Probability and Structure in
Natural Language Processing

Noah Smith

Heidelberg University, November 2014

Two Meanings of “Structure”

* Yesterday: structure of a graph for modeling a
collection of random variables together.
* Today: linguistic structure.
— Sequence labelings (POS, I0B chunkings, ...)
— Parse trees (phrase-structure, dependency, ...)
— Alignments (word, phrase, tree, ...)
— Predicate-argument structures

— Text-to-text (translation, paraphrase, answers, ...)

A Useful Abstraction?

| think so.

Brings out commonalities:

— Modeling formalisms (e.g., linear models with
features)

— Learning algorithms (lectures 3-4)
— Generic inference algorithms

Permits sharing across a wider space of
problems.

Disadvantage: hides engineering details.

Familiar Example:
Hidden Markov Models

Hidden Markov Model

e XandY are both sequences of symbols
— X is a sequence from the vocabulary 2
— Y is a sequence from the state space A

X =x2Y=y) = (Hp(ﬂ% | yi)p(yi | yz’l)) p(stop | yn)
e Parameters: -

— Transitions p(y’ | y)

* including p(stop | y), ply |)
— Emissions p(x | v)

Hidden Markov Model

* The joint model’s independence assumptions
are easy to capture with a Bayesian network.

X =zY=y) = (Hp(%; | yi)p(yi | yu)) p(stop | yn)

1=1

Y1Y2Y3... Y, ™ stop

Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

‘ Yl | | Y2 | ‘ Y3 | - | Yn |

Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

OQZDD e

Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

e Factor graph after reducing factors to respect
evidence:

Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

* Clever ordering should be apparent!

i \ Yl & gl Y2 ™ il Y3 ™ i ee . il Yn I .

Hidden Markov Model

* When we eliminate Y,, we take a product of
three relevant factors.

* p(Y, | start)
* n(Y,) =reduced p(x, | Y,)
* p(Y, | Y,)

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

2 p(Y, | start)
Y
- - - ~
Yinl
Y1 - - -
Y,

n(Y,) = reduced p(x, | Y,)

YAl

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

* This is the Viterbi probability vector for Y,.

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

* This is the Viterbi probability vector for Y,.

* Eliminating Y, equates to solving the Viterbi
probabilities for Y,

g

p(Y | Y,)

Hidden Markov Model

* Product of all factors involving Y,, then
reduce.

* ,(Y,) = max e,y (P1y) X p(Y, [y))
* This factor holds Viterbi probabilities for Y,

Hidden Markov Model

* When we eliminate Y,, we take a product of
the analogous two relevant factors.

* Then reduce.
© d5(Y3) = max,eyayy,) (Pay) X p(Ys | y))

Hidden Markov Model

At the end, we have one final factor with one
row, ¢

* This is the score of the best sequence.
* Use backtrace to recover values.

Why Think This Way?

* Easy to see how to generalize HMMs.
— More evidence
— More factors
— More hidden structure
— More dependencies

* Probabilistic interpretation of factors is not
central to finding the “best” Y ...

— Many factors are not conditional probability
tables.

Generalization Example 1

Iy

X, X3

X Xy Xs

* Each word also depends on previous state.

Generalization Example 1

SN N N S

X, X X Xy Xs

* Each word also depends on previous state.

Generalization Example 2

PN PN PN N PN

* “Trigram” HMM

Generalization Example 2

AG‘- G - ° - G - G -
N VN 77N N <

* “Trigram” HMM

Generalization Example 3

X 4 X 4 X 4 X 4 X
X, X, X, X, X,

* Aggregate bigram model (Saul and Pereira,
1997)

Generalization Example 3

PN PN PN PN PN
Xl XZ X3 X4 X5

* Aggregate bigram model (Saul and Pereira,
1997)

General Decoding Problem

e Two structured random variables, X and Y.

— Sometimes described as collections of random
variables.

e “Decode” observed value X = x into some
value of Y.

e Usually, we seek to maximize some score.
— E.g., MAP inference from yesterday.

Linear Models

Define a feature vector function g that maps (x, y) pairs
into d-dimensional real space.

Score is linear in g(x, y).

score(x,y) = WTg(:c, Y)
* T
— arg max w T,
J g max g(x,y)

Results:
— decoding seeks y to maximize the score.
— learning seeks w to ... do something we’ll talk about later.

Extremely general!

Generic Noisy Channel as Linear Model

y = argmaxlog (p(y) -p(x|y))

= arg man logp(y) + logp(x | y)

= argmaX Wy + Wy|y
Y

— argmaxw ' g(x,y)
Y

e Of course, the two probability terms are
typically composed of “smaller” factors; each
can be understood as an exponentiated

weight.

Max Ent Models as Linear Models

y = argmaxlogp(y | x)
Yy

expw ' g(x,y)

= argmaxlog
Y z(x)

(
= argmaxw ' g(x,y) — logz(x)
Y
)

= argmaxw' g(x,y
Y

HMMs as Linear Models

arg max log p(x, y)
Y

arg max (Z log p(x; | yi) +log p(yi | ym)) +log p(stop | yn)
1=1

n
arg m;}X (§ :wyilxi T wyz’1—>yz’> T Wy,, —stop
1=1

argmax y wy o freq(y | 239, @) + Y wy—y frealy = y'sy)
Y, Y.y’

argmax w ' g(x,y)
Y

Running Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

T =
y = B 0 0 0 0 B | B O O
y = O 0 0 0 0 B | B O O

11 12 13 14 15 16 17 15 19 20

Britons stranded by Eyjafjallajokull ’'s volcanic ash cloud
B 0 0 B 0 0 0 0 O O
B 0 0 B 0 0 0 0 O O

* |OB sequence labeling, here applied to NER
* Often solved with HMMs, CRFs, M3Ns ...

feature function g: A x Y - R

9(z,y)

9(z,y")

bias: count of ¢ s.t.
count of ¢ s.t.
count of 7 s.t.

Yi =
Yi =
Yi =

- O

lezical: count of ¢ s.t.
count of 7 s.t.
count of ¢ s.t.

z; = Britain and y; = B
z; = Britain and y; = |
z; = Britain and y; = O

douwncased: count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.

le(z;) = britain and y; = B
le(z;) = britain and y; = |
le(z;) = britain and y; = O
le(z;) = sent and y; = O
le(z;) = warships and y; = O

shape: count of i s.t.
count of 7 s.t.
count of ¢ s.t.

shape(z;) = Aaaaaaa and y; = B
shape(z;) = Aaaaaaa and y; = |
shape(z;) = Aaaaaaa and y; = O

prefiz: count of 7 s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.

pre,(z;) = B and y; = B
pre,(z;) = B and y; = |
pre,(z;) = Band y; =0
pre,(z;) =sand y; =0
shape(pre,(z;)) = Aand y; =B
shape(pre,(z;)) = Aand y; = |
shape(pre,(z;)) = Aand y; =0

[shape(pre,(z1)) = A Ay = B]
[shape(pre,(z1)) = ANy, = O]

gazetteer: count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.

z,; is in the gazetteer and y; = B
z; is in the gazetteer and y; = |
z; is in the gazetteer and y;, = O
z; = sent and y; = O

O O NIOHF O MF OCIN OONIOF W OO MO O i

bt et O b O RN O R N O OO OO

(What is Not A Linear Model?)

e Models with hidden variables
argmax p(y |) = argmax Y p(y, z | =)
Yy Yy ~

(also “neural” models)

e Models based on non-linear kernels

argmaxw ' g(x,y) = argmaxg a; K ((x,y,), (x,
Y

Decoding

* For HMMs, the decoding algorithm we usually
think of first is the Viterbi algorithm.

— This is just one example.

 We will view decoding in five different ways.
— Sequence models as a running example.
— These views are not just for HMMs.
— Sometimes they will lead us back to Viterbi!

Five Views of Decoding

Inference in a
probabilistic
graphical model!

1. Probabilistic Graphical Models

e View the linguistic structure as a collection of
random variables that are interdependent.

* Represent interdependencies as a directed or
undirected graphical model.

e Conditional probability tables (BNs) or factors
(MNs) encode the probability distribution.

Inference in Graphical Models

* General algorithm for exact MAP inference:
variable elimination.

— Iteratively solve for the best values of each

variable conditioned on values of “preceding”
neighbors.

— Then trace back.

The Viterbi algorithm is an instance of
max-product variable elimination!

MAP is Linear Decoding

o BayeSian network: Zlogp(xi | parents(X;))

+ Z log p(y; | parents(Y;))
J

e Markov network:
E log pc ({zi}iec,{Yj}iec)
C

* This only works if every variable isin X or Y.

Inference in Graphical Models

e Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really pleasant:

$4dd3

Inference in Graphical Models

e Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really unpleasant:

T e

Integer linear
Inference in a programming!
probabilistic
graphical model!

“Parts”

* Assume that feature function g breaks down
into local parts.

#parts(x)

glxz,y) = Y f(lli(z,y))

1=1

* Each part has an alphabet of possible values.

— Decoding is choosing values for all parts, with
consistency constraints.

— (In the graphical models view, a part corresponds
to a factor assignment.)

Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

]
[

* One part per word, eachisin {B, I, O}
* No features look at multiple parts

— Fast inference
— Not very expressive

Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

B R D N —
B N D

i

* One part per bigram, eachis in {BB, Bl, BO,
IB, 11, 10, OB, OO}

* Features and constraints can look at pairs
— Slower inference
— A bit more expressive

Geometric View

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

B R D N —
B N D

i

* Letz belif partitakesvaluemmandO
otherwise.

e zisavectorin{0, 1}V
— N = total number of localized part values
— Each z is a vertex of the unit cube

Score is Linearin z

#parts(x)
argmaxw ' g(x,y) = argmaxw' Z f(IL;(x,y))
Y v i=1
#parts(x)
— argmaxw' Z Z f(m)1{Il;(x,y) = 7}
Y 1=1 7€ Values(I1;)
not really 4t parts(x)
equal; need _ T ¢ |
to transform P Z_: Vlz: " (70) 2,z
back to gety =1 meValues(Il;)

= argmaxw Foz
ZEZ,

_ T
= argmax (w (w'Fy)z

Polyhedra
y

 Not all vertices of the N-dimensional unit cube
satisfy the constraints.

—E.g., can'thavez, z=1andz, 5 =1
e Sometimes we can write down a small

(polynomial number) of linear constraints on
Z.

* Result: linear objective, linear constraints,
Integer constraints ...

Integer Linear Programming

* Very easy to add new constraints and non-local
features.

 Many decoding problems have been mapped to

ILP (sequence labeling, parsing, ...), but it’s not
always trivial.

* NP-hard in general.

— But there are packages that often work well in
practice (e.g., CPLEX)

— Specialized algorithms in some cases
— LP relaxation for approximate solutions

Remark

* Graphical models assumed a probabilistic
Interpretation

— Though they are not always learned using a
probabilistic interpretation!

* The polytope view is agnostic about how you
interpret the weights.

— It only says that the decoding problem is an ILP.

Integer linear
Inference in a programming!
probabilistic
graphical model!

Grammars

e Grammars are often associated with natural
language parsing, but they are extremely
powerful for imposing constraints.

* We can add weights to them.

— HMMs are a kind of weighted regular grammar
(closely connected to WFSAS)

— PCFGs are a kind of weighted CFG
— Many, many more.

 Weighted parsing: find the maximum-weighted
derivation for a string x.

Decoding as Weighted Parsing

* Every valid yis a grammatical derivation
(parse) for x.

— HMM: sequence of “grammatical” states is one
allowed by the transition table.

 Augment parsing algorithms with weights and
find the best parse.

The Viterbi algorithm is an instance of
recognition by a weighted grammar!

BIO Tagging as a CFG

N’ — B RB RB — B RB R[— B RB RO — B RB
NQ — 0 RO RB — 0 RO RI — 0 RO RO — 0 RO
RB — I R[R[— I R]

R — € R; — € Ro — €
Vx € X, B — =z I — =z O — =«

* Weighted (or probabilistic) CKY is a dynamic
programming algorithm very similar in
structure to classical CKY.

Integer linear
Inference in a programming!
probabilistic
graphical model!

Shortest
(hyper)path!

Best Path

* General idea: take x and build a graph.
e Score of a path factors into the edges.

argmaxw ' g(x,y) = argmaxw' g f(e)1{e is crossed by y’s path}
Yy Y
ecEdges

* Decoding is finding the best path.

The Viterbi algorithm is an instance of
finding a best path!

“Lattice” View of Viterbi

Reas
RERoH
GE3

”0

s

Minimum Cost Hyperpath

General idea: take x and build a hypergraph.

Score of a hyperpath factors into the
hyperedges.

Decoding is finding the best hyperpath.

This connection was elucidated by Klein and
Manning (2002).

Parsing as a Hypergraph

A

EEOEE

o0

freedom
23

Parsing as a Hypergraph

000

cf. “Dean for democracy’

Parsing as a Hypergraph

Jones freedom
01 23

Forced to work on his thesis, sunshine streaming in
the window, Mike experienced a ...

Parsing as a Hypergraph

Jones

()
0o

Forced to work on his thesis, sunshine streaming in
the window, Mike began to ...

01

Why Hypergraphs?

e Useful, compact encoding of the hypothesis
space.

— Build hypothesis space using local features, maybe
do some filtering.

— Pass it off to another module for more fine-
grained scoring with richer or more expensive
features.

Integer linear
Inference in a programming!
probabilistic
graphical model!

Shortest path!

Logic Programming

e Start with a set of axioms and a set of inference
rules.

VA, C, ancestor(A,C) <« parent(A,C)
VA, C, ancestor(A,C) <« \/ ancestor(A, B) A parent(B, C)
B

* The goal is to prove a specific theorem, goal.

* Many approaches, but we assume a deductive
approach.

— Start with axioms, iteratively produce more theorems.

label-bigram(“B”, “B”)
label-bigram(“B”, “I"")
label-bigram(“B”, “O”)
label-bigram(“I”, “B”)
label-bigram(“I”, “I”)
label-bigram(“I”, “O”)
label-bigram(“0” , “B”)
label-bigram(“0”, “O”)
Yz € X, labeled-word(z, “B”)
Yz e X, labeled-word(z, “I")
Vz € X, labeled-word(z, “O”)

Vee A, v(£,1)
Vee A, v(£1)

labeled-word(z,, £)
\/ v(€',i — 1) A label-bigram(£', £) A labeled-word(z;, £)
gEA

\/ v(£,n)

£EA

goal

Weighted Deduction

* Twist: axioms have weights.
* Want the proof of goal with the best score:
argmaxw g(x,y) = argmaxw.' Z f(a)freq(a;y)
Yy

Y
aEAxioms

e Note that axioms can be used more than once
in a proof (y).

Weighted Deduction

* Shieber, Schabes, and Pereira (1995): many

parsing algorithms can be understood in the
same deductive logic framework.

e Goodman (1999): add weights, get many
useful NLP algorithmes.

e Eisner, Goldlust, and Smith (2004, 2005):
semiring-generic algorithms, Dyna.

Dynamic Programming

* Most views (exception is polytopes) can be
understood as DP algorithms.
— The low-level procedures we use are often DP.

— Even DP is too high-level to know the best way to
implement.

* DP does not imply polynomial time and space!

— Most common approximations when the desired state
space is too big: beam search, cube pruning, agendas
with early stopping, ...

— Other views suggest others.

Summary

* Decoding is the general problem of choosing a
complex structure.
— Linguistic analysis, machine translation, speech
recognition, ...
— Statistical models are usually involved (not
necessarily probabilistic).
* No perfect general view, but much can be
gained through a combination of views.

