Probability and Structure in Natural Language Processing

Noah Smith

Heidelberg University, November 2014

Learning

Assume a collection of N pairs (x, y);
 supervised learning with complete data.

Loss

- Let h be a hypothesis (an instantiated, predictive model).
- loss(x, y; h) = a measure of how badly h performs on input x if y is the correct output.
- How to decide what "loss" should be?
 - 1. computational expense
 - 2. knowledge of actual costs of errors
 - 3. formal foundations enabling theoretical guarantees

Risk

- There is some true distribution p* over input, output pairs (X, Y).
- Under that distribution, what do we expect h's loss to be?

$$\mathbb{E}_{p^*(\boldsymbol{X}, \boldsymbol{Y})}[loss(\boldsymbol{X}, \boldsymbol{Y}; h)]$$

 We don't have p*, but we have the empirical distribution, giving empirical risk:

$$\mathbb{E}_{\tilde{p}(\boldsymbol{X},\boldsymbol{Y})}[loss(\boldsymbol{X},\boldsymbol{Y};h)] = \frac{1}{N} \sum_{i=1}^{N} loss(\boldsymbol{x}_i,\boldsymbol{y}_i;h)$$

Empirical Risk Minimization

Provides a criterion to decide on h:

$$\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h)$$

 Background preferences over h can be included in regularized empirical risk minimization:

$$\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h) + R(h)$$

Parametric Assumptions

 Typically we do not move in "h-space," but rather in the space of continuouslyparameterized predictors.

$$\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h) + R(h)$$

$$\min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

Three Kinds of Loss Functions

- Error
 - Could be zero-one, or task-specific.
 - Mean squared error makes sense for continuous predictions and is used in regression.
- Log loss
 - Probabilistic interpretation ("likelihood")
- Hinge loss
 - Geometric interpretation ("margin")

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_\mathbf{w}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_\mathbf{w}) &= -\log p_\mathbf{w}(oldsymbol{x}, oldsymbol{y}) \end{aligned}$$

- Maximum likelihood estimation:
 R(w) is 0 for models in the family, +∞ for other models.
- Maximum a posteriori (MAP) estimation:
 R(w) is -log p(w)
- Often called generative modeling.

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_\mathbf{w}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_\mathbf{w}) &= -\log p_\mathbf{w}(oldsymbol{x}, oldsymbol{y}) \end{aligned}$$

Examples:

- N-gram language models
- Supervised HMM taggers
- Charniak, Collins, and Stanford parsers

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_{\mathbf{w}}) &= -\log p_{\mathbf{w}}(oldsymbol{x}, oldsymbol{y}) \end{aligned}$$

Computationally ...

- Convex and differentiable.
- Closed form for directed, multinomial-based models p_w.
 - Count and normalize!
- In other cases, requires posterior inference, which can be expensive depending on the model's structure.
- Linear decoding (for some parameterizations).

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_\mathbf{w}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_\mathbf{w}) &= -\log p_\mathbf{w}(oldsymbol{x}, oldsymbol{y}) \end{aligned}$$

Error ...

- No notion of error.
- Learner wins by moving as much probability mass as possible to training examples.

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_\mathbf{w}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_\mathbf{w}) &= -\log p_\mathbf{w}(oldsymbol{x}, oldsymbol{y}) \end{aligned}$$

Guarantees...

• Consistency: if the true model is in the right family, enough data will lead you to it.

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = -\log p_{\mathbf{w}}(\boldsymbol{x}, \boldsymbol{y})$$

Different parameterizations ...

- Multinomials (BN-like): $-\sum_{e} freq(e; x, y) \underbrace{\log p_e}_{w_e}$
- Global log-linear (MN-like): $-\mathbf{w}^{\top}\mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) + \log \sum_{\boldsymbol{x}', \boldsymbol{y}'} \exp \mathbf{w}^{\top}\mathbf{g}(\boldsymbol{x}', \boldsymbol{y}')$
- Locally normalized log-linear:

$$-\sum_{\boldsymbol{e}} freq(\boldsymbol{e}; \boldsymbol{x}, \boldsymbol{y}) \left(\mathbf{w}^{\top} \mathbf{g}(\boldsymbol{e}) - \log \sum_{\boldsymbol{e}' \in \mathcal{C}(\boldsymbol{e})} \exp \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{e}') \right)$$

Reflections on Generative Models

- Most early solutions are generative.
- Most unsupervised approaches are generative.
- Some people only believe in generative models.
- Sometimes estimators are not as easy as they seem ("deficiency").
- Advice: start here if there's a sensible generative story.
 - You can always use a "better" loss function with the same linear model later on.

Zero-One Loss

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = \mathbf{1}\{h_{\mathbf{w}}(\boldsymbol{x}) \neq \boldsymbol{y}\}$$

Zero-One Loss

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = \mathbf{1}\{h_{\mathbf{w}}(\boldsymbol{x}) \neq \boldsymbol{y}\}$$

Computationally:

• Piecewise constant.

Error: ©

Guarantees: none

Error as Loss

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = error(h_{\mathbf{w}}(\boldsymbol{x}); \boldsymbol{y})$$

Generalizes zero-one, same difficulties.

Example: Bleu-score maximization in machine translation, with "MERT" line search.

Comparison

	Generative (Log Loss)	Error as Loss
Computation	Convex optimization.	Optimizing a piecewise constant function.
Error-awareness	None	
Guarantees	Consistency.	None.

Discriminative Learning

- Various loss functions between log loss and error.
- Three commonly used in NLP:
 - Conditional log loss ("max ent," CRFs)
 - Hinge loss (structural SVMs)
 - Perceptron's loss
- We'll discuss each, compare, and unify.

$$egin{align*} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_{\mathbf{w}}) &= -\log p_{\mathbf{w}}(oldsymbol{y} \mid oldsymbol{x}) \end{aligned}$$

- Can be understood as a generative model over
 Y, but does not model X.
 - "Conditional" model

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_{\mathbf{w}}) &= -\log p_{\mathbf{w}}(oldsymbol{y} \mid oldsymbol{x}) \end{aligned}$$

Examples:

- Logistic regression (for classification)
- MEMMs
- CRFs

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_\mathbf{w}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_\mathbf{w}) &= -\log p_\mathbf{w}(oldsymbol{y} \mid oldsymbol{x}) \end{aligned}$$

Computationally ...

- Convex and differentiable.
- Requires posterior inference, which can be expensive depending on the model's structure.
- Linear decoding (for some parameterizations).

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_{\mathbf{w}}) &= -\log p_{\mathbf{w}}(oldsymbol{y} \mid oldsymbol{x}) \end{aligned}$$

Error ...

- No notion of error.
- Learner wins by moving as much probability mass as possible to training examples' correct outputs.

$$egin{align*} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(oldsymbol{x}_i, oldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(oldsymbol{x}, oldsymbol{y}; h_{\mathbf{w}}) &= -\log p_{\mathbf{w}}(oldsymbol{y} \mid oldsymbol{x}) \end{aligned}$$

Guarantees...

 Consistency: if the true conditional model is in the right family, enough data will lead you to it.

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = -\log p_{\mathbf{w}}(\boldsymbol{y} \mid \boldsymbol{x})$$

Different parameterizations ...

- Global log-linear (CRF): $-\mathbf{w}^{\top}\mathbf{g}(\boldsymbol{x},\boldsymbol{y}) + \log \sum_{\boldsymbol{y}'} \exp \mathbf{w}^{\top}\mathbf{g}(\boldsymbol{x}',\boldsymbol{y}')$
- Locally normalized log-linear (MEMM):

$$-\sum_{\boldsymbol{e}} freq(\boldsymbol{e}; \boldsymbol{x}, \boldsymbol{y}) \left(\mathbf{w}^{\top} \mathbf{g}(\boldsymbol{e}) - \log \sum_{\boldsymbol{e}' \in \mathcal{C}(\boldsymbol{e})} \exp \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{e}') \right)$$

Comparing the Two Log Losses

	-log p _w (x , y)	-log p _w (y x)			
Parameterization	Usually multinomials (BN- like).	Almost always log- linear (MN-like).			
Under the usual parameterization					
Computation	Count and normalize.	Convex optimization.			
Error-awareness	None.	Aware of the Y- prediction task, (approximates zero- one).			
Guarantees	Consistency of joint.	Consistency of cond.			

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\boldsymbol{x}_i, \boldsymbol{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\boldsymbol{x}, \boldsymbol{y}; h_{\mathbf{w}}) = -\mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) + \max_{\boldsymbol{y}'} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}') + error(\boldsymbol{y}', \boldsymbol{y})$$

- Penalizes the model for letting competitors get close (in terms of score) to the correct answer y.
 - Can penalize them in proportion to their error.

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\mathbf{x}_i, \mathbf{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\mathbf{x}, \mathbf{y}; h_{\mathbf{w}}) = -\mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}) + \max_{\mathbf{y}'} \mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}') + error(\mathbf{y}', \mathbf{y})$$

Examples ...

- Perceptron (including Collins' structured version)
 - Classic version ignores error term
- SVM and some structured variants:
 - Max-margin Markov networks (Taskar et al.)
 - MIRA (1-best, k-best)

$$egin{aligned} \min_{\mathbf{w} \in \mathbb{R}^d} rac{1}{N} \sum_{i=1}^N loss(m{x}_i, m{y}_i; h_{\mathbf{w}}) + R(\mathbf{w}) \ loss(m{x}, m{y}; h_{\mathbf{w}}) &= -\mathbf{w}^{ op} \mathbf{g}(m{x}, m{y}) + \max_{m{y}'} \mathbf{w}^{ op} \mathbf{g}(m{x}, m{y}') + error(m{y}', m{y}) \end{aligned}$$

Computationally ...

- Convex, not everywhere differentiable.
 - Many specialized techniques now available.
- Requires MAP or "cost-augmented" MAP inference.
- Linear decoding.

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\mathbf{x}_i, \mathbf{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\mathbf{x}, \mathbf{y}; h_{\mathbf{w}}) = -\mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}) + \max_{\mathbf{y}'} \mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}') + error(\mathbf{y}', \mathbf{y})$$

Error ...

- Built in.
- Most convenient when error function factors similarly to features g.

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N loss(\mathbf{x}_i, \mathbf{y}_i; h_{\mathbf{w}}) + R(\mathbf{w})$$

$$loss(\mathbf{x}, \mathbf{y}; h_{\mathbf{w}}) = -\mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}) + \max_{\mathbf{y}'} \mathbf{w}^{\top} \mathbf{g}(\mathbf{x}, \mathbf{y}') + error(\mathbf{y}', \mathbf{y})$$

Guarantees ...

- Generalization bounds.
 - Not clear how seriously to take these in NLP; may not be tight enough to be meaningful.
- Often you will find *convergence* guarantees (and rates) for optimization techniques.

They Are All Related

$$\frac{1}{\beta} \log \sum_{\boldsymbol{y}'} \exp \left[\beta \left(\mathbf{w}^{\top} \left(\mathbf{g}(\boldsymbol{x}, \boldsymbol{y}') - \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) \right) + \gamma error(\boldsymbol{y}', \boldsymbol{y}) \right) \right]$$

	β	γ
Conditional log loss (Lafferty et al., 2001)	1	0
Perceptron's hinge loss (Collins, 2002)		0
Structural SVM's hinge loss (Taskar et al., 2004)		> 0
Softmax-margin (Gimpel and Smith, 2010)		1

CRFs, Max Margin, or Perceptron?

- For supervised problems, we do not expect large differences.
- Perceptron is easiest to implement.
 - With cost-augmented inference, it should get better and begins to approach MIRA and M³Ns.
- CRFs are best for probability fetishists.
 - Probably most appropriate if you are extending with latent variables; the jury is out.
- Not yet "plug and play."

- Regularization term avoid overfitting
 - Usually means "avoid large magnitudes in w"
- (Log) Prior respect background beliefs about the predictor h_w

- Usual starting point: squared L₂ norm
 - Computationally convenient (it's strongly convex, it is its own Fenchel conjugate, ...)
 - Probabilistic view: Gaussian prior on weights (Chen and Rosenfeld, 2000)
 - Geometric view: Euclidean distance (original regularization method in SVMs)
 - Only one hyperparameter

$$R(\mathbf{w}) = \lambda \|\mathbf{w}\|_2^2 = \lambda \sum_j w_j^2$$

- Another option: L₁-norm
 - Computationally less convenient (not everywhere differentiable)
 - Probabilistic view: Laplacian prior on weights (originally proposed as "lasso" in regression)
 - Sparsity inducing ("free" feature selection)

$$R(\mathbf{w}) = \lambda \|\mathbf{w}\|_1 = \lambda \sum_{j} |w_j|$$

- Lots of attention to this in machine learning.
- "Structured sparsity"
 - Want groups of features to go to zero, or groupinternal sparsity, or ...
- Interpolation between L₁ and L₂ "elastic net"
 - Sparsity but maybe better behaved
- This is not yet "plug and play."
 - Optimization algorithm is heavily affected.

MAP Learning is Inference

- Seeking "most probable explanation" of the data, in terms of w.
 - Explain the data: p(x, y | w)
 - Not too surprising: p(w)
- If we think of "W" as another random variable, MAP learning is MAP inference.
 - Looks very different from decoding!
 - But at a high level of abstraction, it is the same.

MAP Learning as a Graphical Model

 This is a view of learning a "noisy channel" model.

MAP Learning as a Graphical Model

This is a view of learning in a CRF.

MAP Estimation for CRFs

 $\max_{\mathbf{w}} p(\mathbf{w} \mid \mathbf{x}, \mathbf{y})$, which is MAP inference

iterate to obtain gradient:

sufficient statistics from $p(y \mid x, w)$, obtained by posterior inference

How To Think About Optimization

- Depending on your choice of loss and R, different approaches become available.
 - Learning algorithms can interact with inference/ decoding algorithms, too.
- In NLP today, it is probably more important to focus on the features, error function, and prior knowledge.
 - Decide what you want, and then use the best available optimization technique.

Key Techniques

- Quasi-Newton batch method for differentiable loss functions
 - LBFGS, OWLQN when using L₁ regularization
- Stochastic subgradient ascent online
 - Generalizes perceptron, MIRA, stochastic gradient ascent
 - Sometimes sensitive to step size
 - Can often use "mini-batches" to speed up convergence
 - Recent trick: Adagrad, which adapts the step size
- For error minimization: randomization

Pitfalls

- Engineering learning procedures is tempting and may help you get better performance.
 - Without at least some analysis in terms of loss, error, and regularization, it's unlikely to be useful outside your problem/dataset.
- When randomization is involved, look at variance across runs (Clark et al., 2011)
- Always tune hyperparameters (e.g., regularization strength) on development data!

Major Topics in Current Work

- Coping with approximate inference
- Exploiting incomplete data
 - Semisupervised learning
 - Creating features from raw text
 - Latent variable models (discussed tomorrow)
- Feature management
 - Structured sparsity (R)