Probability and Structure in
Natural Language Processing

Noah Smith

Heidelberg University, November 2014

Introduction

Motivation

e Statistical methods in NLP arrived ~20 years ago
and now dominate.

* Mercer was right: “There's no data like more
data.”

— And there's more and more data.

* Lots of new applications and new statistical
techniques — it's formidable to learn and keep up
with all of them.

Thesis

e Most of the main ideas are related and similar to
each other.

— Different approaches to decoding.
— Different learning criteria.
— Supervised and unsupervised learning.

 Umbrella: probabilistic reasoning about discrete
linguistic structures.

* This is good news!

s W

Plan

Graphical models and inference
Decoding and structures
Supervised learning

Hidden variables

Monday
Tuesday
Wednesday
Thursday

Exhortations

* The content is formal, but the style doesn't
need to be.

* Ask questions!
— Help me find the right pace.

— Lecture 4 can be dropped/reduced if needed.

Lecture 1: Graphical Models
and Inference

Random Variables

Probability distributions usually defined by events

Events are complicated!
— We tend to group events by attributes
— Person - Age, Grade, HairColor

Random variables formalize attributes:
— “Grade = A” is shorthand for event
{w e Q: farage(w) = A}
Properties of random variable X:
— Val(X) = possible values of X
— For discrete (categorical): > PX=2)=1
— For continuous:/P(X = z)dx =
— Nonnegativity: Vz e Val(X),P(X =xz) >0

Conditional Probabilities

e After learning that ais true, how do we feel
about §? P(B | o)

()

Chain Rule

Planp) = Pla)P(G | a)

PlainN---Nag) = Pla)Plas | a1) - Plag |ar N ... Nak_1)

Bayes Rule

likelihood o
y rior
-
P(8 | a)P(a)

P(a| B) =

- P(5)
posterior \

normalization constant

P(Blany)P(al~v)

Pla|pNy) = PG)

y is an “external event”

Independence

* aand P are independent if P(|a) = P(P)
P— (o Lp)

* Proposition: o and P are independent if and
only if P(aMp) = P(a) P(P)

Conditional Independence

* Independence is rarely true.

* o and p are conditionally independent given vy if

PB[any)=P(p |y
P— (o LB]|y)

Proposition: P — (o L B | y) if and only if
P(anB | y) =P (o [v) P(B | v)

Joint Distribution and Marginalization

 Compute the marginal
over each individual

P(Grade, Intelligence) = ,
random variable?

Intelligence | Intelligence
= very high |=high

Grade=A

Grade =B

Marginalization: General Case

=z)= > -) PXi=zXy=u,..., X,

xo€Val(X2) xnE€Val(X,)

How many terms?

Basic Concepts So Far

Atomic outcomes: assignment of x,,...,x to
Xy X

Conditional probability: P(X, Y) = P(X) P(Y|X)
Bayes rule: P(X]Y) = P(Y|X) P(X) / P(Y)

Chain rule: P(X,,...,X.) = P(X;) P(X,[X;)
o POX X0 X)

Marginals: deriving P(X = x) from P(X, Y)

Sets of Variables

Sets of variables X, Y, Z

X is independent of Y given Z if

P— (X=x L Y=y|Z=2),

YV x€Val(X), yeVal(Y), z€Val(Z)
Shorthand:
— Conditional independence: P — (X LY | Z2)
—ForP—=(XLY|9),writeP—(X_L1Y)

Proposition: P satisfies (X L Y | Z) if and only if
P(X,Y|Z) = P(X|Z) P(Y|Z)

Factor Graphs

Factor Graphs

Random variable nodes (circles)
Factor nodes (squares)

Edge between variable and factor if X, | A\

the factor depends on that variable.

— The graph is bipartite. X, |

A factor is a function from tuples of
r.v. values to nonnegative
numbers.

P(X =) x H%‘(%’)

’¢1

'| Cbz

‘\
s |
¢
st A 3

b,

Two Kinds of Factors

* Conditional probability tables

X, | ¢

- E.g., P(Xz | Xl’ X3) \ i

— Leads to Bayesian networks, causal X, X \\
explanations |

. . L b

* Potential functions - 3

— Arbitrary positive scores \s

4

— Leads to Markov networks

Example: Bayesian Network

The flu causes sinus Flu Al
inflammation

S.I.

Allergies also cause
sinus inflammation -

R.N.

Sinus inflammation
causes a runny nose

Sinus inflammation
causes headaches

®¢ P,

The flu causes sin Pes °
inflammation
Allergies also/£ause

“Some local
configurations are
more likely than
others.”

>

S (pFAS(FIAIS)

R PP, O|O |0 |0

R |, |lO|lO|FR |, |[O]|O

R lo|lr|lOo|rRr|Oo]|r]|O

= | =[O0 W,

R O (= |O | X2

R |k, [O|O0O W,

R | O (= |O|XI

O

Psr

Pa

Pras »
Psh

“Some local

configurations are
more likely than

others.”

Example: Markov Network

* Swinging couples or confused students
AL1C|B,D
BLD]|A,C ;
~BLD o
-AL1LC

Example: Markov Network

e Each random variable is a
vertex.

* Undirected edges. R
 Factors are associated |
with subsets of nodes that

form cliques. -

— A factor maps assignments
of its nodes to nonnegative
values.

* |n this example,
associate a factor
with each edge.

— Could also have ’ ’
factors for single

= | =[O0 |X>
L | Ol |O |0

= | =[Ol |X>

nodes!

= |- O |0 |®
R | O|l—Lr |O|0O

R =[O |0 [0
R O (= |O |0

Markov Networks

* Probability distribution:

P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

P(a b c d) _ ¢1(a’7b)¢2(b7 C)¢3(C7 d)¢4(a7d)
o ST bu(d V)bV,)bs(c!, d)pald)
a’,b’,c’,d’
Z= Y ¢i(d V)V,)ps(c,d)palal,)
a’,b’,c’,d’

R |~ Ol |>

B|C C|D A|D
0O 0O 0O
01 01 01
110 110 1|0
11 11 1|1

Example: Markov Network

* Probability distribution:
P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

gbl (a7 b)¢2(ba C)¢3 (C7 d)¢4(a7 d)
P(a,b,c,d) =
() Z ¢1(a/7b’)¢2(b/7C/)¢3(Clvd/)¢4(a/7d,>

a’ b’ ¢ ,d’

Z = Z ¢1(a/7b/)¢2(b/7cl)¢3(clad/)¢4(a’/7d/)

QL &
=7,201,840

R |~ Ol |>

R |- ([O]|O |

R |, |O (O[O
== Ol |>

~ o |~ |O
Lo |~ |O
~|o |~ |O

Example: Markov Network

* Probability distribution:
P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

gbl (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)
Z ¢1 (alv b’)¢2(b/7 C/)¢3 (CI, d/>¢4(a/7 dl)

/ / / /
a’,b’,c’,d

Z = Z ¢1(a/7b/)¢2(b/7cl)¢3(clad/)¢4(a’/7d/)

P(a,b,c,d) =

QL &
=7,201,840

R |~ Ol |>

B | ,(A B)|| B C AlD

0 0 0 0|0

1 5 0 0 0|1 P(0, 1,1, 0)

0 1 1 1 1]0 = 5,000,000 / Z
10 1 1 111 = 0.69

Example: Markov Network

* Probability distribution:

P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

b1 (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)

P(a,b,c,d) =
Z ¢1 (a/7b’)¢2(b/7C/)¢3(C/7d/>¢4(a/7d/>
a’,b’,c’,d’ ‘
Z = Z le(a’/ab/)¢2(blvc/)¢3(clvd/)¢4(a’/7d/)
a,’b/,CI’d/ G a
=7,201,840

A B C | D | ¢4(C, D) A ‘
0 0 0|0 0
0 0 0|1 0 P(1,1,0,0)
1 1 1]0 1 =10/2
1 1 111 1 = 0.0000014

Independence and Structure

* There's a lot of theory about how BNs and
MNs encode conditional independence
assumptions.

— BNs: A variable X is independent of its non-
descendants given its parents.

— MNs: Conditional independence derived from
“Markov blanket” and separation properties.

— Local configurations can be used to check all
conditional independence questions; almost no
need to look at the values in the factors!

Independence Spectrum

H b (2;) o()

everything is dependent

full independence
assumptions

Products of Factors

* Given two factors with different scopes, we
can calculate a new factor equal to their
products.

¢product(w U y) — ¢1 (CL‘) . ¢2 (y)

Products of Factors

* Given two factors with different scopes, we
can calculate a new factor equal to their

products.

= | =[Ol |X>

A

B

C

(p3(AI B;
C)

R =[O0 |

R | O|l—Lr |O|0O

R | R (==]O|0O |0 |0

R | =[O0 || |O|O

R 1 O, |O|FL, |O |k |O

Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
(X, Y) into a factor Y(X) via maximization:

w(X) — m&x¢(X, Y)

* We can refer to this new factor by max, ¢.

Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
@(X, Y) into a factor Y(X) via maximization:

P (X)

R R, lO|lO]JlO|O|>

R |, |O|lO0O|FR, | |O|O |

R |O|lRr O[O |FRL|O|O

¢ (A, B, C)

= max »(X,Y)

—

“maximizing out” B

Y(A, C)

R |, |lO|lO|>

C
0
1
0
1

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

O(X) =) X,y

yeVal(Y)

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
@(X, Y) into a factor P(X) via marginalization:

P(X) = > X,y

yeVal(Y)

A|B|C|o(ABCQ)

ol olo A | C | WA Q)
ol ol 1 ﬁ 010 2.0
0 1 0 0|1 2.0
0 1 1 110 1.5
11010 “summing out” B 1 11 0.9
1 0 1

1 1 0

1 1 1

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
@(X, Y) into a factor P(X) via marginalization:

P(X) = > X,y

yeVal(Y)

A|lB|C|o(ABCQ

ololo A | B [U(A, B)
P P :> olo 1.2
0 1 0 0|1 2.8
0 1 1 110 1.1
10| 0 “summing out” C 1 11 1.3
1101

1|10

1|11

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

O(X) =) X,y

yeVal(Y)

* We can refer to this new factor by >, ¢.

Marginalizing Everything?

* Take a factor graph’s “everything factor” by
multiplying all of its factors.

 Sum out all the variables (one by one).

 What do you get?

Factors Are Like Numbers

* Products are commutative: @, ¢, =@, @,
* Products are associative:
(@17 @,) - ©3=@1 (@7 @)
* Sums are commutative: 3,5, @ =5,5, @
(max, too).

* Distributivity of multiplication over
marginalization and maximization:

X ¢ Scope(¢1) = qul $2) =1+ > b
X

m)z(xx(gb - P2) = P1 ' Max ¢

Inference

Querying the Model

* Inference (e.g., do you
have allergies or the
flu?)

* What's the best
explanation for your
symptoms?

* Active data collection
(what is the next best
r.v. to observe?)

P

Flu |

Psr

R.N.

Pa

Peas ™ All.

S.I.

Psh

A Bigger Example: Your Car

The car doesn't start.

What do we conclude
about the battery age?

18 random variables

218 possible scenarios

Inference: An Ubiquitous Obstacle

* Decoding is inference (lecture 2).
* Learning is inference (lectures 3 and 4).

e Exact inference is #P-complete.

— Even approximations within a given absolute or
relative error are hard.

Probabilistic Inference Problems

Given values for some random variables (X C V) ...

Vost Probable Explanation: what are the most probable values of the rest
of the r.v.s V\ X?

(More generally ...)

Maximum A Posteriori (MAP): what are the most probable values of some
otherr.v.s,Y C (V\ X)?

Random sampling from the posterior over values of Y
Full posterior over values of Y
Varginal probabilities from the posterior over Y

Minimum Bayes risk: What is the Y with the lowest expected cost?
Cost-augmented decoding: What is the most dangerous Y?

Approaches to Inference

inference
[
| |
approximate
|
| |
variabl T
eli:qir?:tiin randomized deterministic
|
l] [] []
dynamic |mportance randomized variational IOOpy bet_lilef | LPti local search
program'ng sampling search propagation relaxations
simulated mean field beam search
annealing c

today

tomorrow
hard inference methods; soft inference methods; methods for both

Exact Marginal forY

e This will be a generalization of algorithms you
may already have seen: the forward and
backward algorithms.

* The general name is variable elimination.

e After we see it for the marginal, we'll see how
to use it for the MAP.

Inference Example

* Goal: P(D)

P(B | A)=
(pAB(AI B)

= |=|O |0

R O | |O

P(D | C) =
(pCD(CI D)

A | P(A) =
PA(A)

B| C|PC]|B)=
Pgc(B, C)

0|O0

0|1

1|0

1)1

Inference Example

 Let’s calculate
P(B) first.

PA(A)

Inference Example G A|PA)-

 Let’s calculate
P(B) first.

P |~ |O|O

P(B) = Z P(A

acVal(A)

PA(A)

Inference Example ‘ A|PA)-

 Let’s calculate
P(B) first.

P |~ |O|O

P(B) = Z P(A

acVal(A)

e Note: CandD
don’t matter.

Inference Example

e Let’s calculate

P(B) first.
P(B) =) P(A=a)P(B|A=q)
acVal(A)
A| B |PB|A)=
Pas(A, B)
B| P(B) = A| P(A) =
Py(B) ouA) | |22
0 0 011
1 1 1|0
1|1

Inference Example

* New modelin
which A is
eliminated;
defines
P(B, C, D)

B | P(B)=
¢g(B)

= |=|O |0
R O | |O

C|D|PD]|C)s=
(pCD(CI D)

P(C|B)=
(pBC(BI C)

R |=|O |O

= O | |[O

Inference Example

* Same thing to

P(C| B =b)

eliminate B.
P(CO) > P(B
beVal(B)
C| P(C) = B| P(B)=
©(C) ©5(B)

P(C | B) =

(pBC(BI C)

R | = |O O

R | O | |O

Inference Example

* New modelin PO -
which B is @9
. . 0
eliminated; .
defines
P(C, D) c

C|D|PD|C)=
(pCD(CI D)

= |=|O |0
R O | |O

Simple Inference Example

e Last step to get P(D):

Simple Inference Example

Notice that the same step happened for each
random variable:

— We created a new factor over the variable and its
“successor”

— We summed out (marginalized) the variable.

PD) = >) > P B=b|A=a)P(C=c|B=bP(D|C=c)

a€Val(A) beVal(B) ceVal(C)

=) PMD|C=c¢ Y P(C=c|B=b) » PA=aPB=b|A=a)

ceVal(C) beVal(B) a€Val(A)

That Was Variable Elimination

* We reused computation from previous steps
and avoided doing the same work more than
once.

— Dynamic programming a la forward algorithm!

 We exploited the graph structure (each
subexpression only depends on a small
number of variables).

* Exponential blowup avoided!

What Remains

* Variable elimination in general
 The maximization version (for MAP inference)
* A bit about approximate inference

Eliminating One Variable

Input: Set of factors @, variable Z to eliminate
Output: new set of factors W

Let®' ={p € ® | Z € Scope(p)}
LetW={p € ® | Z< Scope(p)}

Lety be ; TTpep @
.Return W U {}

B W N BB

Example

* Query:
P(Flu | runny nose)

e Let's eliminate H.

P

Pa

o

Example | «

* Query:
P(Flu | runny nose)

e Let's eliminate H.

1. @' = {(PSH}
2. W ={@;, @ Prass Pspt
3' LIJ = ZH ﬂ(pE(D' (p

4.Return W U {Y}

Flu |

Psr

Pa

Pras |1 All

S.I.

Psh

Example | «

* Query:
P(Flu | runny nose)

e Let's eliminate H.

1. @' = {(PSH}
2. W ={@;, @ Prass Pspt
3.9 =2 Qg

4.Return W U {Y}

Flu |

Psr

Pa

Pras |1 All

S.I.

Psh

Example | « ©

* Query:
P(Flu | runny nose)

e Let's eliminate H.

1. @' = {(pSH}
2. W= {(PF; Par Pras (pSRL
3.9 =3, ¥y

b(S)

1.0

4.Return W U {}

1.0

R | |O|O|(wn
B[O |O | X

Example | « ©

* Query:
P(Flu | runny nose)

e Let's eliminate H.

1. @' = {(pSH}
2. W= {(PF; Par Pras (pSRL
3.9 =3, ¥y

S | WS

0 1.0

4.Return W U {}

1 1.0

R | |O|O|(wn
B[O |O | X

Example | « o

* Query:
P(Flu | runny nose)

e Let's eliminate H.

 We can actually ignore the
new factor, equivalently just
deleting H!
— Why?
— In some cases eliminating a
variable is really easy!

@ Pras ™ AlL

S.I.

Psr

Example | «

* Query: Flu)
P(Flu | runny nose)

Psr
 His already eliminated.

e Let's now eliminate S.

Pras

S.I.

AL

Example | «

* Query: Flu |

P(Flu | runny nose)

Psr

* Eliminating S.
1. @' = {Psr) Pras}
2. W ={@, @}

3. Wear = 25 ﬂ(pEd)' P
4.Return W U {U,:}

Pras

S.I.

AL

Example | « o

° Query: Flu] @uac 1 AlL
P(Flu | runny nose)

S.I.

Psr

* Eliminating S.
1. @' = {Psr) Pras}
2. W ={@, @}

3.Wrar = 25 Psg * Pras
4.Return W U {U,:}

Example | « 2

° Query: Flu All.

P(Flu | runny nose) o

* Eliminating S.
1. @' = {Psr) Pras}
2. W ={@, @}

3.Wrar = 25 Psg * Pras
4.Return W U {U,:}

Example

* Query:
P(Flu | runny nose)

* Finally, eliminate A.

P

Pa

LIJFAR

Example | «

* Query: Flu
P(Flu | runny nose) /

* Eliminating A.
1. @' = {(PA; (PFAR}
2. W ={@}

3. W= 24P - Wear
4.Return W U {U..}

LIJFAR

All.

Example | «

* Query: Flu
P(Flu | runny nose) —

LI"FR
* Eliminating A.

osioy ™

3. W= 24P - Wear
4.Return W U {U..}

Chain, Again

* Goal: P(D)

e Earlier, we
eliminated A,
then B, then
C.

B [P(B|A)=
(pAB(AI B)

D |P(D|C)=
(pCD(CI D)

= |=|O |0

R O | |O

B| C|PC]|B)=
Pgc(B, C)

0|O0

0|1

1|0

1)1

Chain, Again

* Goal: P(D) AlB|PEIAS

(pAB(AI B)

e Earlier, we
eliminated A,

B| C|PC]|B)=
then B, then o (5,0
C. 0l 0
0 1
e Let’s start
. C|D|PD]|C)= 11]0
W|th C. Pcp(C, D) 1| 1

= |=|O |0

R O | |O

Chain, Again

* Goal: P(D) AlB|PEIAS

(pAB(AI B)

e Earlier, we
eliminated A,

B| C|PC]|B)=
then B, then o (5,0
C. 0l 0
0 1
e Let’s start
. C|D|PD]|C)= 11]0
W|th C. Pcp(C, D) 1| 1

= |=|O |0

R O | |O

Chain, Again

e Eliminating C.

B| C|P(C|B)=]|]| C
Ppc(B, C)

0|o0 0o

0|1 0|1

1|0 1|0

1)1 1|1

(pBCD(BI Cr D)

R |IPr PP, ||O||O|J|O|O|®@

R || O|0O|FRr | |O|O|O

R |IO|lRr|O|Rr|[O| |O|C

D906

Y(B, D)

D
0
1
0
1

B
0
0
1
1

B C D (pBCD(B/ CI D)

Chain, Again
* Eliminating C.

Chain, Again

* Eliminating B will be
similarly complex.

R | =[O]O

R (O |F—= |O

y(8, D)

R | =0 |0 |

= | Ol |O |00

Variable Elimination: Comments

* Can prune away all non-ancestors of the query
variables.

* Ordering makes a difference!

What about Evidence?

* So far, we've just considered the posterior/
marginal P(Y).

 Next: conditional distribution P(Y | X = x).

* |t's almost the same: the additional step is to
reduce factors to respect the evidence.

* Query:
P(Flu | runny nose)

Example | «

e Let'sreducetoR =
true (runny nose).

(pSR (S, R)

R |=R|O|O W,

R O |=|O (>

&

Pa

@ea AL
S

S.I.

Psh

R | ¢'s(S)

Example

* Query:
P(Flu | runny nose)

e Let'sreducetoR =
true (runny nose).

P

Pa

Pra
s

Example

* Query:
P(Flu | runny nose)

* Now run variable
elimination all the
way down to one
factor (for F).

P

Flu |

Pa
@Pea = Al
S
S.1.

Psh
Eliminate H.

Example

* Query:
P(Flu | runny nose)

* Now run variable
elimination all the
way down to one
factor (for F).

(O Pa
Flu | Pea = Al
S
S.1.

@'
Eliminate S.

Example | « 2

° QUEFYZ Flu = Qg [Al
P(Flu | runny nose)

Eliminate A.

* Now run variable
elimination all the
way down to one
factor (for F).

Example | «
* Query: Fu [
P(Flu | runny nose)

Take final product.

* Now run variable
elimination all the
way down to one
factor (for F).

Example

* Query:

P(Flu | runny nose) b

* Now run variable
elimination all the
way down to one
factor.

Additional Comments

 Runtime depends on the size of the intermediate
factors.

* Hence, variable elimination ordering matters a
lot.

— But it's NP-hard to find the best one.

— For MNs, chordal graphs permit inference in time
linear in the size of the original factors.

— For BNs, polytree structures do the same.
* |f you can avoid “big” intermediate factors, you

can make inference linear in the size of the
original factors.

Variable Elimination for
Conditional Probabilities P(Y | X = x)

Input: Graphical model onV, set of query variables
Y, evidence X = x

Output: factor ¢ and scalar a
1. @ = factors in the model

2.Reduce factors in @ by X = x
3.Choose variable orderingmonZ =V\Y\X
4. = Variable-Elimination(®, Z, i)

5.0 =2, evaiz) P(2)
6. Return ¢, a

Getting Back to NLP

* Traditional structured NLP models were
sometimes chosen for these properties.

— HMMs, PCFGs (with a little work)
— But not: IBM model 3

* To decode, we need MAP inference for
decoding!

* When models get complicated, need
approximations!

From Marginals to MAP

* Replace factor marginalization steps with
maximization.
— Add bookkeeping to keep track of the maximizing
values.
 Add a traceback at the end to recover the
solution.

* This is analogous to the connection between the
forward algorithm and the Viterbi algorithm.

— Ordering challenge is the same.

Variable Elimination
(Max-Product Version with Decoding)

Input: Set of factors @, ordered list of variables
Z to eliminate

Output: new factor
1.For each Z. € Z (in order):

— Let (@, Y,) = Eliminate-One(®, Z,)
2.Return T, @, Traceback({W,})

Eliminating One Variable
(Max-Product Version with Bookkeeping)

Input: Set of factors @, variable Z to eliminate
Output: new set of factors W

Let®'={p € ® | Z € Scope(y)}
LetW={p € ® | Z< Scope(p)}
.Let T be max; [Tyeq @

— Lety be TT,cq @ (bookkeeping)
4.Return W U {1}, Y

Traceback

Input: Sequence of factors with associated
variables: (y, ..., U,)
Output: z°

* Each , is a factor with scope including Z and
variables eliminated after Z.

e Work backwards from i =k to 1:

— Let z, = arg max, W,(z, z,,,, Z;,5, -, Z;)

e Return z

About the Traceback

* No extra (asymptotic) expense.

— Linear traversal over the intermediate factors.

* The factor operations for both sum-product
VE and max-product VE can be generalized.

— Example: get the K most likely assignments

Variable Elimination Tips

* Any ordering will be correct.
 Most orderings will be too expensive.
 There are heuristics for choosing an ordering.

— If the graph is chain-like, work from one end
toward the other.

(Rocket Science: True MAP)

Evidence: X =x
Query: Y
Other variables: Z=V\X\Y

* p— a a P Y X =&
J] rgyergafy) (Y |)

— ma PY = =2z | X =
i, L P uze X ow
zeVal(Z)
First, marginalize out Z, then do MAP inference over Y

given X = X

This is not usually attempted in NLP, with some exceptions.

Parting Shots

* You will probably never implement the
general variable elimination algorithm.

* You will rarely use exact inference.

* Understand the inference problem would look
like in exact form; then approximate.
— Sometimes you get lucky.

— You’'ll appreciate better approximations as they
come along.

