
Strategic Directions in Software Engineering and Programming
Languages
CARL GUNTER

University of Pennsylvania, Philadelphia, PA

JOHN MITCHELL

Stanford University, Stanford, CA

DAVID NOTKIN

Department of Computer Science and Engineering, University of Washington, Box 352350, Seattle, WA
98195-2350 ^http://www.cs.washington.edu/homes/notkin/&

1. INTRODUCTION

The computer revolution is based on the
ability of a general-purpose machine to
carry out a specific task under the con-
trol of special-purpose software. While
the wide applicability of stock hardware
has driven demand up and manufactur-
ing cost per unit dramatically down, the
same trends have led to increasing de-
mand for ever more complex software
for an astounding variety of uses: com-
puter-aided education, improved busi-
ness processes, what-if financial plan-
ning and analysis, new forms of
entertainment, fly-by-wire avionics sys-
tems, and innumerable others both
known and as yet unknown.

Producing quality software systems at
reasonable cost is an increasingly seri-
ous challenge due to ever-growing eco-
nomic and societal demands. Moreover,
software that cannot be modified, up-
dated, or extended becomes useless, due
to changes in its technological, social,
and economic context. Successful evolu-
tion of software systems is a severe
technical and managerial challenge that
is only exacerbated by the everbroaden-
ing kinds of software that must be pro-
duced and changed.

The techniques and tools that will be
needed for efficient and accurate system
development, in the face of increasing
system complexity and declining life cy-
cles, require deep, new, and exciting
scientific and engineering research.
The challenges are staggeringly hard,
demanding the best efforts of both the
programming language and the
software engineering research commu-
nities. Specifically, we must use im-
pressive advances in programming lan-
guages, compiler technology, and soft-
ware engineering, balancing the beauty
of programming language and compiler
theory with the messy, ugly, often not
entirely technical problems that arise in
building and evolving real software. The
synergy between software engineering
and programming languages and com-
pilers is not merely desirable—it is es-
sential. With hard work, open minds,
and appropriate resources, these two
communities can apply existing results
to make significant progress in bringing
science and engineering together to ad-
dress the challenges of building and
evolving diverse software systems.

To clarify the potential for synergy
between the communities, consider two
examples.

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/1200–0727 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

—Domain-specific languages, developed
to implement a family of related soft-
ware systems, have proven effective
in a wide variety of applications. Al-
though some theoretical frameworks
may not meet the challenge for gener-
al-purpose programming languages,
corollaries or special cases of these
theories may well apply to some do-
main-specific languages. An example
is the call-by-name lambda calculus.
Although there is a huge body of the-
ory about it, call-by-name has been
largely rejected as a modern feature
for general-purpose programming lan-
guages. On the other hand, it pro-
vides an elegant and practical basis
for a domain-specific language for
software configuration [Abadi et al.
1996].

—Analysis of source code arises in both
communities. In the design and im-
plementation of programming lan-
guages, analysis is critical to compiler
optimization and parallelization. In
software engineering, analysis may be
used for program-understanding tools
such as program slicers or for produc-
ing program databases that are useful
for tasks such as reverse engineering.
Although these areas have a great
deal in common, the analyses that are
performed have significant differ-
ences. In particular, compiler analy-
ses must generally be conservative,
whereas software engineering analy-
ses may, in some cases, be nonconser-
vative. Pursuing a general theory of
analysis that captures the essence of
the commonalities in the context of
different requirements would be valu-
able and is clearly feasible.

In contrast to many areas in com-
puter science and engineering, the stra-
tegic goal of these two communities is
not solely, or even primarily, to make
software systems bigger, faster, and
cheaper, but rather to make it possible
to build and evolve more new software
systems. The main body of this report is
devoted to four specific research areas
that have been identified for their po-

tential as the result of working-group
activities. These areas are not intended
to be a complete or exclusive description
of all valuable opportunities. However,
they do illustrate the potential for syn-
ergy between software engineering and
programming language research activi-
ties, with the goal of solving timely and
pressing problems effectively. An ap-
pendix summarizes the series of meet-
ings that led to this report. A planned
extended version of the report also con-
tains programmatic recommendations.

The areas are:

(1) the design of languages for program-
ming over the Internet and the
World Wide Web;

(2) the design of domain-specific pro-
gramming languages;

(3) techniques for relating program-
ming languages to specification lan-
guages; and

(4) the use of programming language
compiler analysis ideas to support
software engineering in areas be-
yond compiler optimization.

We consider them in four sections.

2. PROGRAMMING THE WEB

An area of explosive growth in comput-
ing is that of the Internet and the World
Wide Web (WWW). Computing over the
Internet and WWW provides unique
challenges whose solutions will involve
the development of systems beyond the
capabilities of present-day program-
ming languages and software engineer-
ing tools and practices.

Key properties needed to exploit the
Web will include:

—ensuring proper security,
—allowing distributed software devel-

opment,
—supporting mobility (remote agents),

and
—ensuring global requirements (proper-

ties of the network as a whole).

One promising approach to producing
systems that have these properties is to

728 • C. Gunter et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

produce specialized programming lan-
guages. Applying best practices for pro-
gramming language design early and
often is desirable in developing such
languages, since several of them are
likely to be enshrined as widely used
standards. Early use of such best prac-
tices should be possible since the issues
in this area can often be addressed by
well-developed ideas from programming
languages that have not yet found their
ideal applications.

Security is a global and fragile prop-
erty whose integrity cannot be en-
trusted even to conscientious users and
programmers. Nor would users and pro-
grammers want to be responsible for
manually maintaining subtle security
requirements. Therefore, a number of
automated and semi-automated tech-
niques will have to be developed to en-
force various levels of security while
guaranteeing reasonable usability.
These techniques will address issues
such as: encryption; security protocols
(to support mobility, for instance); poli-
cies (authentication and establishing
permission); and syntactic, static check-
ing, and analysis of security properties.
(Security, like many other topics ad-
dressed in this report, is also clearly the
subject of ongoing research in a number
of other areas in computer science and
engineering; the areas need to cooperate
as appropriate to ensure progress with-
out undue overlap.)

The Internet makes possible and en-
courages programming with off-the-net
distributed software components. This
possibility raises a variety of software
engineering and programming language
issues:

—integration and testing of distributed
software;

—stronger modularity requirements;
—support for first-class modules and in-

terfaces (dynamic inlining);
—configuration management (both pre-

and post-deployment); and
—distribution, evolution, and mainte-

nance of web software.

For instance, with respect to the prob-
lem of configuration management, could
changes in a very widely used Web com-
ponent result in a massive automatic
worldwide recompilation of dependent
Web-based software?

To deal with the practicalities of dis-
tributed computation, it will become in-
creasingly desirable for net computa-
tions to become mobile, sending an
electronic “agent” to a remote host to do
the bidding of the sender. Conversely,
users will need to receive agents able to
interface intelligently with remote
hosts. This form of computing is largely
new and raises some interesting techni-
cal issues.

—Resource discovery and adaptation:
how will an agent learn what re-
sources are available on a host and
adapt to what it learns?

—Resource control: how will a host con-
trol the degree to which an agent uses
its resources? How will an agent be
guaranteed adequate resources?

—Locality: how will an agent be able to
tell where it is and “how far” it is
from certain resources so as to opti-
mize its movements and operation?

—Security: how will a host protect itself
from illegitimate “inspection” by other
agents?

One issue currently under investigation
with Java—a programming language
whose design provides security support
for mobility—is the right balance of
guarantees based on static/run-time
checks and encryption. There is an op-
portunity and need for applying ideas
from programming language theory to
the formulation and proof of desired
properties.

Possibly one of the most challenging
areas of investigation will be the formu-
lation of global requirements for net-
works such as these. As networks be-
come increasingly important, it will be
essential to predict their behaviors and
possibly set up safeguards against two
classes of problems:

Software Engineering and Programming Languages • 729

ACM Computing Surveys, Vol. 28, No. 4, December 1996

—attacks intended to deny service or
provide wrong results, and

—“bad” cooperative behavior.

The first of these categories is related to
the problem of “information warfare” in
which network havoc is part of a mali-
cious strategy to harm the users and
agents of a network. If a large part of
US commerce comes to be based on the
Internet, for instance, then an outage
could result in significant economic in-
convenience, losses, or even dislocation.
The second category applies to situa-
tions such as electronic trading on the
stock market where the interaction of a
collection of program traders, presum-
ably guided by the invisible hand of the
free market, could go unexpectedly off-
track, as in October of 1987. Sample
question: what requirement was the
program trading collars imposed on the
NYSE after the ’87 crash intended to
enforce and was this aim achieved?

Little formal work has been done on
expressing requirements in these cate-
gories, despite their overwhelming im-
portance. It seems at least plausible
that parts of the solution will be derived
from ideas about programming lan-
guages, where there is a great deal of
experience with guaranteeing proper-
ties by static and dynamic analysis.
Moreover, the development of formal
means of expressing requirements in
this domain may be especially desirable.

3. PROGRAMMING THE DOMAIN

Domain-specific languages are intended
to allow domain engineers to develop
families of applications that are easily
specified, highly evolvable, and largely
automated. The objective is to move a
significant amount of the software de-
velopment and maintenance burden
from conventional software engineers
and programmers to people who are ex-
perts in the domain of the applications.
There are two primary reasons for this.
First and foremost, the area experts
have, by definition, direct and deep
knowledge of the area, which reduces

(and might eliminate, in some cases) the
problem of having nonexperts in the
domain make inappropriate decisions
about the domain. Second, this ap-
proach has the fundamental benefit of
allowing a larger number of software
systems to be created. As a high-level
example of domain-specific program-
ming, millions of nonprogrammers write
and maintain spreadsheets to perform
multitudinous tasks; imagine if each
spreadsheet had to be written by a pro-
grammer with four years of college edu-
cation!

Perhaps the key challenge in this
area is to develop the tooling that al-
lows such domain-specific languages,
and the run-time resources on which
that family of applications relies, to be
created by domain experts.

Previous domain-specific approaches
have focused on the run-time resources
required by applications in that area.
These resources have been organized
into libraries and/or abstract data
types. This approach augments those
efforts by adding a linguistic notation
that makes possible a concise specifica-
tion of the application, generation of the
application that utilizes those run-time
resources, and domain-specific analysis
(such as test-case generators) and opti-
mization. Advances in software engi-
neering’s understanding of the issues in
domain-specific languages and in the
techniques to address them, along with
programming language and compiler
technology applicable to the topic, must
be brought to bear.

Specific research problems requiring
additional effort include:

—reducing the cost and compiler exper-
tise required to produce a domain-
specific language and product line;

—domain-specific analysis and optimi-
zations;

—formalizing the informal notations
found in a domain;

—integrating multiple domain-specific
specifications into a single system
specification;

730 • C. Gunter et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

—incorporating best programming lan-
guage practices into domain-specific
languages;

—increasing evolvability through in-
creasingly declarative specifications;
and

—evolving language and compiler gen-
erators.

4. PROGRAMMING THE SPECIFICATION

A recent event that underscores the im-
portance of further work on specifica-
tion was the detonation of the new
Euro-rocket Ariane 5 (with commercial
payload aboard) earlier this year. A
press release after investigation includes
the following passage (emphasis added).

The failure of Ariane 501 was caused
by the complete loss of guidance and
attitude information 37 seconds after
start of the main engine ignition se-
quence (30 seconds after lift-off). This
loss of information was due to specifi-
cation and design errors in the soft-
ware of the inertial reference system.1

Although catastrophic failures as the
result of software deficiencies have been
with us for decades, there appears to be
a rising awareness of the costs of soft-
ware errors and a growing body of scien-
tific and engineering work aimed at re-
ducing the likelihood of such errors. For
all these reasons, we believe that the
next decade will see far more wide-
spread acceptance of formal and semi-
formal methods in software design, de-
velopment, testing, and modification.
Since space and military projects often
use some form of requirements and de-
sign specification, we expect the
changes to be most dramatic in the com-
mercial sector. However, as with other
developments in computer science and
engineering, it seems very likely that
wider acceptance in the commercial sec-
tor will bring advances in software de-
sign for all applications.

There are three factors driving in-
creased interest and opportunity in soft-
ware specification:

—an increasing need for precise de-
scription of what software is intended
to do,

—improvements in technology for mak-
ing use of formal specifications, and

—a changing focus from full system cor-
rectness to specification and valida-
tion of simpler properties of primary
importance, such as security or ab-
sence of deadlock.

For instance, the software requirements
for the A-7E aircraft had to be culled
from a bookcase full of documentation
before they were reduced to a collection
of tables [Alspaugh et al. 1992] describ-
ing system state transitions. Many of
the industrial uses of specification tech-
niques focus primarily on formal specifi-
cations as a descriptive tool to achieve
greater precision [Craigen et al. 1993a,
1993b; Wing 1990]. Technology for writ-
ing and manipulating specifications is
being provided by tools that allow more
to be done with specifications and re-
quire less knowledge on the part of us-
ers. In particular, larger systems can be
usefully treated by focusing on key
properties such as Byzantine agreement
[Gong et al. 1995] or type soundness
[VanInwegen 1996].

Although specification languages and
automated reasoning techniques are
central to the use of formal methods,
programming languages are also criti-
cal. Since software systems are ex-
pressed in programming languages, any
formal analysis of a software system
must rely on a precise understanding of
the semantics of the programming lan-
guage. For example, a proof that a pro-
gram does not read or write memory
locations that are not allocated to it is
only as good as the soundness of the
logic in which it is executed. Another
aspect of programming language work
is that if certain program invariants can
be guaranteed by the language, then
there is less need for additional tools to

1 Quoted from http://www.esrin.esa.it/htdocs/tidc/
Press/Press96/press33.html.

Software Engineering and Programming Languages • 731

ACM Computing Surveys, Vol. 28, No. 4, December 1996

detect violation of the associated pro-
gram properties. It is certainly the ex-
perience of all researchers in software
specification, verification, and testing
that the presence or absence of certain
programming language constructs can
radically alter the difficulty of the task.
(Perhaps the simplest and most graphic
illustration is given in the theoretical
study by Clarke et al. [1983].)

Some specific challenges for specifica-
tion languages are as follows.

—Expand the set of critically important
program properties that may be ex-
pressed in specification languages: for
example, dependency between mod-
ules or processes, security, safety,
performance and resource use, and
obligations to initialize or deallocate
memory locations.

—Develop techniques for maintaining
the relation between specification and
software system as either or both
evolve.

—Improve current experimental tech-
niques for developing test suites
based on specifications.

—Develop methods for combining the
strengths of different methods for an-
alyzing software systems. For exam-
ple, the result of type checking or
other form of static analysis could be
used to assist a theorem prover, and
when a theorem prover fails to estab-
lish a proof obligation, facts about
how the prover failed could be used to
generate test suites.

Although requirements and design
methodologies using formal and semi-
formal specifications are widely used in
some circles, many programmers and
software development organizations ei-
ther do not use such approaches or
make only minimal use of them. Wider
success for specifications will come from
providing tangible benefits, not just the
potential for verification. These include
test oracles and test generation, config-
uration management, simulation and
modeling, and resource budgeting (for
quality of service). It is only by provid-

ing an incremental adoption path for
existing organizations that scientific
and engineering progress in the formu-
lation and use of software specifications
will achieve truly mainstream accep-
tance.

5. ANALYSIS AND MANIPULATION:
BEYOND CODING

Many advances in programming lan-
guage and compiler research can be
viewed as efforts to create mechanisms
to raise the level of discourse at which
software developers operate. It is impor-
tant to recognize that this is also a
goal of much software engineering
research—by raising the level of dis-
course, one can provide increased lever-
age for solving software engineering
problems.

One of the ways to provide increased
leverage is via program manipulation
tools that aid programmers in creating
new systems and in understanding, en-
hancing, debugging, testing, and reus-
ing existing systems. In most cases,
such tools require that certain kinds of
program analyses be carried out to sup-
port the operations provided. In this
section, we discuss some areas where
additional research on program analysis
and program manipulation can have im-
pact: (1) evolution [Parnas 1994; Leh-
man 1980] and reengineering [Chikof-
sky and Cross 1990], (2) dealing with
issues of binding time, and (3) whole-
program analysis.

During its lifetime, a system may un-
dergo many alterations in response to
changes in hardware platforms, soft-
ware platforms, and user requirements.
Today, the evolution of software to re-
spond to such changing factors can only
be carried out with considerable ex-
pense and risk. A case in point is the
“year-2000 problem” [Hayes 1995],
which requires a huge amount of soft-
ware (both code and data) to be altered
from the present convention of using
just two digits to represent (twentieth-
century) dates.

The year-2000 problem is particularly

732 • C. Gunter et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

pernicious both because of the deep-
seated nature of the problem and be-
cause of the (nearly) synchronous world-
wide deadline for addressing it. It
serves to draw attention to the magni-
tude of the software evolution problem,
but we wish to stress that this sort of
problem is an everyday occurrence. The
“background activity” having to do with
evolution is as least as great as the
year-2000 problem, and software evolu-
tion problems will not disappear in the
year 2000.

Research on software evolution and
reengineering should focus on ways to
supply answers to such questions as:
what are the invariants in a piece of
software? How can we avoid violating
invariants that should be preserved by
a change? How can we predict the im-
pact of a change with confidence before
making it? The research challenge is to
build a corpus of techniques for prob-
lems such as recognizing abstractions,
identifying patterns, and determining
what elements are responsible for what
behavior. For example, in the year-2000
problem, these sorts of techniques
would be used to answer such questions
as: what is the date abstraction in this
piece of code? What code is manipulat-
ing dates (and in what format)? What
code is dependent on a two-digit format
for dates? What data in external files
represent dates?

A fundamental problem encountered
as we try to gain leverage on software
evolution and reengineering issues is
that software systems are highly “multi-
dimensional,” but the different facets of
a system usually have an overlaid or
interleaved structure. This presents a
major problem for the research commu-
nity because language mechanisms are
generally good for things that are con-
tiguous or “orthogonal”; however, it is
difficult to get a handle on elements
that cut across the natural spatial
boundaries of a system.

To some extent this can be addressed
as a representation issue. For example,
at the level of intermediate representa-
tions of programs, the difference be-

tween control flow graphs (a.k.a. flow
charts) and program dependence graphs
illustrates how different representation
choices can allow elements that are non-
contiguous in one representation to be
contiguous in another representation.

At a much higher level, design pat-
terns work [Gamma et al. 1994] has
raised the awareness of many practicing
software developers to the issue of in-
terleaved facets. It has been particu-
larly beneficial in providing a vocabu-
lary for discussing these issues. A
possible opportunity for the research
community is to migrate the design pat-
terns work to language mechanisms and
tools. However, some researchers have
taken a different tack and shown that
design pattern issues can already be
addressed using the advanced features
of existing languages, such as Gopher.
Both avenues deserve to be pursued fur-
ther.

Many issues in the development of a
software system can be viewed as issues
of binding-time commitments (or “stag-
ing” commitments). Binding-time com-
mitments made at different points in
the development of a system lead to
many of the problems in software evolu-
tion, the issue being: “What do you do
when your previous binding-time com-
mitments need to be changed?” Exam-
ples of problems that arise when bind-
ing-time commitments are revisited
include the following.

—Making systematic representation
changes. (The year-2000 problem is
an example of a change that involves
a systematic representation change.)

—Migrating the position of integrity
checks (between caller and callee, for
instance) [Scherlis 1994].

—Responding to the evolution of an API
(for an API over which one has no
control).

It is our thesis that viewing software
engineering issues in terms of binding-
time commitments is a promising way
to formalize problems so as to make

Software Engineering and Programming Languages • 733

ACM Computing Surveys, Vol. 28, No. 4, December 1996

them accessible to the programming
languages community.

Another example of a binding-time
change is the migration of a system to a
new implementation language. This can
be addressed to a limited extent via
linguistic mechanisms—for example, by
making C11 essentially upwards com-
patible with C. However, this is clearly
only a partial solution: Even though
C11 is essentially upwards compatible
with C, there are still interesting issues
that arise in such a conversion process,
in particular, how to discover places in
the code where the improved features of
C11 can be exploited (such as the abil-
ity to have C11 templates). The re-
search issue here is to devise analyses
and tools that can help with the process
of language migration. (Similar prob-
lems also arise with other sorts of plat-
form migration situations, for example,
moving ordinary X applications to Ole/
OpenDoc, etc.).

A third area in which binding-time
notions may be able to lead to advances
in software development environments
is in replacement of the traditional com-
pile-link-load cycle. The question is: “Is
it possible to replace the compile-link-
load paradigm by exploiting the ability
to perform static specialization at a va-
riety of points in time (not just at com-
pilation time)?” This can be supported
either via linguistic mechanisms (e.g.,
run-time code generation mechanisms,
as found in C, for instance) or by tools
such as partial evaluators (e.g., Similix,
Schism, CMix, etc.).

As pointed out earlier, research on
program analysis has been carried out
in the programming languages and com-
pilers as well as the software engineer-
ing research communities. This is
clearly an area where technical ad-
vances in one community can have an
impact on the other. In both communi-
ties, one of the themes of the last sev-
eral years has been the interest in
whole-program analysis [Chambers et
al. 1995; Atkinson and Griswold 1996],
which is closely related to interproce-
dural analysis [Horwitz et al. 1990;

Callahan and Kennedy 1988]. In the
compiler community whole-program
analysis propagates context information
to procedures and call sites, and per-
mits a better job of optimization to be
performed. In the software engineering
community, whole-program analysis
permits more useful information to be
reported by program-understanding
tools.

Some of the challenges that we fore-
see in this area are as follows.

(1) Heterogeneity. How can analysis of
multilingual systems be supported?
Here it would also be useful to un-
derstand the range of applications
in which the results of analysis are
used so that researchers can tailor
their efforts to techniques for gath-
ering the most useful sorts of infor-
mation.

(2) Computational tradeoffs. When sys-
tems are modified, facts that have
been gathered via static analysis
may no longer be valid. One issue
concerns the tradeoffs between dis-
carding old information and recom-
puting new information from
scratch versus trying to update the
old information incrementally in re-
sponse to modifications. A third pos-
sibility is to compute information
selectively (e.g., for innermost loops,
in response to specific user queries,
etc.) using demand-driven program-
analysis algorithms. A critical as-
pect of these challenges is to distin-
guish the user of the extracted
information: compilers have one
need (generally, they must use con-
servative information to ensure that
their translations are consistent
with the source); human program-
mers and software engineers may
have other requirements that may
permit other techniques (such as
lexical ones) to be used effectively
[Murphy and Notkin 1995].

(3) Understanding related program
analyses. The tradeoffs among dif-
ferent, but related, program-analy-
sis problems are not well under-

734 • C. Gunter et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

stood. This is true at the algorithmic
level, where many whole-program-
analysis algorithms run in time cu-
bic in the size of the program, in the
worst case. In some situations (e.g.,
pointer analysis), there are near-
linear-time algorithms for related
problems that provide safe but less
precise solutions. It would be desir-
able to understand the space of
tradeoffs better. But this is also true
in terms of the needs of the users
(again, for instance, compilers ver-
sus humans). Empirically, different
design spaces are inhabited by tools
for even such basic analyses as call
graph extraction [Murphy et al.
1996]; understanding the relation-
ship among the analyses for both
programming languages and for
software engineering is critical.

(4) Exploiting new kinds of analysis.
New analysis paradigms (e.g., model
checking) and new algorithmic para-
digms (e.g., demand analysis) de-
serve to be explored further.

6. CONCLUSIONS

Our article has two key points: it enu-
merates a set of four areas that demand
additional research immediately and
over at least the next decade, and it
establishes that it is dangerous for the
software engineering and the program-
ming languages and compilers commu-
nities to work on these problems alone.
Although not every individual re-
searcher need try to bridge the gap
across the communities, if none do then
much research will be duplicated and
progress in the areas will be slower
than necessary or preferable. This is
more important than the specific areas
that we have identified, because if we
have learned anything from the past in
computer science and engineering, it is
that our vision is imperfect and new
areas will arise that we simply cannot
predict today.

APPENDIX

History

This article is a product of a series of
meetings intended to promote interac-
tion among researchers in software en-
gineering and programming languages.

SEPL 1. September 6–7, 1995 at
Stanford.

SEPL 2. June 12–13, 1996 at MIT.
SEPL 3. June 14–15, 1996 at MIT as

a working group of the ACM/
CRA meeting.

Strategic Directions in Computing
Research

Participants in the SEPL 2 and 3 meet-
ings were invited to provide position
papers, which can be found through the
Web page for this article. The organiz-
ers (and authors of this article) grate-
fully acknowledge travel and moral sup-
port from ARO, DARPA, and NSF.

This document was planned and writ-
ten by the participants in the SEPL 3
meeting.

Related meetings include the work-
shops on Formal Methods in Software
Engineering (sponsored on a yearly ba-
sis since 1991 by ARO), the workshop
on Future Directions in Programming
Languages and Compilers that took
place in January of 1993 sponsored by
NSF, and several workshops held at
Dagstuhl in the past few years.

The attendees at the September 6–7
meeting at Stanford were: Alex Aiken,
Univ. of California, Berkeley; Craig
Chambers, Univ. of Washington; Helen
Gill, NSF; Allen Goldberg, Kestrel; Sam
Kamin, Univ. of Illinois; Bob Kessler,
Univ. of Utah; Gregor Kiczales, Xerox
Parc; Richard Kieburtz, NSF; John
Launchbury, OGI; Peter Lee, CMU;
José Meseguer, SRI; John Mitchell,
Stanford Univ.; Melody Moore, GA
Tech.; David Notkin, Univ. of Washing-
ton; Tom Reps, Univ. of Wisconsin; John
Salasin, ARPA; Vivek Sarkar, IBM; Bill
Scherlis, CMU; Carolyn Talcott, Stan-
ford; and Dave Wile, ISI.

Software Engineering and Programming Languages • 735

ACM Computing Surveys, Vol. 28, No. 4, December 1996

The attendees at the June 12–13
meeting at MIT were: Gregory Abowd,
Georgia Tech.; Frank Anger, NSF; Bob
Balzer, USC/ISI; Luca Cardelli, DEC
SRC; Craig Chambers, Univ. of Wash-
ington; Lori Clarke, Univ. of Massachu-
setts, Amherst; Dave Dampier, Army;
Helen Gill, NSF; Carl Gunter, Univ. of
Pennsylvania; Bill Griswold, Univ. of
California, San Diego; Bob Harper,
CMU; Paul Hudak, Yale; Sam Kamin,
Univ. of Illinois, Urbana-Champaign;
Gregor Kiczales, Xerox PARC; Dick
Kieburtz, NSF; John Launchbury, Ore-
gon Graduate Institute; Insup Lee,
Univ. of Pennsylvania; Peter Lee, CMU;
Karl Lieberherr, Northeastern Univ.;
Dale Miller, Univ. of Pennsylvania;
John Mitchell, Stanford Univ.; Melody
Moore, Georgia Tech.; David Notkin,
Univ. of Washington; Jens Palsberg,
MIT; J. Chris Ramming, ATT; Tom
Reps, Univ. of Wisconsin, Madison; Bar-
bara Ryder, Rutgers Univ.; John Sala-
sin, DARPA; Bill Scherlis, CMU; Val
Tannen, Univ. of Pennsylvania; Jack
Wileden, Univ. of Massachusetts, Am-
herst; Alex Wolf, Univ. of Colorado, Boul-
der; and Michael Young, Purdue Univ.

The attendees of the June 13–14
working group of the ACM/CRA meet-
ing, Strategic Directions in Computing
Research, were: Bob Balzer, USC/ISI;
Carl Gunter, Univ. of Pennsylvania;
Bill Griswold, Univ. of California, San
Diego; Sam Kamin, Univ. of Illinois,
Urbana-Champaign; John Mitchell,
Stanford Univ.; David Notkin, Univ. of
Washington; Bill Scherlis, CMU; and
Daniel Weise, Microsoft.

REFERENCES

ABADI, M., LAMPSON, B., AND LÉVY, J.-J. 1996.
Analysis and caching of dependencies. In Pro-
ceedings of the 1996 ACM SIGPLAN Interna-
tional Conference on Functional Program-
ming, R. K. Dybvig, Ed.

ALSPAUGH, T. A., FAULK, S. R., BRITOON, K.,
PARKER, R. A., PARNAS, D. L., AND SHORE, J.
E. 1992. Software requirements for the
A-7E aircraft. Tech. Rep. NRL/FR/5530-92-
9194 (31 August), Naval Research Labora-
tory, Washington, DC 20375-5320.

ATKINSON, D. C. AND GRISWOLD, W. G. 1996.
The design of whole-program analysis tools.
In Proceedings of the Eighteenth International
Conference on Software Engineering (March).

CALLAHAN, D. AND KENNEDY, K. 1988. Analysis
of interprocedural side effects in a parallel
programming environment. J. Parallel Dis-
trib. Comput. 5, 5 (Oct.), 517–550.

CHAMBERS, C., DEAN, J., AND GROVE, D. 1995. A
framework for selective recompilation in the
presence of complex intermodule dependen-
cies. In Proceedings of Seventeenth Interna-
tional Conference on Software Engineering
(IEEE Cat, April), 221–230.

CHIKOFSKY, E. AND CROSS, J. 1990. Reverse en-
gineering and design recovery: A taxonomy.
IEEE Softw.

CLARKE, E. M., GERMAN, S. M., AND HALPERN, J.
Y. 1983. On effective axiomatizations of
Hoare logics. J. ACM 30, 612–636.

CRAIGEN, D. H., GERHART, S. L., AND RALSTON, T.
J. 1993a. An international survey of indus-
trial applications of formal methods, vol.
1—Purpose, approach, analysis, and conclu-
sions. Tech. Rep. NRL/FR/5546-93-9581 (30
Sept.), Naval Research Laboratory, Washing-
ton, DC, 20375-5320.

CRAIGEN, D. H., GERHART, S. L., AND RALSTON, T.
J. 1993b. An international survey of indus-
trial applications of formal methods, vol.
2—Case studies. Tech. Rep. NRL/FR/5546-93-
9582 (30 Sept.), Naval Research Laboratory,
Washington, DC, 20375-5320.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES,
J. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison
Wesley, Reading, MA.

GONG, L., LINCOLN, P., AND RUSHBY, J. 1995.
Byzantine agreement with authentication:
Observations and applications in tolerating
hybrid and link faults. In Dependable Com-
puting for Critical Applications—5 (Cham-
paign, IL, Sept.), 79–90. IFIP WG 10.4, pre-
liminary proceedings.

HAYES, B. 1995. Waiting for 01-01-00. Am. Sci.
83, 1.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990.
Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12,
1 (Jan), 26–60.

LEHMAN, M. M. 1980. Programs, life cycles, and
laws of software evolution. Proc. IEEE 68, 9,
1060–1076.

MURPHY, G. C. AND NOTKIN, D. 1995. Light-
weight source model extraction. In SIGSOFT
’95. Third ACM SIGSOFT Symposium on
Foundations of Software Engineering (Oct).

MURPHY, G. C., NOTKIN, D., AND LAN, E. S.-C.
1996. An empirical study of static call
graph extractors. In Proceedings of the Eigh-

736 • C. Gunter et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

teenth International Conference on Software
Engineering (March), 90–99.

PARNAS, D. L. 1994. Software aging. In Pro-
ceedings of Sixteenth International Conference
on Software Engineering (Cat, May), 279–287.

SCHERLIS, W. 1994. Boundary and path manip-
ulations on abstract data types. In IFIP

Trans. A (Comput. Sci. Technol.) (Sept.), 615–
620.

VANINWEGEN, M. 1996. The machine-assisted
proof of programming language properties.
Ph.D. Thesis, University of Pennsylvania.

WING, J. 1990. A specifier’s introduction to for-
mal methods. Computer 8–22.

Software Engineering and Programming Languages • 737

ACM Computing Surveys, Vol. 28, No. 4, December 1996

