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jobs on Twitter

Feb 2009:
. Sept. 15, 2008: Stock market
Lehman collapse, bottoms out,
AIG bailout begins recovery
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O’Connor, B.; Balasubramanyan, R.; Routledge, B. R.; Smith, N. A. 2010. From tweets

to polls: linking text sentiment to public opinion time series. Proc. ICWSM pp.
122-129.




obama on Twitter
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Conjecture

Text,
written by everyday people
in large volumes,
or by specialized experts,

can tell us about the social world.



An Example: Movie Reviews & Revenue
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Joshi, M.; Das, D.; Gimpel, K.; Smith, N. A. 2010. Movie reviews and revenues: an
experiment in text regression. Proc. NAACL pp. 293-296.



Model

Mars Needs Moms

Rated PG, 88 min. Directed by Simon Wells. Voices by Seth Green, Seth

Dusky, Dan Fogler, Elisabeth Hamois, Mindy Steriing, Kevin Cahoon and
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Experiment

4+ 1,718 films from 2005-9:

e 7,000 reviews (up to 7 reviews per movie)
e Metadata from metacritic.com and the-numbers.com

e Opening weekend gross and number of screens

(the-numbers. com)

4 Train the probabilistic model (elastic net linear regression)

on movies from 2005-8.

4 Evaluate on movies from 2009.

e Data available at
wWwWww.ark.cs.cmu.edu
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Discussion

4+ Can we do it on Twitter?
e Yes! See Asur & Huberman (2010).
4 Was that sentiment analysis?
e Sort of, but “sentiment” was measured in revenue.

e And standard linguistic preprocessing didn’t really help us.



Another Example: Financial Disclosures

4 The SEC mandates that publicly traded firms report to

their shareholders.

e Form 10-K, section 7: “Management’s Discussion and Analysis,”

a disclosure about risk.

4 Does the text in an MD&A predict return volatility?

e We’re not predicting returns, which would require finding new

information (hard).



Disclosures and Volatility
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Kogan, S.; Levin, D.; Routledge, B. R.; Sagi, J. S.; Smith, N. A. 2009.
from financial reports with regression. Proc. NAACL pp. 272-280.

Predicting risk



Model
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Data

4 26,806 10-K reports from 1996-2006 (sec.gov)

e Section 7 automatically extracted (noisy)

e Volatility in the previous year and the following year
(Center for Research in Security Prices: U.S. Stocks Databases)

4 Data available at www.ark.cs.cmu.edu



MSE of Log-Volatility

historical volatility
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*permutation test, p < 0.05



Dominant Weights (2000-4)

loss  0.025 net income -0.021

net loss  0.017 rate -0.017

year # 0.016 properties -0.014
expenses 0.015 dividends -0.013
going concern 0.014 lower interest -0.012
a going 0.013 critical accounting -0.012
administrative  0.013 insurance -0.011
personnel  0.013 distributions -0.011

high volatility terms low volatility terms



More Examples

4 Will a political blog post attract a high volume of

comments?

4+ Will a piece of legislation get a long debate, a partisan

vote, success?

+ Will a scientific article be heavily ¥
downloaded, cited? _7/‘”
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A Different Kind of Prediction

4 So far, we’ve looked at what people have written, and

made predictions about future measurements.

4 Next, we’ll consider how text reveals context.



Language Variation

Survey data courtesy of
Alan McConchie
Visit www.popvssoda.com
to participate,

Map by Matthew T. Campbell
Spatial Graphics and Analysis Lab
Depatment of Cartography and Geography
East Central Univerisity (Oklahoma)
Map Template courtesy of www.mymaps.com
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Quantitative Study of Language Variation

4+ Strong tradition:
e dialectology (Labov et al., 2006)

e sociolinguistics (Labov, 1966; Tagliamonte, 2006)



Data

4+ 380,000 geo-tagged tweets from one week in March 2010
e 9,500 authors in (roughly) the United States

e Informal: 25% of the most common words are not in standard

dictionaries

e Conversational: more than 50% of messages mention another

user

4 Data available at www.ark.cs.cmu.edu

Eisenstein, J.; O’Connor, B.; Smith, N. A.; Xing, E. P. 2010. A latent variable model for
geographic lexical variation. Proc. EMNLP pp. 1277-1287.






Gaussian Mixtures over Tweet Locations
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Model (Part 2)

4 What will you talk about
(topics)?

4 Pick words on those topic.

4 Tweet.




Model

4+ We can combine the two FSM myths:

e Generate location and text.

e Each topic gets corrupted in each region.
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Regions from Text Content




Location Prediction (Error in km)
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*Wilcoxon-Mann-Whitney, p < 0.01



Qualitative Results

4 Geographically-linked proper names are in the right places

boston, knicks, bieber

4 Some words reflect local prominence

tacos, cab

4 Geographically distinctive slang
hella (Bucholtz et al., 2007), fasho, coo/koo, ;p

4 Spanish words in regions with more Spanish speakers

ese, pues, papi, nada
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Imao /ctfu




Intensifiers

very
+ hella

* deadass
< af




Ongoing Work

4 From location to demographics*
4 Languages other than American Twitter English

4 Language change over time

*Eisenstein, J.; Smith, N. A.; Xing, E. P. 2011. Discovering sociolinguistic associations

with structured sparsity. Proc. ACL (to appear).



Key Messages

4 Text is data.
e It carries useful information about the social world.
e Models based on text can “talk to us.”

e We are just beginning to figure out how to extract quantitative,

social information from text data.

4+ If you want to study/exploit language, look at the data.

e Statistical modeling is a powerful tool.



