Probability and Structure in Natural Language Processing

Noah Smith

Heidelberg University, November 2014

Introduction

Motivation

- Statistical methods in NLP arrived ~20 years ago and now dominate.
- Mercer was right: "There's no data like more data."
 - And there's more and more data.
- Lots of new applications and new statistical techniques – it's formidable to learn and keep up with all of them.

Thesis

- Most of the main ideas are related and similar to each other.
 - Different approaches to decoding.
 - Different learning criteria.
 - Supervised and unsupervised learning.
- Umbrella: probabilistic reasoning about discrete linguistic structures.
- This is good news!

Plan

- 1. Graphical models and inference Monday
- 2. Decoding and structures Tuesday
- 3. Supervised learning Wednesday
- 4. Hidden variables Thursday

Exhortations

- The content is formal, but the style doesn't need to be.
- Ask questions!
 - Help me find the right pace.
 - Lecture 4 can be dropped/reduced if needed.

Lecture 1: Graphical Models and Inference

Random Variables

- Probability distributions usually defined by events
- Events are complicated!
 - We tend to group events by attributes
 - Person → Age, Grade, HairColor
- Random variables formalize attributes:
 - "Grade = A" is shorthand for event

$$\{\omega \in \Omega : f_{\text{Grade}}(\omega) = A\}$$

- Properties of random variable X:
 - Val(X) = possible values of X
 - For discrete (categorical): $\sum P(X = x) = 1$
 - For continuous: $\int P(X = x) dx = 1$
 - Nonnegativity: $\forall x \in Val(X), P(X = x) \geq 0$

Conditional Probabilities

• After learning that α is true, how do we feel about β ? $P(\beta \mid \alpha)$

Chain Rule

$$P(\alpha \cap \beta) = P(\alpha)P(\beta \mid \alpha)$$

$$P(\alpha_1 \cap \cdots \cap \alpha_k) = P(\alpha_1)P(\alpha_2 \mid \alpha_1) \cdots P(\alpha_k \mid \alpha_1 \cap \ldots \cap \alpha_{k-1})$$

Bayes Rule

$$P(\alpha \mid \beta \cap \gamma) = \frac{P(\beta \mid \alpha \cap \gamma)P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}$$

γ is an "external event"

Independence

• α and β are **independent** if $P(\beta \mid \alpha) = P(\beta)$ $P \rightarrow (\alpha \perp \beta)$

• **Proposition:** α and β are **independent** if and only if $P(\alpha \cap \beta) = P(\alpha) P(\beta)$

Conditional Independence

- Independence is rarely true.
- α and β are **conditionally independent** given γ if $P(\beta \mid \alpha \cap \gamma) = P(\beta \mid \gamma)$ $P \rightarrow (\alpha \perp \beta \mid \gamma)$

Proposition:
$$P \rightarrow (\alpha \perp \beta \mid \gamma)$$
 if and only if $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

Joint Distribution and Marginalization

P(Grade, Intelligence) =

	Intelligence = very high	Intelligence = high
Grade = A	0.70	0.10
Grade = B	0.15	0.05

 Compute the marginal over each individual random variable?

Marginalization: General Case

$$p(X_1 = x) = \sum_{x_2 \in Val(X_2)} \cdots \sum_{x_n \in Val(X_n)} P(X_1 = x, X_2 = x_2, \dots, X_n = x_n)$$

How many terms?

Basic Concepts So Far

- Atomic outcomes: assignment of $x_1,...,x_n$ to $X_1,...,X_n$
- Conditional probability: P(X, Y) = P(X) P(Y|X)
- Bayes rule: P(X|Y) = P(Y|X) P(X) / P(Y)
- Chain rule: $P(X_1,...,X_n) = P(X_1) P(X_2 | X_1) \dots P(X_k | X_1,...,X_{k-1})$
- Marginals: deriving P(X = x) from P(X, Y)

Sets of Variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if

$$P \rightarrow (X=x \perp Y=y \mid Z=z),$$

 $\forall x \in Val(X), y \in Val(Y), z \in Val(Z)$

- Shorthand:
 - Conditional independence: $P \rightarrow (X \perp Y \mid Z)$
 - For P → $(X \perp Y \mid \varnothing)$, write P → $(X \perp Y)$
- Proposition: P satisfies $(X \perp Y \mid Z)$ if and only if P(X,Y|Z) = P(X|Z) P(Y|Z)

Factor Graphs

Factor Graphs

- Random variable nodes (circles)
- Factor nodes (squares)
- Edge between variable and factor if the factor depends on that variable.
 - The graph is bipartite.
- A factor is a function from tuples of r.v. values to nonnegative numbers.

$$P(\boldsymbol{X} = \boldsymbol{x}) \propto \prod_{j} \phi_{j}(\boldsymbol{x}_{j})$$

Two Kinds of Factors

- Conditional probability tables
 - $E.g., P(X_2 | X_1, X_3)$
 - Leads to Bayesian networks, causal explanations
- Potential functions
 - Arbitrary positive scores
 - Leads to Markov networks

Example: Bayesian Network

- The flu causes sinus inflammation
- Allergies also cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

- The flu causes sinus inflammation
- Allergies also cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

"Some local configurations are more likely than others."

F	φ _F (F)
0	
1	

Α	φ _A (A)
0	
1	

S	R	$\phi_{SR}(S, R)$
0	0	
0	1	
1	0	
1	1	

	_		
F	Α	S	$\phi_{FAS}(F,A,S)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

		_
S	Ι	φ _{SH} (S, H)
0	0	
0	1	
1	0	
1	1	

"Some local configurations are more likely than others."

Swinging couples or confused students

$$A \perp C \mid B, D$$

$$B \perp D \mid A, C$$

$$\neg B \perp D$$

$$\neg A \perp C$$

- Each random variable is a vertex.
- Undirected edges.
- Factors are associated with subsets of nodes that form cliques.
 - A factor maps assignments of its nodes to nonnegative values.

- In this example, associate a factor with each edge.
 - Could also have factors for single nodes!

Markov Networks

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

	Α	D	φ ₄ (A, D)	
	0	0	100	
	0	1	1	

Α

C

D

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)		D	φ ₃ (C, D)
		$\Psi_1(\Lambda, D)$	<u> </u>		$\Psi_2(D,C)$			$\psi_3(C, D)$
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

		141 / /					
0	0	100					
0	1	1					
1	0	1					
1	1	100					

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	$\phi_3(C, D)$
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

Α

C

D

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$

$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

P(0, 1, 1, 0) = 5,000,000 / Z
= 0.69

D

Α

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$

$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

P(1, 1, 0, 0)			
= 10 / Z			
= 0.000014			

Α

C

D

Independence and Structure

- There's a *lot* of theory about how BNs and MNs encode conditional independence assumptions.
 - BNs: A variable X is independent of its nondescendants given its parents.
 - MNs: Conditional independence derived from "Markov blanket" and separation properties.
 - Local configurations can be used to check all conditional independence questions; almost no need to look at the values in the factors!

Independence Spectrum

various graphs

$$\prod \phi_i(x_i) \qquad \qquad \phi(\mathbf{x})$$

everything is dependent

full independence assumptions

Products of Factors

 Given two factors with different scopes, we can calculate a new factor equal to their products.

$$\phi_{product}(\boldsymbol{x} \cup \boldsymbol{y}) = \phi_1(\boldsymbol{x}) \cdot \phi_2(\boldsymbol{y})$$

Products of Factors

 Given two factors with different scopes, we can calculate a new factor equal to their products.

Α	В	φ ₁ (A, B)
0	0	30
0	1	5
1	0	1
1	1	10

В	С	φ ₂ (B, C)
0	0	100
0	1	1
1	0	1
1	1	100

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

• We can refer to this new factor by $\max_{v} \varphi$.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

Α	В	C	φ (A, B, C)		
0	0	0	0.9		
0	0	1	0.3		
0	1	0	1.1		
0	1	1	1.7		
1	0	0	0.4		
1	0	1	0.7		
1	1	0	1.1		
1	1	1	0.2		

"maximizing out" B

Α	С	ψ(A, C)	
0	0	1.1	B=1
0	1	1.7	B=1
1	0	1.1	B=1
1	1	0.7	B=0

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\mathbf{X}) = \sum_{y \in Val(Y)} \phi(\mathbf{X}, y)$$

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(oldsymbol{X}) = \sum_{y \in \mathrm{Val}(Y)} \phi(oldsymbol{X}, y)$$

Α	В	С	φ (A, B, C)
0	0	0	0.9
0	0	1	0.3
0	1	0	1.1
0	1	1	1.7
1	0	0	0.4
1	0	1	0.7
1	1	0	1.1
1	1	1	0.2

"summing out" B

А	C	ψ(A, C)
0	0	2.0
0	1	2.0
1	0	1.5
1	1	0.9

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(oldsymbol{X}) = \sum_{y \in \mathrm{Val}(Y)} \phi(oldsymbol{X}, y)$$

Α	В	С	φ (A, B, C)
0	0	0	0.9
0	0	1	0.3
0	1	0	1.1
0	1	1	1.7
1	0	0	0.4
1	0	1	0.7
1	1	0	1.1
1	1	1	0.2

"summing out" C

Α	В	ψ(A, B)
0	0	1.2
0	1	2.8
1	0	1.1
1	1	1.3

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

• We can refer to this new factor by $\sum_{v} \varphi$.

Marginalizing Everything?

- Take a factor graph's "everything factor" by multiplying all of its factors.
- Sum out all the variables (one by one).

What do you get?

Factors Are Like Numbers

- Products are commutative: $\varphi_1 \cdot \varphi_2 = \varphi_2 \cdot \varphi_1$
- Products are associative:

$$(\varphi_1 \cdot \varphi_2) \cdot \varphi_3 = \varphi_1 \cdot (\varphi_2 \cdot \varphi_3)$$

- Sums are commutative: $\sum_{X} \sum_{Y} \varphi = \sum_{Y} \sum_{X} \varphi$ (max, too).
- Distributivity of multiplication over marginalization and maximization:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

$$\max_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \max_{X} \phi_2$$

Inference

Querying the Model

- Inference (e.g., do you have allergies or the flu?)
- What's the best explanation for your symptoms?
- Active data collection (what is the next best r.v. to observe?)

A Bigger Example: Your Car

- The car doesn't start.
- What do we conclude about the battery age?
- 18 random variables
- 2¹⁸ possible scenarios

Inference: An Ubiquitous Obstacle

- Decoding is inference (lecture 2).
- Learning is inference (lectures 3 and 4).

- Exact inference is #P-complete.
 - Even approximations within a given absolute or relative error are hard.

Probabilistic Inference Problems

Given values for some random variables ($X \subset V$) ...

 Most Probable Explanation: what are the most probable values of the rest of the r.v.s V \ X?

(More generally ...)

- Maximum A Posteriori (MAP): what are the most probable values of some other r.v.s, Y ⊂ (V \ X)?
- Random sampling from the posterior over values of Y
- Full posterior over values of Y
- Marginal probabilities from the posterior over Y
- Minimum Bayes risk: What is the Y with the lowest expected cost?
- Cost-augmented decoding: What is the most dangerous Y?

Approaches to Inference

hard inference methods; soft inference methods; methods for both

Exact Marginal for Y

- This will be a generalization of algorithms you may already have seen: the forward and backward algorithms.
- The general name is variable elimination.
- After we see it for the marginal, we'll see how to use it for the MAP.

• Goal: P(D)

С	D	P(D C) = φ _{CD} (C, D)
0	0	
0	1	
1	0	
1	1	

А	$P(A) = \phi_A(A)$
0	
1	

Α

В

C

D

В	С	$P(C \mid B) = \phi_{BC}(B, C)$
0	0	
0	1	
1	0	
1	1	

Let's calculateP(B) first.

Let's calculateP(B) first.

Α	В	$P(B \mid A) = \phi_{AB}(A, B)$
0	0	
0	1	
1	0	
1	1	

P(B)	=	$\sum P(A=a)P(B \mid A=a)$
		$a \in \operatorname{Val}(A)$

Α	$P(A) = \phi_A(A)$
0	
1	

Α

В

Let's calculateP(B) first.

Α	В	$P(B \mid A) = \phi_{AB}(A, B)$
0	0	
0	1	
1	0	
1	1	

P(B)	=	$\sum P(A=a)P(B \mid A=a)$)
		$a \in \operatorname{Val}(A)$	

 Note: C and D don't matter.

Α

В

C

D

Let's calculateP(B) first.

$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$

В	$P(B) = \phi_B(B)$
0	
1	

Α	$P(A) = \phi_A(A)$
0	
1	

Α	В	$P(B \mid A) = \phi_{AB}(A, B)$
0	0	
0	1	
1	0	
1	1	

 New model in which A is eliminated; defines
 P(B, C, D)

В

C

D

 Same thing to eliminate B.

$$P(C) = \sum_{b \in Val(B)} P(B = b)P(C \mid B = b)$$

С	$P(C) = \phi_C(C)$
0	
1	

В	P(B) = φ _B (B)
0	
1	

В	С	$P(C \mid B) = \phi_{BC}(B, C)$
0	0	
0	1	
1	0	
1	1	

 New model in which B is eliminated; defines P(C, D)

С	$P(C) = \phi_C(C)$
0	
1	

Simple Inference Example

Last step to get P(D):

$$P(D) = \sum_{c \in Val(C)} P(C = c)P(D \mid C = c)$$

D	$P(D) = \phi_D(D)$
0	
1	

С	P(C) = φ _C (C)
0	
1	

С	D	$P(D \mid C) = \phi_{CD}(C, D)$
0	0	
0	1	
1	0	
1	1	

D

Simple Inference Example

- Notice that the same step happened for each random variable:
 - We created a new factor over the variable and its "successor"
 - We summed out (marginalized) the variable.

$$P(D) = \sum_{a \in Val(A)} \sum_{b \in Val(B)} \sum_{c \in Val(C)} P(A = a) P(B = b \mid A = a) P(C = c \mid B = b) P(D \mid C = c)$$

$$= \sum_{c \in Val(C)} P(D \mid C = c) \sum_{b \in Val(B)} P(C = c \mid B = b) \sum_{a \in Val(A)} P(A = a) P(B = b \mid A = a)$$

That Was Variable Elimination

- We reused computation from previous steps and avoided doing the same work more than once.
 - Dynamic programming à la forward algorithm!
- We exploited the graph structure (each subexpression only depends on a small number of variables).
- Exponential blowup avoided!

What Remains

- Variable elimination in general
- The maximization version (for MAP inference)
- A bit about approximate inference

Eliminating One Variable

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \subseteq \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let ψ be $\sum_{Z} \prod_{\omega \in \Phi'} \varphi$
- 4. Return $\Psi \cup \{\psi\}$

Example (PF

Query:P(Flu | runny nose)

• Let's eliminate H.

- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \prod_{\phi \in \Phi'} \phi$$

4. Return $\Psi \cup \{\psi\}$

- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \varphi_{SH}$$

4. Return $\Psi \cup \{\psi\}$

- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = \{\phi_{SH}\}$$

2.
$$\Psi = \{ \phi_F, \phi_A, \phi_{FAS}, \phi_{SR} \}$$

$$3.\psi = \sum_{H} \varphi_{SH}$$

4. Return $\Psi \cup \{\psi\}$

S	ψ(S)
0	1.0
1	1.0

- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \phi_{SH}$$

4. Return $\Psi \cup \{\psi\}$

S	Н	φ _{SH} (S, H)
0	0	0.8
0	1	0.2
1	0	0.1
1	1	0.9

 ϕ_{A}

S	ψ(S)
0	1.0
1	1.0

- Query:P(Flu | runny nose)
- Let's eliminate H.
- We can actually ignore the new factor, equivalently just deleting H!
 - Why?
 - In some cases eliminating a variable is really easy!

S	ψ(S)
0	1.0
1	1.0

Query:P(Flu | runny nose)

- H is already eliminated.
- Let's now eliminate S.

- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\phi_{SR}, \phi_{FAS}}$$

2.
$$\Psi = {\phi_F, \phi_A}$$

$$3.\psi_{FAR} = \sum_{S} \prod_{\phi \in \Phi'} \phi$$

4. Return $\Psi \cup \{\psi_{FAR}\}$

- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\{\phi_{SR}, \phi_{FAS}\}}$$

2.
$$\Psi = \{ \phi_F, \phi_A \}$$

$$3.\psi_{FAR} = \sum_{S} \phi_{SR} \cdot \phi_{FAS}$$

4. Return $\Psi \cup \{\psi_{FAR}\}$

- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\phi_{SR}, \phi_{FAS}}$$

2.
$$\Psi = {\phi_F, \phi_A}$$

$$3.\psi_{FAR} = \sum_{S} \varphi_{SR} \cdot \varphi_{FAS}$$

4. Return $\Psi \cup \{\psi_{FAR}\}$

Example (PF

Query:P(Flu | runny nose)

• Finally, eliminate A.

- Query:P(Flu | runny nose)
- Eliminating A.

1.
$$\Phi' = {\phi_A, \phi_{FAR}}$$

2.
$$\Psi = \{ \phi_F \}$$

$$3.\psi_{FR} = \sum_{A} \phi_{A} \cdot \psi_{FAR}$$

4. Return $\Psi \cup \{\psi_{FR}\}$

- Query:P(Flu | runny nose)
- Eliminating A.

1.
$$\Phi' = {\phi_A, \phi_{FAR}}$$

2.
$$\Psi = {\phi_F}$$

$$3.\psi_{FR} = \sum_{A} \phi_{A} \cdot \psi_{FAR}$$

4. Return $\Psi \cup \{\psi_{FR}\}$

- Goal: P(D)
- Earlier, we eliminated A, then B, then C.

C	D	$P(D \mid C) = \phi_{CD}(C, D)$
0	0	
0	1	
1	0	
1	1	

Α	$P(A) = \phi_A(A)$
0	
1	

Α

В

C

D

В	С	$P(C \mid B) = \phi_{BC}(B, C)$
0	0	
0	1	
1	0	
1	1	

- Goal: P(D)
- Earlier, we eliminated A, then B, then C.
- Let's start with C.

- Goal: P(D)
- Earlier, we eliminated A, then B, then C.
- Let's start with C.

• Eliminating C.

В	С	$P(C \mid B) = \phi_{BC}(B, C)$
0	0	
0	1	
1	0	
1	1	

С	D	$P(D \mid C) = \phi_{CD}(C, D)$
0	0	
0	1	
1	0	
1	1	

0 0 0 0 1 0 0 1 1 1				
0 0 1 0 0 1 1 1	В	С	D	$\phi_{BCD}(B, C, D)$
0 1 0 0 1 1	0	0	0	
0 1 1	0	0	1	
	0	1	0	
4 0 0	0	1	1	
	1	0	0	
1 0 1	1	0	1	
1 1 0	1	1	0	
1 1 1	1	1	1	

• Eliminating C.

В	С	D	$\varphi_{BCD}(B, C, D)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

В	D	ψ(B, D)
0	0	
0	1	
1	0	
1	1	

• Eliminating B will be similarly complex.

Variable Elimination: Comments

- Can prune away all non-ancestors of the query variables.
- Ordering makes a difference!

What about Evidence?

- So far, we've just considered the posterior/ marginal P(Y).
- Next: conditional distribution $P(Y \mid X = x)$.

• It's almost the same: the additional step is to reduce factors to respect the evidence.

Query:P(Flu | runny nose)

 Let's reduce to R = true (runny nose).

Query:P(Flu | runny nose)

 Let's reduce to R = true (runny nose).

S	R	φ' _s (S)
0	1	
1	1	

Query:P(Flu | runny nose)

 Now run variable elimination all the way down to one factor (for F).

Eliminate H.

Query:P(Flu | runny nose)

 Now run variable elimination all the way down to one factor (for F).

Eliminate S.

Example φ_F φ_A

Flu

Query:P(Flu | runny nose)

Eliminate A.

All.

 ψ_{FA}

 Now run variable elimination all the way down to one factor (for F).

Example (PF)

Flu

Query:P(Flu | runny nose)

Take final product.

 Now run variable elimination all the way down to one factor (for F).

Query:P(Flu | runny nose)

 $\phi_{\text{F}} \cdot \psi_{\text{F}}$

 Now run variable elimination all the way down to one factor.

Additional Comments

- Runtime depends on the size of the intermediate factors.
- Hence, variable elimination ordering matters a lot.
 - But it's NP-hard to find the best one.
 - For MNs, chordal graphs permit inference in time linear in the size of the original factors.
 - For BNs, polytree structures do the same.
- If you can avoid "big" intermediate factors, you can make inference linear in the size of the original factors.

Variable Elimination for Conditional Probabilities $P(Y \mid X = x)$

Input: Graphical model on **V**, set of query variables **Y**, evidence **X** = **x**

Output: factor ϕ and scalar α

- 1. Φ = factors in the model
- 2. Reduce factors in Φ by X = x
- 3. Choose variable ordering π on $\mathbf{Z} = \mathbf{V} \setminus \mathbf{Y} \setminus \mathbf{X}$
- 4. φ = Variable-Elimination(Φ, Z, π)
- $5. \alpha = \sum_{\mathbf{z} \in Val(\mathbf{Z})} \varphi(\mathbf{z})$
- 6. Return φ , α

Getting Back to NLP

- Traditional structured NLP models were sometimes chosen for these properties.
 - HMMs, PCFGs (with a little work)
 - But not: IBM model 3
- To decode, we need MAP inference for decoding!
- When models get complicated, need approximations!

From Marginals to MAP

- Replace factor marginalization steps with *maximization*.
 - Add bookkeeping to keep track of the maximizing values.
- Add a traceback at the end to recover the solution.
- This is analogous to the connection between the forward algorithm and the Viterbi algorithm.
 - Ordering challenge is the same.

Variable Elimination (Max-Product Version with Decoding)

Input: Set of factors Φ, ordered list of variables Z to eliminate

Output: new factor

- 1. For each $Z_i \subseteq \mathbf{Z}$ (in order):
 - Let $(Φ, ψ_{Z_i})$ = Eliminate-One $(Φ, Z_i)$
- 2. Return $\prod_{\phi \in \Phi} \varphi$, Traceback($\{\psi_{Z_i}\}$)

Eliminating One Variable (Max-Product Version with Bookkeeping)

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \subseteq \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let T be $\max_{Z} \prod_{\varphi \in \Phi'} \varphi$
 - Let ψ be $\prod_{\phi \in \Phi'} \varphi$ (bookkeeping)
- 4. Return $\Psi \cup \{\tau\}$, ψ

Traceback

Input: Sequence of factors with associated variables: $(\psi_{71}, ..., \psi_{7k})$

Output: z*

- Each ψ_Z is a factor with scope including Z and variables eliminated *after* Z.
- Work backwards from i = k to 1:
 - Let $z_i = arg max_z \psi_{z_i}(z, z_{i+1}, z_{i+2}, ..., z_k)$
- Return z

About the Traceback

- No extra (asymptotic) expense.
 - Linear traversal over the intermediate factors.
- The factor operations for both sum-product
 VE and max-product VE can be generalized.
 - Example: get the K most likely assignments

Variable Elimination Tips

- Any ordering will be correct.
- Most orderings will be too expensive.
- There are heuristics for choosing an ordering.
 - If the graph is chain-like, work from one end toward the other.

(Rocket Science: True MAP)

- Evidence: X = x
- Query: Y
- Other variables: **Z** = **V** \ **X** \ **Y**

$$egin{array}{lll} oldsymbol{y}^* &=& rg \max_{oldsymbol{y} \in \mathrm{Val}(oldsymbol{Y})} P(oldsymbol{Y} = oldsymbol{y} \mid oldsymbol{X} = oldsymbol{x}) \\ &=& rg \max_{oldsymbol{y} \in \mathrm{Val}(oldsymbol{Y})} \sum_{oldsymbol{z} \in \mathrm{Val}(oldsymbol{Z})} P(oldsymbol{Y} = oldsymbol{y}, oldsymbol{Z} = oldsymbol{z} \mid oldsymbol{X} = oldsymbol{x}) \end{array}$$

- First, marginalize out Z, then do MAP inference over Y given X = x
- This is not usually attempted in NLP, with some exceptions.

Parting Shots

- You will probably never implement the general variable elimination algorithm.
- You will rarely use exact inference.
- Understand the *inference problem* would look like in exact form; then approximate.
 - Sometimes you get lucky.
 - You'll appreciate better approximations as they come along.