Probability and Structure in
Natural Language Processing

Noah Smith

Heidelberg University, November 2014



Learning

* Assume a collection of N pairs (X, y);
supervised learning with complete data.



LOSS

Let h be a hypothesis (an instantiated, predictive
model).

loss(x, y; h) = a measure of how badly h performs
on input x if y is the correct output.

How to decide what “loss” should be?
1. computational expense

2. knowledge of actual costs of errors

3. formal foundations enabling theoretical



Risk

* There is some true distribution p* over input,
output pairs (X, Y).

* Under that distribution, what do we expect h’s
loss to be?

Ep-(x,v)lloss(X,Y;h)]

* We don’t have p*, but we have the empirical
distribution, giving empirical risk:

Esx v)lloss(X,Y; h)] Z loss(x;,y;; h



Empirical Risk Minimization

 Provides a criterion to decide on h:

N
min % ; loss(x;,y;: h)

* Background preferences over h can be
included in regularized empirical risk
minimization:

1 N
hmeiﬁ ~ Z loss(x;,y;; h) + R(h)

1=1



Parametric Assumptions

* Typically we do not move in “h-space,” but
rather in the space of continuously-
parameterized predictors.

N
1
min - Z loss(x;,y;; h) + R(h)

=1

N
1
v{,%i]éld N Z loss(xi,y;; hw) + R(w)
i=1



Three Kinds of Loss Functions

* Error
— Could be zero-one, or task-specific.

— Mean squared error makes sense for continuous
predictions and is used in regression.

* Log loss
— Probabilistic interpretation (“likelihood”)
* Hinge loss

— Geometric interpretation (“margin”)



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

e Maximum likelihood estimation:
R(w) is O for models in the family, +oo for

other models.

 Maximum a posteriori (MAP) estimation:
R(w) is —log p(w)

e Often called generative modeling.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Examples:

* N-gram language models

* Supervised HMM taggers

* Charniak, Collins, and Stanford parsers



Log Loss (First Version)

1

N
v{’réiléld N ; loss(x;, y;; hw) + R(W)

loss(x,y; hw) = —logpw(z,vy)

Computationally ...

Convex and differentiable.

Closed form for directed, multinomial-based models p,,.
— Count and normalize!

In other cases, requires posterior inference, which can be
expensive depending on the model’s structure.

Linear decoding (for some parameterizations).



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Error ...
* No notion of error.

* Learner wins by moving as much probability
mass as possible to training examples.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

e Consistency: if the true model is in the right
family, enough data will lead you to it.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Different parameterizations ...
e Multinomials (BN-like): — ) freq(e; x, y) log pe
- \\/_/

We

* Global log-linear (MN-like): —w"g(z,y) +1log Y expw'g(z',9)

I nyt
T,y

* Locally normalized log-linear:

— > freq(e; z, y) (WTg(e)log > exprg(e’)>

e’'eC(e)



Reflections on Generative Models

Most early solutions are generative.

Most unsupervised approaches are generative.
Some people only believe in generative models.
Sometimes estimators are not as easy as they
seem (“deficiency”).

Advice: start here if there’s a sensible generative

story.

— You can always use a “better” loss function with the
same linear model later on.



Zero-One Loss

N
1

l’l’éiléld N Z lOSS(CBi, Y, hw) =+ R(W)

w i=1

loss(x,Y;hw) = 1{hw(x)#*y}



Zero-One Loss

N
1

Héiléld N Z lOSS(CBi, Y, hw) + R(W)

w i=1

loss(x,y; hw) = H{hw(x)# Yy}

Computationally:
* Piecewise constant. ®

Error: ©
© none



Error as LosSS

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

lass(:r;, Y; hw) — GTTOT(hw("E); y)

Generalizes zero-one, same difficulties.

Example: Bleu-score maximization in machine
translation, with “MERT” line search.



Comparison

| Generative (Log Loss)

Computation Convex optimization. Optimizing a
piecewise constant
function.

Error-awareness None ©

Guarantees Consistency. None.



Discriminative Learning

e Various loss functions between log loss and
error.
* Three commonly used in NLP:
— Conditional log loss (“max ent,” CRFs)
— Hinge loss (structural SVMs)
— Perceptron’s loss

 We'll discuss each, compare, and unify.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

* Can be understood as a generative model over
Y, but does not model X.

— “Conditional” model



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Examples:
* Logistic regression (for classification)

 MEMMs
* CRFs



Log Loss (Second Version)

1

N
v{’réiléld N ; loss(x;, y;; hw) + R(W)

loss(x,y;hw) = —logpw(y | x)

Computationally ...
e Convex and differentiable.

* Requires posterior inference, which can be
expensive depending on the model’ s structure.

* Linear decoding (for some parameterizations).



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Error ...
* No notion of error.

* Learner wins by moving as much probability
mass as possible to training examples’ correct
outputs.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

e Consistency: if the true conditional model is
in the right family, enough data will lead you
to it.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Different parameterizations ...

e Global log-linear (CRF):
© (CRF) —w'g(x,y) +log ) expw'g(x',y)
y/

* Locally normalized log-linear (MEMM):

— > freq(e; z,y) (WTg(e)—log > eXpWTg(e’>)
e e’'cC(e)



Comparing the Two Log Losses

| logpy(xy) -10g pyy | X)

Parameterization Usually Almost always log-
multinomials (BN- linear (MN-like).
like).

Under the usual parameterization ...

Computation Count and Convex
normalize. optimization.

Error-awareness None. Aware of the Y-

prediction task,
(approximates zero-
one).

Guarantees Consistency of joint. Consistency of cond.



Hinge Loss

N

1

v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —WTg(w, y) + mé}XWTg(-’ﬁ, y’) + error(y', Y)
J

* Penalizes the model for letting competitors
get close (in terms of score) to the correct
answery.

— Can penalize them in proportion to their error.



Hinge Loss

N
1
min — Z loss(xi,y;; hw) + R(W)
=1

wERd Nz
loss(@,y; hw) = —w'g(x,y)+maxw' g(x,y')+ error(y’,y)
,y/
Examples ...

* Perceptron (including Collins’ structured version)
— Classic version ignores error term

e SVM and some structured variants:
— Max-margin Markov networks (Taskar et al.)

— MIRA (1-best, k-best)



Hinge Loss

N

1

v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —w g(x,y)+ mé}XWTg(wa y') + error(y’, y)
y

Computationally ...

* Convex, not everywhere differentiable.
— Many specialized techniques now available.

 Requires MAP or “cost-augmented” MAP
inference.

* Linear decoding.



Hinge Loss

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,Y; hw) = —w'g(z,y)+ mé}XWTg(wa y') + error(y’, y)
Y

Error ...
e Builtin.

* Most convenient when error function factors
similarly to features g.



Hinge Loss

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —WTg(w, y) + mé}XWTg(-’ﬁ, y’) + error(y', Y)
J

e Generalization bounds.

— Not clear how seriously to take these in NLP; may
not be tight enough to be meaningful.

e Often you will find convergence guarantees
(and rates) for optimization techniques.



They Are All Related

% log » exp [8(w' (g(x,y') — g(=,y)) +verror(y’, y))]

v

Conditional log loss (Lafferty et al., 2001) 1 0
Perceptron’s hinge loss (Collins, 2002) o) 0
Structural SVM’s hinge loss (Taskar et al., 2004) 00 >0
Softmax-margin (Gimpel and Smith, 2010) 1 1



CRFs, Max Margin, or Perceptron?

For supervised problems, we do not expect
large differences.

Perceptron is easiest to implement.

— With cost-augmented inference, it should get
better and begins to approach MIRA and M3Ns.

CRFs are best for probability fetishists.

— Probably most appropriate if you are extending
with latent variables; the jury is out.

Not yet “plug and play.”



R(w)

* Regularization term — avoid overfitting

— Usually means “avoid large magnitudes in w’

* (Log) Prior — respect background beliefs about
the predictor h,,



R(w)

Usual starting point: squared L, norm

— Computationally convenient (it’ s strongly convex,
it is its own Fenchel conjugate, ...)

— Probabilistic view: Gaussian prior on weights
(Chen and Rosenfeld, 2000)

— Geometric view: Euclidean distance
(original regularization method in SVMs)

— Only one hyperparameter

R(w) = N|w|3 =X} w]
j



R(w)

* Another option: L;-norm

— Computationally less convenient (not everywhere
differentiable)

— Probabilistic view: Laplacian prior on weights
(originally proposed as “lasso’ in regression)

— Sparsity inducing (“free” feature selection)

R(w) = N[wli =) |uwj
j



R(w)

Lots of attention to this in machine learning.

“Structured sparsity”

— Want groups of features to go to zero, or group-
internal sparsity, or ...

Interpolation between L, and L, — “elastic net”
— Sparsity but maybe better behaved

This is not yet “plug and play.”

— Optimization algorithm is heavily affected.



MAP Learning is Inference

e Seeking “most probable explanation” of the
data, in terms of w.

— Explain the data: p(x,y | w)
— Not too surprising: p(w)
* |f we think of “W” as another random
variable, MAP learning is MAP inference.
— Looks very different from decoding!

— But at a high level of abstraction, it is the same.



MAP Learning as a Graphical Model

exp —R(w)
= p(w)
Pw(Y)

S RCIat
Pw(X | Y)

IH

* This is a view of learning a “noisy channe
model.



MAP Learning as a Graphical Model

exp —R(w)
= p(w)

R @ Y

X

Pu(Y | X)

* This is a view of learning in a CRF.



MAP Estimation for CRFs

max,, p(w | x, y), which is MAP inference

iterate to obtain gradient:

sufficient statistics from p(y | x, w), obtained by
posterior inference



How To Think About Optimization

* Depending on your choice of loss and R,
different approaches become available.
— Learning algorithms can interact with inference/
decoding algorithms, too.

* In NLP today, it is probably more important to
focus on the features, error function, and
prior knowledge.

— Decide what you want, and then use the best
available optimization technique.



Key Techniques

e Quasi-Newton — batch method for differentiable
loss functions

— LBFGS, OWLQN when using L, regularization

e Stochastic subgradient ascent — online

— Generalizes perceptron, MIRA, stochastic gradient
ascent

— Sometimes sensitive to step size

— Can often use “mini-batches” to speed up
convergence

— Recent trick: Adagrad, which adapts the step size
* For error minimization: randomization



Pitfalls

* Engineering learning procedures is tempting and
may help you get better performance.

— Without at least some analysis in terms of loss, error,
and regularization, it’s unlikely to be useful outside
your problem/dataset.

e When randomization is involved, look at variance
across runs (Clark et al., 2011)

* Always tune hyperparameters (e.g.,
regularization strength) on development data!



Major Topics in Current Work

* Coping with approximate inference

* Exploiting incomplete data
— Semisupervised learning
— Creating features from raw text

— Latent variable models (discussed tomorrow)

* Feature management
— Structured sparsity (R)



