tsitsiklis, 1997). This
is not necessary in some cases, where the argmax
can be solved exactly with dynamic programming.

2.2 From STE to SPIGOT

We now view structured argmax as an activation
function that takes a vector of input-specific part-
scores s and outputs a solution ẑ. For backpropa-
gation, to calculate gradients for parameters of s,
the chain rule defines:

∇sL = J ∇ẑL, (3)

where the Jacobian matrix J = ∂ẑ
∂s contains the

derivative of each element of ẑ with respect to
each element of s. Unfortunately, argmax is a
piecewise constant function, so its Jacobian is ei-
ther zero (almost everywhere) or undefined (in the
case of ties).

One solution, taken in structured attention, is to
replace the argmax with marginal inference and
a softmax function, so that ẑ encodes probability
distributions over parts (Kim et al., 2017; Liu and
Lapata, 2018). As discussed in §1, there are two
reasons to avoid this modification. Softmax can
only be used when marginal inference is feasible,
by sum-product algorithms for example (Eisner,
2016; Friesen and Domingos, 2016); in general
marginal inference can be #P-complete. Further,
a soft intermediate layer will be less amenable to
inspection by anyone wishing to understand and
improve the model.

In another line of work, argmax is aug-
mented with a strongly-convex penalty on the so-
lutions (Martins and Astudillo, 2016; Amos and
Kolter, 2017; Niculae and Blondel, 2017; Niculae
et al., 2018; Mensch and Blondel, 2018). How-
ever, their approaches require solving a relaxation
even when exact decoding is tractable. Also, the
penalty will bias the solutions found by the de-
coder, which may be an undesirable conflation of
computational and modeling concerns.

A simpler solution is the STE method (Hin-
ton, 2012), which replaces the Jacobian matrix in
Equation 3 by the identity matrix. This method
has been demonstrated to work well when used
to “backpropagate” through hard threshold func-
tions (Bengio et al., 2013; Friesen and Domin-
gos, 2018) and categorical random variables (Jang
et al., 2016; Choi et al., 2017).

Consider for a moment what we would do if ẑ
were a vector of parameters, rather than intermedi-
ate predictions. In this case, we are seeking points
in Z that minimize L; denote that set of minimiz-
ers by Z∗. Given ∇ẑL and step size η, we would
update ẑ to be ẑ − η∇ẑL. This update, however,
might not return a value in the feasible set Z , or
even (if we are using a linear relaxation) the re-
laxed set P .

SPIGOT therefore introduces a projection step
that aims to keep the “updated” ẑ in the feasible
set. Of course, we do not directly update ẑ; we
continue backpropagation through s and onward
to the parameters. But the projection step nonethe-
less alters the parameter updates in the way that
our proxy for “∇sL” is defined.

The procedure is defined as follows:

p̂ = ẑ− η∇ẑL, (4a)

z̃ = projP(p̂), (4b)

∇sL , ẑ− z̃. (4c)

First, the method makes an “update” to ẑ as if it
contained parameters (Equation 4a), letting p̂ de-
note the new value. Next, p̂ is projected back onto
the (relaxed) feasible set (Equation 4b), yielding a
feasible new value z̃. Finally, the gradients with
respect to s are computed by Equation 4c.

Due to the convexity of P , the projected point z̃
will always be unique, and is guaranteed to be no
farther than p̂ from any point in Z∗ (Luenberger
and Ye, 2015).1 Compared to STE, SPIGOT in-

1Note that this property follows from P’s convexity, and
we do not assume the convexity of L.



volves a projection and limits ∇sL to a smaller
space to satisfy constraints. See Figure 1 for an
illustration.

When efficient exact solutions (such as dynamic
programming) are available, they can be used. Yet,
we note that SPIGOT does not assume the argmax
operation is solved exactly.

2.3 Backpropagation through Pipelines
Using SPIGOT, we now devise an algorithm to
“backpropagate” through NLP pipelines. In these
pipelines, an intermediate task’s output is fed into
an end task for use as features. The parameters of
the complete model are divided into two parts: de-
note the parameters of the intermediate task model
byφ (used to calculate s), and those in the end task
model as θ.2 As introduced earlier, the end-task
loss function to be minimized is L, which depends
on both φ and θ.

Algorithm 1 describes the forward and back-
ward computations. It takes an end task training
pair 〈x,y〉, along with the intermediate task’s fea-
sible set Z , which is determined by x. It first runs
the intermediate model and decodes to get inter-
mediate structure ẑ, just as in a standard pipeline.
Then forward propagation is continued into the
end-task model to compute loss L, using ẑ to de-
fine input features. Backpropagation in the end-
task model computes ∇θL and ∇ẑL, and ∇sL is
then constructed using Equations 4. Backpropa-
gation then continues into the intermediate model,
computing∇φL.

Due to its flexibility, SPIGOT is applicable to
many training scenarios. When there is no 〈x, z〉
training data for the intermediate task, SPIGOT can
be used to induce latent structures for the end-task
(Yogatama et al., 2017; Kim et al., 2017; Choi
et al., 2017, inter alia). When intermediate-task
training data is available, one can use SPIGOT to
adopt joint learning by minimizing an interpo-
lation of L (on end-task data 〈x,y〉) and an
intermediate-task loss function L̃ (on intermediate
task data 〈x, z〉). This is the setting in our experi-
ments; note that we do not assume any overlap in
the training examples for the two tasks.

3 Solving the Projections

In this section we discuss how to compute approx-
imate projections for the two intermediate tasks

2Nothing prohibits tying across pre-argmax parameters
and post-argmax parameters; this separation is notationally
convenient but not at all necessary.

Algorithm 1 Forward and backward computation
with SPIGOT.
1: procedure SPIGOT(x,y,Z)
2: Construct A, b such that Z = {p ∈ Zd | Ap ≤ b}
3: P ← {p ∈ Rd | Ap ≤ b} . Relaxation
4: Forwardprop and compute sφ(x)
5: ẑ← argmaxz∈Z z>sφ(x) . Intermediate decoding
6: Forwardprop and compute L given x, y, and ẑ
7: Backprop and compute∇θL and∇ẑL
8: z̃← projP(ẑ− η∇ẑL) . Projection
9: ∇sL← ẑ− z̃

10: Backprop and compute∇φL
11: end procedure

considered in this work, arc-factored unlabeled de-
pendency parsing and first-order semantic depen-
dency parsing.

In early experiments we observe that for both
tasks, projecting with respect to all constraints
of their original formulations using a generic
quadratic program solver was prohibitively slow.
Therefore, we construct relaxed polytopes by con-
sidering only a subset of the constraints.3 The
projection then decomposes into a series of singly
constrained quadratic programs (QP), each of
which can be efficiently solved in linear time.

The two approximate projections discussed here
are used in backpropagation only. In the forward
pass, we solve the decoding problem using the
models’ original decoding algorithms.

Arc-factored unlabeled dependency parsing.
For unlabeled dependency trees, we impose [0, 1]
constraints and single-headedness constraints.4

Formally, given a length-n input sentence, ex-
cluding self-loops, an arc-factored parser consid-
ers d = n(n − 1) candidate arcs. Let i→j denote
an arc from the ith token to the jth, and σ(i→j)
denote its index. We construct the relaxed feasible
set by:

PDEP =

p ∈ Ud
∣∣∣∣∣∣
∑
i 6=j

pσ(i→j) = 1,∀j

 , (5)

i.e., we consider each token j individually, and
force single-headedness by constraining the num-
ber of arcs incoming to j to sum to 1. Algorithm 2
summarizes the procedure to project onto PDEP.

3A parallel work introduces an active-set algorithm to
solve the same class of quadratic programs (Niculae et al.,
2018). It might be an efficient approach to solve the projec-
tions in Equation 4b, which we leave to future work.

4 It requires O(n2) auxiliary variables and O(n3) addi-
tional constraints to ensure well-formed tree structures (Mar-
tins et al., 2013).



Line 3 forms a singly constrained QP, and can be
solved in O(n) time (Brucker, 1984).

Algorithm 2 Projection onto the relaxed polytope
PDEP for dependency tree structures. Let bold
σ(·→j) denote the index set of arcs incoming to
j. For a vector v, we use vσ(·→j) to denote vector
[vk]k∈σ(·→j).

1: procedure DEPPROJ(p̂)
2: for j = 1, 2, . . . , n do
3: z̃σ(·→j) ← proj∆n−2

(
p̂σ(·→j)

)
4: end for
5: return z̃
6: end procedure

First-order semantic dependency parsing. Se-
mantic dependency parsing uses labeled bilexical
dependencies to represent sentence-level seman-
tics (Oepen et al., 2014, 2015, 2016). Each de-
pendency is represented by a labeled directed arc
from a head token to a modifier token, where the
arc label encodes broadly applicable semantic re-
lations. Figure 2 diagrams a semantic graph from
the DELPH-IN MRS-derived dependencies (DM),
together with a syntactic tree.

We use a state-of-the-art semantic dependency
parser (Peng et al., 2017) that considers three types
of parts: heads, unlabeled arcs, and labeled arcs.
Let σ(i

`→ j) denote the index of the arc from
i to j with semantic role `. In addition to [0, 1]
constraints, we constrain that the predictions for
labeled arcs sum to the prediction of their associ-
ated unlabeled arc:

PSDP

{
p ∈ Ud

∣∣∣∣∣∑
`

p
σ(i

`→j)
= pσ(i→j), ∀i 6= j

}
.

(6)

This ensures that exactly one label is predicted if
and only if its arc is present. The projection onto
PSDP can be solved similarly to Algorithm 2. We
drop the determinism constraint imposed by Peng
et al. (2017) in the backward computation.

4 Experiments

We empirically evaluate our method with two sets
of experiments: using syntactic tree structures in
semantic dependency parsing, and using semantic
dependency graphs in sentiment classification.

4.1 Syntactic-then-Semantic Parsing
In this experiment we consider an intermedi-
ate syntactic parsing task, followed by seman-

… became dismayed at

poss arg1

arg2

’sG-2 connections arrested traffickersto drug

arg2
compound

root

arg2 arg1
arg2

Figure 2: A development instance annotated with
both gold DM semantic dependency graph (red
arcs on the top), and gold syntactic dependency
tree (blue arcs at the bottom). A pretrained syn-
tactic parser predicts the same tree as the gold; the
semantic parser backpropagates into the interme-
diate syntactic parser, and changes the dashed blue
arcs into dashed red arcs (§5).

tic dependency parsing as the end task. We first
briefly review the neural network architectures for
the two models (§4.1.1), and then introduce the
datasets (§4.1.2) and baselines (§4.1.3).

4.1.1 Architectures

Syntactic dependency parser. For intermedi-
ate syntactic dependencies, we use the unlabeled
arc-factored parser of Kiperwasser and Goldberg
(2016). It uses bidirectional LSTMs (BiLSTM)
to encode the input, followed by a multilayer-
perceptron (MLP) to score each potential depen-
dency. One notable modification is that we replace
their use of Chu-Liu/Edmonds’ algorithm (Chu
and Liu, 1965; Edmonds, 1967) with the Eisner
algorithm (Eisner, 1996, 2000), since our dataset
is in English and mostly projective.

Semantic dependency parser. We use the basic
model of Peng et al. (2017) (denoted as NEUR-
BOPARSER) as the end model. It is a first-order
parser, and uses local factors for heads, unlabeled
arcs, and labeled arcs. NEURBOPARSER does
not use syntax. It first encodes an input sentence
with a two-layer BiLSTM, and then computes part
scores with two-layer tanh-MLPs. Inference is
conducted with AD3 (Martins et al., 2015). To add
syntactic features to NEURBOPARSER, we con-
catenate a token’s contextualized representation
to that of its syntactic head, predicted by the in-
termediate parser. Formally, given length-n in-
put sentence, we first run a BiLSTM. We use the
concatenation of the two hidden representations
hj = [

−→
h j ;
←−
h j ] at each position j as the contextu-

alized token representations. We then concatenate



hj with the representation of its head hHEAD(j) by

h̃j = [hj ;hHEAD(j)] =

hj ;∑
i 6=j

ẑσ(i→j) hi

 ,
(7)

where ẑ ∈ Bn(n−1) is a binary encoding of the tree
structure predicted by by the intermediate parser.
We then use h̃j anywhere hj would have been
used in NEURBOPARSER. In backpropagation, we
compute ∇ẑL with an automatic differentiation
toolkit (DyNet; Neubig et al., 2017).

We note that this approach can be generalized to
convolutional neural networks over graphs (Mou
et al., 2015; Duvenaud et al., 2015; Kipf and
Welling, 2017, inter alia), recurrent neural net-
works along paths (Xu et al., 2015; Roth and La-
pata, 2016, inter alia) or dependency trees (Tai
et al., 2015). We choose to use concatenations to
control the model’s complexity, and thus to better
understand which parts of the model work.

We refer the readers to Kiperwasser and Gold-
berg (2016) and Peng et al. (2017) for further de-
tails of the parsing models.

Training procedure. Following previous work,
we minimize structured hinge loss (Tsochantaridis
et al., 2004) for both models. We jointly train both
models from scratch, by randomly sampling an in-
stance from the union of their training data at each
step. In order to isolate the effect of backpropaga-
tion, we do not share any parameters between the
two models.5 Implementation details are summa-
rized in the supplementary materials.

4.1.2 Datasets
• For semantic dependencies, we use the

English dataset from SemEval 2015 Task
18 (Oepen et al., 2015). Among the three for-
malisms provided by the shared task, we con-
sider DELPH-IN MRS-derived dependencies
(DM) and Prague Semantic Dependencies
(PSD).6 It includes §00–19 of the WSJ cor-
pus as training data, §20 and §21 for devel-
opment and in-domain test data, resulting in
a 33,961/1,692/1,410 train/dev./test split, and

5 Parameter sharing has proved successful in many related
tasks (Collobert and Weston, 2008; Søgaard and Goldberg,
2016; Ammar et al., 2016; Swayamdipta et al., 2016, 2017,
inter alia), and could be easily combined with our approach.

6We drop the third (PAS) because its structure is highly
predictable from parts-of-speech, making it less interesting.

DM PSD

Model UF LF UF LF

NEURBOPARSER – 89.4 – 77.6
FREDA3 – 90.4 – 78.5

PIPELINE 91.8 90.8 88.4 78.1
SA 91.6 90.6 87.9 78.1
STE 92.0 91.1 88.9 78.9

SPIGOT 92.4 91.6 88.6 78.9

(a) F1 on in-domain test set.

DM PSD

Model UF LF UF LF

NEURBOPARSER – 84.5 – 75.3
FREDA3 – 85.3 – 76.4

PIPELINE 87.4 85.8 85.5 75.6
SA 87.3 85.6 84.9 75.9
STE 87.7 86.4 85.8 76.6

SPIGOT 87.9 86.7 85.5 77.1

(b) F1 on out-of-domain test set.

Table 1: Semantic dependency parsing perfor-
mance in both unlabeled (UF ) and labeled (LF )
F1 scores. Bold font indicates the best perfor-
mance. Peng et al. (2017) does not report UF .

1,849 out-of-domain test instances from the
Brown corpus.7

• For syntactic dependencies, we use the Stan-
ford Dependency (de Marneffe and Manning,
2008) conversion of the the Penn Treebank
WSJ portion (Marcus et al., 1993). To avoid
data leak, we depart from standard split and
use §20 and §21 as development and test data,
and the remaining sections as training data.
The number of training/dev./test instances is
40,265/2,012/1,671.

4.1.3 Baselines
We compare to the following baselines:
• A pipelined system (PIPELINE). The pre-

trained parser achieves 92.9 test unlabeled at-
tachment score (UAS).8

7The organizers remove, e.g., instances with cyclic
graphs, and thus only a subset of the WSJ corpus is included.
See Oepen et al. (2015) for details.

8 Note that this number is not comparable to the parsing
literature due to the different split. As a sanity check, we
found in preliminary experiments that the same parser archi-



• Structured attention networks (SA; Kim et al.,
2017). We use the inside-outside algo-
rithm (Baker, 1979) to populate z with arcs’
marginal probabilities, use log-loss as the ob-
jective in training the intermediate parser.
• The straight-through estimator (STE; Hinton,

2012), introduced in §2.2.

4.1.4 Empirical Results

Table 1 compares the semantic dependency pars-
ing performance of SPIGOT to all five baselines.
FREDA3 (Peng et al., 2017) is a state-of-the-art
variant of NEURBOPARSER that is trained using
multitask learning to jointly predict three different
semantic dependency graph formalisms. Like the
basic NEURBOPARSER model that we build from,
FREDA3 does not use any syntax. Strong DM per-
formance is achieved in a more recent work by us-
ing joint learning and an ensemble (Peng et al.,
2018), which is beyond fair comparisons to the
models discussed here.

We found that using syntactic information
improves semantic parsing performance: using
pipelined syntactic head features brings 0.5–
1.4% absolute labeled F1 improvement to NEUR-
BOPARSER. Such improvements are smaller
compared to previous works, where depen-
dency path and syntactic relation features are in-
cluded (Almeida and Martins, 2015; Ribeyre et al.,
2015; Zhang et al., 2016), indicating the potential
to get better performance by using more syntactic
information, which we leave to future work.

Both STE and SPIGOT use hard syntactic fea-
tures. By allowing backpropation into the inter-
mediate syntactic parser, they both consistently
outperform PIPELINE. On the other hand, when
marginal syntactic tree structures are used, SA

outperforms PIPELINE only on the out-of-domain
PSD test set, and improvements under other cases
are not observed.

Compared to STE, SPIGOT outperforms STE on
DM by more than 0.3% absolute labeled F1, both
in-domain and out-of-domain. For PSD, SPIGOT

achieves similar performance to STE on in-domain
test set, but has a 0.5% absolute labeled F1 im-
provement on out-of-domain data, where syntactic
parsing is less accurate.

tecture achieves 93.5 UAS when trained and evaluated with
the standard split, close to the results reported by Kiperwasser
and Goldberg (2016).

4.2 Semantic Dependencies for Sentiment
Classification

Our second experiment uses semantic dependency
graphs to improve sentiment classification perfor-
mance. We are not aware of any efficient algo-
rithm that solves marginal inference for seman-
tic dependency graphs under determinism con-
straints, so we do not include a comparison to SA.

4.2.1 Architectures
Here we use NEURBOPARSER as the intermediate
model, as described in §4.1.1, but with no syntac-
tic enhancements.

Sentiment classifier. We first introduce a base-
line that does not use any structural information.
It learns a one-layer BiLSTM to encode the in-
put sentence, and then feeds the sum of all hidden
states into a two-layer ReLU-MLP.

To use semantic dependency features, we con-
catenate a word’s BiLSTM-encoded representa-
tion to the averaged representation of its heads, to-
gether with the corresponding semantic roles, sim-
ilarly to that in Equation 7.9 Then the concatena-
tion is fed into an affine transformation followed
by a ReLU activation. The rest of the model is
kept the same as the BiLSTM baseline.

Training procedure. We use structured hinge
loss to train the semantic dependency parser, and
log-loss for the sentiment classifier. Due to the dis-
crepancy in the training data size of the two tasks
(33K vs. 7K), we pre-train a semantic dependency
parser, and then adopt joint training together with
the classifier. In the joint training stage, we ran-
domly sample 20% of the semantic dependency
training instances each epoch. Implementations
are detailed in the supplementary materials.

4.2.2 Datasets
For semantic dependencies, we use the DM
dataset introduced in §4.1.2.

We consider a binary classification task using
the Stanford Sentiment Treebank (Socher et al.,
2013). It consists of roughly 10K movie review
sentences from Rotten Tomatoes. The full dataset
includes a rating on a scale from 1 to 5 for each
constituent (including the full sentences), resulting
in more than 200K instances. Following previous
work (Iyyer et al., 2015), we only use full-sentence

9In a well-formed semantic dependency graph, a token
may have multiple heads. Therefore we use average instead
of the sum in Equation 7.



Model Accuracy (%)

BILSTM 84.8

PIPELINE 85.7
STE 85.4
SPIGOT 86.3

Table 2: Test accuracy of sentiment classification
on Stanford Sentiment Treebank. Bold font indi-
cates the best performance.

instances, with neutral instances excluded (3s) and
the remaining four rating levels converted to bi-
nary “positive” or “negative” labels. This results
in a 6,920/872/1,821 train/dev./test split.

4.2.3 Empirical Results
Table 2 compares our SPIGOT method to three
baselines. Pipelined semantic dependency predic-
tions brings 0.9% absolute improvement in clas-
sification accuracy, and SPIGOT outperforms all
baselines. In this task STE achieves slightly worse
performance than a fixed pre-trained PIPELINE.

5 Analysis

We examine here how the intermediate model is
affected by the end-task training signal. Is the end-
task signal able to “overrule” intermediate predic-
tions?

We use the syntactic-then-semantic parsing
model (§4.1) as a case study. Table 3 compares
a pipelined system to one jointly trained using
SPIGOT. We consider the development set in-
stances where both syntactic and semantic an-
notations are available, and partition them based
on whether the two systems’ syntactic predic-
tions agree (SAME), or not (DIFF). The second
group includes sentences with much lower syn-
tactic parsing accuracy (91.3 vs. 97.4 UAS), and
SPIGOT further reduces this to 89.6. Even though
these changes hurt syntactic parsing accuracy, they
lead to a 1.1% absolute gain in labeled F1 for
semantic parsing. Furthermore, SPIGOT has an
overall less detrimental effect on the intermediate
parser than STE: using SPIGOT, intermediate dev.
parsing UAS drops to 92.5 from the 92.9 pipelined
performance, while STE reduces it to 91.8.

We then take a detailed look and categorize the
changes in intermediate trees by their correlations
with the semantic graphs. Specifically, when a
modifier m’s head is changed from h to h′ in the

Split # Sent. Model UAS DM

SAME 1011
PIPELINE 97.4 94.0
SPIGOT 97.4 94.3

DIFF 681
PIPELINE 91.3 88.1
SPIGOT 89.6 89.2

Table 3: Syntactic parsing performance (in unla-
beled attachment score, UAS) and DM semantic
parsing performance (in labeled F1) on different
groups of the development data. Both systems
predict the same syntactic parses for instances
from SAME, and they disagree on instances from
DIFF (§5).

tree, we consider three cases: (a) h′ is a head of
m in the semantic graph; (b) h′ is a modifier of m
in the semantic graph; (c) h is the modifier of m
in the semantic graph. The first two reflect mod-
ifications to the syntactic parse that rearrange se-
mantically linked words to be neighbors. Under
(c), the semantic parser removes a syntactic depen-
dency that reverses the direction of a semantic de-
pendency. These cases account for 17.6%, 10.9%,
and 12.8%, respectively (41.2% combined) of the
total changes. Making these changes, of course, is
complicated, since they often require other modi-
fications to maintain well-formedness of the tree.
Figure 2 gives an example.

6 Related Work

Joint learning in NLP pipelines. To avoid cas-
cading errors, much effort has been devoted to
joint decoding in NLP pipelines (Habash and
Rambow, 2005; Cohen and Smith, 2007; Gold-
berg and Tsarfaty, 2008; Lewis et al., 2015; Zhang
et al., 2015, inter alia). However, joint inference
can sometimes be prohibitively expensive. Recent
advances in representation learning facilitate ex-
ploration in the joint learning of multiple tasks by
sharing parameters (Collobert and Weston, 2008;
Blitzer et al., 2006; Finkel and Manning, 2010;
Zhang and Weiss, 2016; Hashimoto et al., 2017,
inter alia).

Differentiable optimization. Gould et al.
(2016) review the generic approaches to differ-
entiation in bi-level optimization (Bard, 2010;
Kunisch and Pock, 2013). Amos and Kolter
(2017) extend their efforts to a class of subdif-
ferentiable quadratic programs. However, they
both require that the intermediate objective has
an invertible Hessian, limiting their application



in NLP. In another line of work, the steps of a
gradient-based optimization procedure are un-
rolled into a single computation graph (Stoyanov
et al., 2011; Domke, 2012; Goodfellow et al.,
2013; Brakel et al., 2013). This comes at a
high computational cost due to the second-order
derivative computation during backpropagation.
Moreover, constrained optimization problems
(like many NLP problems) often require projec-
tion steps within the procedure, which can be
difficult to differentiate through (Belanger and
McCallum, 2016; Belanger et al., 2017).

7 Conclusion

We presented SPIGOT, a novel approach to back-
propagating through neural network architectures
that include discrete structured decisions in in-
termediate layers. SPIGOT devises a proxy for
the gradients with respect to argmax’s inputs,
employing a projection that aims to respect the
constraints in the intermediate task. We empiri-
cally evaluate our method with two architectures:
a semantic parser with an intermediate syntactic
parser, and a sentiment classifier with an inter-
mediate semantic parser. Experiments show that
SPIGOT achieves stronger performance than base-
lines under both settings, and outperforms state-
of-the-art systems on semantic dependency pars-
ing. Our implementation is available at https:
//github.com/Noahs-ARK/SPIGOT.

Acknowledgments

We thank the ARK, Julian Michael, Minjoon Seo,
Eunsol Choi, and Maxwell Forbes for their helpful
comments on an earlier version of this work, and
the anonymous reviewers for their valuable feed-
back. This work was supported in part by NSF
grant IIS-1562364.

References
Mariana S. C. Almeida and André F. T. Martins. 2015.

Lisbon: Evaluating TurboSemanticParser on multi-
ple languages and out-of-domain data. In Proc. of
SemEval.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. TACL 4:431–444.

Brandon Amos and J. Zico Kolter. 2017. OptNet:
Differentiable optimization as a layer in neural net-
works. In Proc. of ICML.

J. K. Baker. 1979. Trainable grammars for speech
recognition. In Speech Communication Papers for
the 97th Meeting of the Acoustical Society of Amer-
ica.

Jonathan F. Bard. 2010. Practical Bilevel Optimiza-
tion: Algorithms and Applications. Springer.

David Belanger and Andrew McCallum. 2016. Struc-
tured prediction energy networks. In Proc. of ICML.

David Belanger, Bishan Yang, and Andrew McCallum.
2017. End-to-end learning for structured prediction
energy networks. In Proc. of ICML.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv:1308.3432.

Dimitris Bertsimas and John Tsitsiklis. 1997. Introduc-
tion to Linear Optimization. Athena Scientific.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proc. of EMNLP.

Philémon Brakel, Dirk Stroobandt, and Benjamin
Schrauwen. 2013. Training energy-based models
for time-series imputation. Journal of Machine
Learning Research 14:2771–2797.

Peter Brucker. 1984. An O(n) algorithm for quadratic
knapsack problems. Operations Research Letters
3(3):163 – 166.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2017.
Unsupervised learning of task-specific tree struc-
tures with tree-LSTMs. arXiv:1707.02786.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Science
Sinica 14:1396–1400.

Shay B. Cohen and Noah A. Smith. 2007. Joint mor-
phological and syntactic disambiguation. In Proc. of
EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Stanford University.

Justin Domke. 2012. Generic methods for
optimization-based modeling. In Proc. of AIS-
TATS.

David K. Duvenaud, Dougal Maclaurin, Jorge Ipar-
raguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P. Adams. 2015. Convo-
lutional networks on graphs for learning molecular
fingerprints. In Proc. of NIPS.

https://github.com/Noahs-ARK/SPIGOT
https://github.com/Noahs-ARK/SPIGOT


Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards
71B:233–240.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Advances in Prob-
abilistic and Other Parsing Technologies, Springer
Netherlands, pages 29–61.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop. In Proceed-
ings of the EMNLP Workshop on Structured Predic-
tion for NLP.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc. of
COLING.

Jenny Rose Finkel and Christopher D. Manning. 2010.
Hierarchical joint learning: Improving joint parsing
and named entity recognition with non-jointly la-
beled data. In Proc. of ACL.

Abram L. Friesen and Pedro M. Domingos. 2016. The
sum-product theorem: A foundation for learning
tractable models. In Proc. of ICML.

Abram L. Friesen and Pedro M. Domingos. 2018.
Deep learning as a mixed convex-combinatorial op-
timization problem. In Proc. of ICLR.

Yoav Goldberg and Reut Tsarfaty. 2008. A single gen-
erative model for joint morphological segmentation
and syntactic parsing. In Proc. of ACL.

Ian Goodfellow, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. 2013. Multi-prediction deep Boltz-
mann machines. In Proc. of NIPS.

Stephen Gould, Basura Fernando, Anoop Cherian, Pe-
ter Anderson, Rodrigo Santa Cruz, and Edison Guo.
2016. On differentiating parameterized argmin and
argmax problems with application to bi-level opti-
mization. arXiv:1607.05447.

Nizar Habash and Owen Rambow. 2005. Arabic tok-
enization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In Proc. ACL.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proc. of EMNLP.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proc. of ACL.

Geoffrey Hinton. 2012. Neural networks for machine
learning. Coursera video lectures.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proc. of ACL.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with Gumbel-Softmax.
arXiv:1611.01144.

Yangfeng Ji and Noah A. Smith. 2017. Neural dis-
course structure for text categorization. In Proc. of
ACL.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In Proc. of ICLR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL 4:313–
327.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proc. of ICLR.

Karl Kunisch and Thomas Pock. 2013. A bilevel op-
timization approach for parameter learning in varia-
tional models. SIAM Journal on Imaging Sciences
6(2):938–983.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint A* CCG parsing and semantic role labelling.
In Proc. of EMNLP.

Yang Liu and Mirella Lapata. 2018. Learning struc-
tured text representations. TACL 6:63–75.

David G. Luenberger and Yinyu Ye. 2015. Linear and
Nonlinear Programming. Springer.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics 19(2):313–330.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proc. of ICML.

André F. T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL.

André F. T. Martins, Mário A. T. Figueiredo, Pedro
M. Q. Aguiar, Noah A. Smith, and Eric P. Xing.
2015. AD3: Alternating directions dual decomposi-
tion for map inference in graphical models. Journal
of Machine Learning Research 16:495–545.

André F. T. Martins, Noah A. Smith, and Eric P. Xing.
2009. Polyhedral outer approximations with ap-
plication to natural language parsing. In Proc. of
ICML.

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. arXiv:1802.03676 .

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi
Jin. 2015. Discriminative neural sentence modeling
by tree-based convolution. In Proc. of EMNLP.



Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gau-
rav Kumar, Chaitanya Malaviya, Paul Michel,
Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. 2017.
DyNet: The dynamic neural network toolkit.
arXiv:1701.03980.

Vlad Niculae and Mathieu Blondel. 2017. A regular-
ized framework for sparse and structured neural at-
tention. In Proc. of NIPS.

Vlad Niculae, André F. T. Martins, Mathieu Blon-
del, and Claire Cardie. 2018. SparseMAP:
Differentiable sparse structured inference.
arXiv:1802.04223.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In Proc. of LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proc. of SemEval.

Stephan Oepen, Lilja Øvrelid, Jari Björne, Richard Jo-
hansson, Emanuele Lapponi, Filip Ginter, and Erik
Velldal. 2017. The 2017 shared task on extrinsic
parser evaluation. towards a reusable community in-
frastructure. In Proc. of the 2017 Shared Task on
Extrinsic Parser Evaluation.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proc. of ACL.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proc. of NAACL.

Corentin Ribeyre, Éric Villemonte De La Clergerie,
and Djamé Seddah. 2015. Because syntax does mat-
ter: Improving predicate-argument structures pars-
ing using syntactic features. In Proc. of NAACL.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proc. of NAACL.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proc. of ACL.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proc. of EMNLP.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proc. of ACL.

Veselin Stoyanov, Alexander Ropson, and Jason Eis-
ner. 2011. Empirical risk minimization of graphical
model parameters given approximate inference, de-
coding, and model structure. In Proc. of AISTATS.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack LSTMs. In Proc. of
CoNLL.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-semantic parsing with
softmax-margin segmental RNNs and a syntactic
scaffold. arXiv:1706.09528.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proc. of ACL.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vector
machine learning for interdependent and structured
output spaces. In Proc. of ICML.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning 8(3-4):229–256.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proc. of EMNLP.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In Proc. of ICLR.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy inference
for joint segmentation, POS tagging and dependency
parsing. In Proc. NAACL.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proc. of ACL.


