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Evaluating The Mediator Method: 
Prism as a Case Study 

Kevin J. Sullivan, Member, /€€E, Ira J. Kalet, Member, /€€E Computer Society, 
and David Notkin, Member, /E€€ 

Abstract-A software engineer's confidence in the profitability of a novel design technique depends to a significant degree on 
previous demonstrations of its profitability in practice. Trials of proposed techniques are thus of considerable value in providing 
factual bases for evaluation. In this paper we present our experience with a previously presented design approach as a basis for 
evaluating its promise and problems. Specifically, we report on our use of the mediator method to reconcile tight behavioral 
integration with ease of development and evolution of Prism, a system for planning radiation treatments for cancer patients. Prism is 
now in routine clinical use in several major research hospitals. Our work supports two claims. In comparison to more common 
design techniques, the mediator approach eases the development and evolution of integrated systems; and the method can be 
learned and used profitably by practicing software engineers. 
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1 INTRODUCTION 
SOF"IWARE engineer's confidence in the profitability of A a new design technique depends to a significant de- 

gree on previous demonstrations of its profitability in ac- 
tual, comparable practice. Trials of new techniques are thus 
of considerable value in providing factual bases for evalu- 
ating the risks and potential benefits involved in using new 
techniques in real projects with assets at risk. This paper 
provides such a basis for evaluating one recently proposed 
technique, the mediator method for developing and evolv- 
ing integrated systems 1421, [43]. An integrated system is 
one in which separate tools work together automatically to 
support the user. This paper presents a case study in which 
we used the method to develop and evolve an ambitious 
system, called Prism, for planning radiation treatments for 
cancer patients 1191, [ZOI, [XI. 

Our experience with the mediator method supports two 
claims. First, in comparison to common design techniques, 
our method eases the development and evolution of inte- 
grated systems. Second, it can be learned and used profita- 
bly by practicing software engineers. We observed that it 
takes experience and intellectual effort to become proficient 
with the method. It involves new ways of thinking about 
design that are not easily internalized. 
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Prism is now in routine clinical use in several major 
research hospitals, including those at the University 
of Washington, Emory University, and the University of 
Miami. In retrospect it would have been far more difficult 
to meet the requirements for Prism with the available time 
and resources had we not used the mediator approach. The 
rest of this paper discusses how the mediator concepts 
helped in the development and evolution of Prism. The 
paper is organized as follows. Section 2 introduces radia- 
tion treatment planning and Prism. Section 3 discusses both 
how common design techniques complicate the develop- 
ment and evolution of integrated systems, and how the 
mediator approach helps. Sections 4 through 9 present key 
parts of Prism. Section 10 discusses related work. Section 11 
discusses the effort needed to build Prism and the code and 
documentation sizes. Section 12 concludes with a summary 
and with an evaluation of our experience with Prism as 
evidential support for our claims. 

2 PRISM 
A radiation treatment planning (RTP) system is a collection 
of software tools for designing plans for treating cancer 
patients with radiation. A radiation treatment has to deliver 
enough radiation to damage a tumor without unacceptable 
damage to the surrounding tissues-such as the optic nerve 
or spinal cord. A satisfactory treatment plan defines a set of 
radiation beams and implanted radiation sources that de- 
livers such a radiation dosage. 

Designing radiation treatment plans is hard. It requires 
one to use radiographic images and other measurements to 
model patient anatomy and pathology; to model the shapes 
and directions of radiation beams and the capabilities of the 
machines that produce them; to calculate the radiation 
fields generated as high-energy particles interact with tis- 
sues; to visualize and iteratively refine treatment plans; and 
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to use hospital-quality data management methods. The 
complexity of the task makes computerized tool support 
indispensable. 

Many RTP systems have been built [lo], [25], 181, [351, in- 
cluding several at the University of Washington [181, [171. 
However, many earlier systems have suffered from serious 
usability and software design problems. First, in many 
systems, the tools are not well integrated. In the first Uni- 
versity of Washington (UW) system for example, planning 
functions were packaged as stand-alone tools that ran as 
separate processes loosely integrated through shared data 
files [18]. Second, many systems are tedious to use. In the 
second UW system, users have to traverse a broad, deep 
menu tree to access the planning functions [161, 1171. Third, 
many systems are hard to change. It was infeasible to inte- 
grate new AI-based tools into the second UW system, for 
instance, despite its object-oriented architecture [22], [30]. 

Prism was designed to overcome these problems. Ease of 
use demanded that tools be tightly integrated. In Prism, 
changing the patient anatomy or the position of a beam 
recalculates the radiation fields and updates all visualiza- 
tions, for example. Usability also demanded that the system 
be flexible, dynamic, and broad in scope. Prism users can 
instantiate, place, and use any number of tools to create, 
edit, simulate, visualize, store, or retrieve treatment plans- 
usually with the click of a single button. Finally, the rapid 
advances being made in RTP, and the desire to use Prism 
both in production and as a research vehicle, demanded 
that the system accommodate continual evolution- 
especially the integration of new and the removal of old or 
unsuccessful tools-without structural decay. 

Unfortunately, as Taylor and his colleagues had already 
observed, these requirements would pose a serious soft- 
ware development problem: 

”. . . [AI well-integrated environment is easiest to achieve if the en- 
vironment is limited in scope and static in its contents and organi- 
zation. Conversely, broad and dynamic environments are typi- 
cally loosely coupled and poorly integrated. Unfortunately, poorly 
integrated environments impose excessive burdens upon users, 
and small static environments are quickly outgrown 144, p. 21.’’ 

We developed the mediator method to resolve this con- 
flict between behavioral integration on one hand, and the 
need for a well modularized software architecture [391 that 
would facilitate software development and evolution, on 
the other hand. 

3 THE MEDIATOR METHOD 
The benefits of the mediator approach are clearest when 
one compares the structures it produces with those pro- 
duced by common techniques for designing integrated 
systems. We begin this section by briefly reviewing our 
earlier analysis of common approaches and how they un- 
necessarily complicate the structures of integrated systems. 
Then we use two simple examples from Prism to illustrate 
the mediator approach. 

3.1 Shortcomings of Common Approaches 
We have characterized four common techniques for de- 
signing integrated systems, which we call the hardwiring, 

encapsulation, implicit invocation, and broadcast message server 
(BMS) methods. All four approaches have in common that 
they represent key behaviors in the problem domain as cor- 
responding components-tools or objects. The approaches 
differ in the way they integrate these components. 

* In the hardwiring approach, one integrates compo- 
nents by having them call each other’s operations. To 
integrate a model and a view object, for instance, one 
might augment the model to call the view. The prob- 
lem with this approach is that it compromises com- 
ponent independence. Integrating a component into 
or removing it from a system generally requires 
changes to it and to the components that it interacts 
with; and the complexity of components increases 
with the degree of integration. In well integrated, dy- 
namic systems, the structural complexity needed for 
behavioral integration is a major liability. 

* In the encapsulation approach, one integrates compo- 
nents by wrapping them in an additional component 
that manages access to them and coordinates their 
behaviors. One could integrate a model and a view by 
defining a new model-view wrapper that aggregates 
and manages access to the underlying objects. One 
problem with this approach is that, while it preserves 
component independence, it compromises visibility. 
A component so integrated cannot be accessed except 
through the wrapper. When an existing component is 
integrated with with another, clients of the first com- 
ponent have to be changed to access it through the 
wrapper, complicating both the process of evolution 
and the structure of the resulting system. 

* In what we call the implzczt invocation approach, one 
integrates components by having them register di- 
rectly with each other to receive event notifications. A 
view component might register with a model object, 
for example, and access the model then update itself 
when the model announces its events. The Smalltalk 
Model-View-Controller employs this strategy [24], 
[Ill. The Observer pattern generalizes the idea 191. 
Like hardwiring, this approach compromises compo- 
nent independence, since components have to register 
with and “understand“ each other. 

* The BMS approach is similar to the implicit invoca- 
tion style, except that a distinguished component 
called a broadcast message server is interposed between 
invoking and invoked objects. A model object might 
send notifications to the BMS, and a view object might 
register with the BMS to receive model-generated 
events. The problem with the BMS approach is that 
even though components do not register with or call 
each other directly, they still have to ”understand” 
each other. That is, the code for managing component 
integration is generally mixed in with the code for the 
components to be integrated, making it hard to inde- 
pendently add or remove components, to change how 
they work, or to change how they work together- 
how they are integrated. 
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3.2 The Mediator Approach 
The basic idea in the mediator approach is to identify and 
modularize in separate components called mediators infor- 
mation about how other components work together. A me- 
diator represents the bekavioval velationskip needed to inte- 
grate visible, independent components. By visible we mean 
that a component can be manipulated by other components 
at runtime. Visibility is important to integrating new com- 
ponents into an existing system without disrupting the cli- 
ents of the existing components. By independent we mean 
that a component is developed, used, reused, and docu- 
mented as a stand-alone unit. Independence is critical to 
simplifying all aspects of software development. The me- 
diator approach comprises three design phases. 

First, you design the system architecture as a graph 
that we call a behavioral entity-relationship (ER) model. 
The nodes represent basic tool or component behav- 
iors. The edges represent the behavioral relationships 
needed to integrate the basic behaviors. It is common 
for a single behavior to participate in multiple be- 
havioral relationships. Hollingsworth and Weide 
would characterize this as the system or macro- 
architectural level of design [13]. 
Second, you design an abstract component for each 
node and edge in the behavioral ER model. Our com- 
ponents are instances of what we call abstract bekav- 
ioval types (ABTs). An ABT is like an abstract data type 
(ADT), but it exports events in addition to operations. 
Hollingsworth and Weide would characterize this as 
the component or micro-architectural level of design 
t131. 
Third, you implement the ABT components. Many 
object-oriented languages are suited to this task, but it 
may be necessary to implement an implicit invocation 
mechanism to support the concept of events in ABT 
interfaces. 

3.2.1 Behavioral Entity-Relationship Modeling 
We now consider each of these steps in more detail, starting 
with behavioral ER models. First, consider the part of Prism 
that models the set of tumors of a patient. The user of Prism 
can add and delete tumors, select them for editing, and view 
them in an overall patient visualization. Fig. 1 presents a be- 
havioral ER model-based architecture of this part of Prism. 
The nodes (or components, in the lexicon of Garlan and Shaw 
[39]) represent respectively the behaviors of a dynamically 
changeable set of tumors, a multiple selection menu, a set of 
tumor editing panels, and a visualization panel. 

The edges (connectors) denote relationships that inte- 
grate the component behaviors. The "bijection" between the 
tumor set and menu ensures that there is one menu button 
per tumor, even as the menu and tumor sets change. The 
second "bijection" ensures that there is an editor for each 
tumor designated by a selected menu button. The "injection" 
ensures that there is a graphic in the visualization for each 
tumor in the tumor set. The visualization may display 
graphics not represented in this subsystem-e.g., for the 
patient's normal anatomy. 

Sections 4 through 6 elaborate in detail the behavioral ER 
modeling and design of this small but representative part of 
Prism. To set the stage for that discussion, we now narrow 
our scope to focus on an even simpler part of Prism: the 
dialbox user interface "widget." 

The top of the panel in Fig. 2 presents three dialboxes in 
the context of the Prism tool for manipulating a single ra- 
diation beam. Each dialbox comprises a dial and a text line 
read-out. The user can change the angle of the beam rela- 
tive to the patient by moving the dial with the mouse or by 
typing a new value. As a dial is moved, the text updates; 
and when the text is changed the dial moves. The dialbox 
can be seen as a paradigmatic, integrated system. 

We define the architecture of the dialbox with a behavioral 
ER model-in this case one with two nodes and one edge. 
The nodes model the individual behaviors of the dial and 
text line. The edge models a relationship that maintains dy- 
namically the equivalence of their values. This decomposi- 
tion is critical, as it establishes the system modularization. In 
Prism we made our decomposition decisions based on in- 
formal but careful forethought about the structure and evo- 
lution of the application domain, the breakdown of the de- 
velopment task, and component reusability. In a larger-scale 
development, a more rigorous domain analysis might pro- 
vide more effective guidance in behavioral ER modeling. 

3.2.2 Designing with Abstract Behavioral Types 
With the system architecture defined, we now realize each 
node and edge as an instance of a corresponding ABT. A 
key to the mediator approach is to realize the nodes of the 
behavioral ER model as visible instances of independent ABTs. 
Choosing an interface with operations and events that will 
support both the required component behavior and subse- 
quent behavioral integration using mediators is the heart of 
the mediator approach. 

Fig. 3 depicts our ABT interfaces. The left and right rec- 
tangles present the text line and dial as prototypical ABT 
instances, and the middle rectangle presents an instance of 
the mediator ABT. The figure as a whole presents a proto- 
typical dialbox instance. The dial and text line ABTs export 
operations to set and get stored (string or numeric) values, 
and an event to signal changes in value. The events, like 
operations, have programmer-defined names and type sig- 
natures (parameters). Events are announced by operations 
whose effects satisfy the requirements for event announce- 
ment (e.g., changing the invoked object). 

The operations exported by the mediator are responsible 
for updating the dial or text object when the other object 
changes. The mediator registers its operations with the dial 
and text line events (dotted lines). When the dial or text 
value is changed, the event notifies the mediator of the new 
value by invoking the registered operation. The operation 
computes a new value for the other object and calls the 
other object to update its value (solid lines). 

This update causes a second event announcement, which 
recursively invokes the mediator. In Prism (a sequential 
system) we break the resulting circularity by having the 
mediator maintain a bit indicating whether an update is 
already in progress. When notified, the mediator checks 
the bit. If it is set, the mediator returns. If it is not set, the 
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Visualization 

Dynamically Maintain Set Of ObJect 
Subset Bijection 

f Dynamically Maintain 
Set Injection 

Dynamically Maintain 
Set Bijection Selection Menu Set of Tumors 

Fig. 1. Behavioral ER model for a representative fragment of Prism. 

Fig. 3. The mediator design of the dial box system. 

Fig. 2. A beam panel, with three dialbox widgets (in a row along the 
top) for controlling the  orientation of the radiation beam and the patient 
couch. 

mediator sets it, performs the update, gets re-notified, dis- 
misses the renotification, and then clears the bit just before 
completing its work. This example shows how we achieve 
integration while preserving the visibility and independ- 
ence of the components. 

3.2.3 lmplemenfing Absfract Behavioral Types 
Now, finally, we implement the ABTs. It is easy to imple- 
ment ABTs in most object-oriented languages. One chal- 
lenge is to simulate the events in object interfaces. With 
support for events in place, we then implement the inde- 
pendent ABTs and finally the mediator ABT. We address 
each of these tasks in turn. 

Implicit Invocation. Event-based implicit invocation is a 
key part of the mediator approach. Fortunately, implicit 
invocation mechanisms can be added to many program- 
ming languages [28]. The Observer pattern provides one 
approach [9]. We designed our event mechanism to support 
the multiple events exported by ABTs. We implement each 
event as an attribute of the exporting ABT type-that is, as 
an event object instance variable. Riehle has recently cast 
this design concept in the form of an object-oriented design 
pattern [34]. 

Such an event object maintains a set of parties to be noti- 
fied when the event is announced. It exports operations to 
add and delete these notifications and to announce the 
event. An operation responsible for announcing an event 
does so by calling the announce operation exported by the 
event object, passing to it the event parameters, such as the 
new value of the dial. External clients (mediators) register 
and unregister their operations by calling register and un- 
register operations exported by the event objects. 

Fig. 4 presents our Common Lisp/CLOS [40], [l] imple- 
mentation. We implemented events as association lists 
along with operations to manipulate them. The operations 
are implemented as macros. The notification set of an event 
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is the association list pairing the operations to be implicitly 
invoked with the objects to which they are to be applied. 
The event implementation supports three operations. 

E.AddNotify(ob,op) adds the pair consisting of the op- 
eration to be invoked op and the object (party) ob to 
receive the invocation. The receiving party is usually 
a mediator. 
E.RemoveNotify(ob,op) deletes the specified pair from 
the event’s registration set. 
E.Announce(p,, . . . ,pH) implicitly invokes all registered 
objects by iterating over the (ob, up) pairs and apply- 
ing each operation op to the associated party ob. For 
each (ob, op)  pair, announce calls ob.op(p,, . . ., pn),  where 
p I  are parameters compatible with the event type sig- 
nature. In our Prism mechanism, a reference to the 
announcing object is passed as a parameter. The re- 
maining actual parameters are supplied by the an- 
nouncer. The operations invoked by the event must 
have signatures that conform to the event signature. 

Independent ABTs. Implementing the dial and text line 
objects is now easy. Because the two are so similar, we just 
discuss the dial. We implement the dial as an instance of a 
CLOS dial class (see Fig. 5). The two key aspects of the de- 
sign are the inclusion of an event as an instance variable, 
and the programming of the operation that changes the 
angle to announce the event. The announcement is done by 
a CLOS wrapper method around the setf operation that is 
used to change the value. When a client uses setf, the wrap- 
per is called automatically. It erases the dial graphic, 
changes the angle value (within call-next-method), draws a 
new graphic, then announces the angle-changed event. 

Mediator ABT. The mediator object in this case is the 
dialbox object itself. A dialbox thus aggregates instances of 
dial and text line classes and also makes them work to- 
gether as they are manipulated directly. Fig. 6 presents our 
implementation, elided to suppress irrelevant details. The 
dialbox type initializer make-dialbox creates the text line and 
dial parts then registers its operations with their events. The 
code ev:add-notify registers the dialbox db to be notified by 
invocation of upon-angle-changed when the angle-changed 
event is announced. The event parameters identify the noti- 
fied party (dialbox), the announcer (dial), and the new angle. 

The mediator‘s upon-angle-changed operation first checks 
to see if an update is in progress. Finding none in progress, 
the mediator converts the numeric angle to a string and 
updates the text line. This text line announces its new-info 
event (not shown in the figure), which implicitly invokes 
the mediator’s operation upon-info-changed. Now, finding an 
update in progress, the mediator just returns to the text 
line. The update of the text line completes and returns back 
to the mediator. The mediator then announces its own an- 
gle-changed event in order to notify any objects that view the 
dialbox system as a black box of the state change. Finally, 
the mediator clears its busy bit and returns. The original setf 
operation completes with the dialbox system now in a con- 
sistent state. 

The dialbox announces its own event to notify any me- 
diators that may consider it as a unit that the angle 
changed. This design reflects an interesting combination of 

traits: The dialbox is a mediator with respect to the dial and 
text line objects; and at the same time it acts as a more 
complex, independent object to clients who view it that 
way. It is an open system that ensures its own consistency 
in the face of operations on its parts; but it can also be used 
and treated as a black box within a larger aggregate. In- 
deed, while users operate on the dial or text line directly in 
Prism, the dialboxes are treated as black box abstractions by 
the rest of the beam panel. 

4 LISTING OBJECTS IN SELECTOR MENUS 
The entire design of Prism is based on the mediator ap- 
proach. In this and the following five sections we charac- 
terize the mediator design of Prism by showing how we 
applied the approach to representative parts of the system. 
We begin with what we call selectors, which we already in- 
troduced impIicitly in Section 3.2.1. 

A selector displays a menu whose buttons designate the 
elements of a set; and whenever a button is selected, the 
selector dispatches a tool panel for viewing and editing the 
object designated by the selected button. The first selectors 
that the user sees upon running Prism are those on the pa- 
tient panel, presented in Fig. 7. This panel is the Prism 
“master control.” It is used to create, load, and store patient 
cases and to select parts of patient cases for further ma- 
nipulation. Here a patient case for one, ”Joe Pancreas,” has 
been loaded. The user selects objects for viewing and edit- 
ing with the selectors at the bottom of the panel. The organ 
selector indicates that Joe’s liver, spine, kidney, and external 
contour are modeled. The plan selector presents the names 
of three plans. One plan, ”fixed grid,” is selected for edit- 
ing. A plan panel for that plan is thus displayed to the user 
(not shown). 

Many Prism panels include selectors. Selectors are the 
Prism tool invocation mechanism. In the rest of this section 
we discuss how we structured the part of the selector re- 
sponsible for keeping the menu consistent with the set of 
objects. In the next section we discuss how we dispatch 
tools by keeping a set of tool panels consistent with the 
subset of selected menu buttons. 

4.1 Behavioral ER Model: Maintaining a Bijection 

The basic requirement is that the overall set of buttons in a 
menu remain consistent with a set of objects in the face of 
changes to either set. If the user adds a button to the menu (by 
pushing the Add button on the selector), a corresponding or- 
gan (for example) has to be added to the set; and if an organ is 
added, a corresponding button has to be added to the menu. 

The behavioral ER model for this system is a straight- 
forward adaptation of that for the dialbox. We modeled the 
set of organs and the menu as separate behaviors. We mod- 
eled the menu as two sets of buttons: the set of displayed 
buttons, and the subset of selected buttons. The selector 
subsystem thus includes the set of objects, the menu, and a 
behavioral relationship that ensures that the set and menu 
remain consistent-that there is a bijective mapping be- 
tween them. We were led to the behavioral ER model in 
Fig. 8. 

between Sets 
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(deftype event ( )  'list) 
(defun make-event ( )  nil) 
(defmacro add-notify (party event operation) 

'(setf ,event 
(adjoin (list ,party ,operation) 

(remove ,party ,event :test #'eq :key #'car)>)) 

'(setf ,event (remove ,party ,event :test #'eq :key #)car))) 

(dolist (entry event) ; event is an a-list 

(defmacro remove-notify (party event) 

(defun announce (object event &rest args) 

(apply (second entry) (first entry) object args))) 

Fig. 4. Common LispiCLOS implementation of event object in Prism. 

(defclass dial (frame) 
((angle :type single-float 

:accessor angle , 

:initarg :angle) 
(angle-changed :type ev:event 

:accessor angle-changed 
:initform (ev:make-event)))) 

; define a dial ABT 
; angle attribute 

; angle-changed event 

(defmethod (setf angle) :around (new-angle (d dial)) 
(dial-erase-pointer d) ; erase old dial graphic 
(call-next-method) ; invoke inner wrappers 
(dial-draw-pointer d) ; draw new graphic 
(ev:announce d (value-changed d) new-angle) ; announce value-changed 
new-angle) ; setf must return value 

Fig. 5. Key features of the implementation of the dial ABT. 

(defclass dialbox (frame) , 
((the-dial :type dial :accessor the-dial) 7 

(the-text :type textline :accessor the-text) ; 
(angle-changed :type ev:event f 

:accessor angle-changed 
:initform (ev:make-event)) 

(busy :accessor busy :initform nil))) , 

the dialbox/mediator class 
references a dial 
and a text line, 
and exports an event, 

and avoids circularities 

(defun make-dialbox (radius &rest other-initargs) 
(let* ((db (apply #'make-instance 'dialbox))) 
(setf (the-dial db) 

(apply #'make-dial radius :parent (window db)) 
(the-t ext db) 
(apply #)make-textline width height :info "0.0" :parent; (window db)) 

(ev:add-notify db (angle-changed (the-dial db)) #)upon-angle-changed) 
(ev:add-notify db (new-info (the-text db)) #'upon-new-info) 
db))) 

(defun upon-angle-changed (db ann Val) 
(unless (busy db) ; avoid circularity 

(setf (busy db) t) . I 1  I, , 
(setf (info (the-text db)) ; convert angle to 

(format nil ""5, IF" (mod val 360.0) ) )  ; string; update text 
(ev:announce db (angle-changed db) Val) ; announce dialbox event 
(setf (busy db) nil))) ; avoided circularity 

Fig. 6. Key features of the implementation of the mediator for the dial and the text line. 
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Fig. 7. The Prism patient panel. 

Bijection: 

Buttons 
Set of Objects 

Fig. 8. Simplified behavioral ER model of the menu part of selectors. 

The semantics of the sets conjoined with the invariant 
imposed by the relationship implies the propagation of 
component behaviors needed to effect integration. The visi- 
bility of the organ set and menu eases evolution by allow- 
ing new tools to operate on these components without re- 
quiring changes to the existing system. The independence 
of the types eases development by allowing the parts to be 
developed with minimal interaction. The separate and ex- 
plicit representation of the semantically rich relationship 
also helps manage the complexity of the system by localiz- 
ing the integration-related information. 

Our examples are small but representative of the overall 
behavioral ER model of the Prism architecture. The whole 
Prism system is structured as a collection of visible, inde- 
pendent behaviors integrated in a network of behavioral 
relationships. This architectural style is largely responsible 
for the simplicity and adaptability of the Prism software, 
despite the high level of behavioral integration. 

4.2 Design: Set ABTs and the Bijection Mediator 
We implement sets as instances of a Set ABT with opera- 
tions to insert, delete, and iterate over elements, and with 
events to indicate the successful insertion and deletion of 
elements. The operations are responsible for announcing 
events as necessary. The inseut(x) operation announces in- 
s e r t d x )  if and only if x is actually added, which happens 
only if x was not already in the set, for example. 

The menu ABT has operations to insert, delete, iterate 
over, select and deselect buttons, and events to signal in- 
sertion, deletion, selection and deselection of buttons. This 
design collapsed the interfaces of the two sets in the model 
of the menu into a single interface. 

To simplify the presentation and to make a slightly more 
general point, we first treat the menu as if it were just a single 
set. See Fig. 9. (We discuss the grayed out parts of the figure 
in the next subsection.) The organ and button sets are 
Set ABTs-X and Y in the figure. The mediator references the 
sets and has operations to handle their insertion and deletion 
events. When the mediator is created, it registers with the 
appropriate events. When an element is inserted or deleted, 
the set announces a corresponding event (dashed lines), im- 
plicitly invoking the mediator. The invocations flows back 
along the dotted lines. The mediator calls the other set to up- 
date it (the solid lines), using a busy bit to avoid circularities. 

A complexity not discussed above is the way the me- 
diator handles deletions. When an element is deleted from 
a set, the problem is to find the element to delete from the 
other set. To do this, the mediator holds a relation between 
corresponding elements, which it maintains as the sets 
change. Now, when an element is deleted, the mediator 
looks up the corresponding element, deletes it from the 
other set, and then deletes the association from its relation. 



570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996 

Fig 9 The mediator design of the consistent sets system 

Representing multivalued attributes, such as the organs 
of a patient or the buttons of a menu, as Set ABTs is a cor- 
nerstone of the Prism design. It provides a runtime repre- 
sentation of dynamic entry and exit of elements into and 
from associations. Rather than having to maintain consis- 
tency in the face of language level instantiation and de- 
struction of objects, we do so in the face of events indicating 
insertion into and deletion from sets. 

4.3 Submediators: Integrating the Subcomponents 
The grayed-out boxes in Fig. 9 reflect an additional re- 
quirement: When an organ and a button are associated by a 
selector, the name of the organ and the name on the button 
should be the same. If one updates the text of a button, the 
name of the corresponding organ should also change, and 
any change to the organ should be reflected by the button. 

Behavioral ER modeling again helped us to develop a 
conceptual design, which we then implemented using 
ABTs. We define a new mediator type whose instances 
keep button and element names consistent. Then we design 
the ”main” mediator (between the sets) to deploy and re- 
tract these ”submediators” as necessary. When an organ is 
added to the organ set, the main mediator adds a corre- 
sponding button to the button set, updates its own relation, 
and creates a submediator to keep the organ and button 
names consistent The objects representing the tuples in the 
relation could themselves serve as the submediators. 

We use this approach to keep components of structured 
aggregates consistent with their counterparts in other such 
aggregates, without skewing the designs of either the com- 
ponents or the aggregates. The ability to integrate objects 
for the duration of their association in a relation shows the 
leverage provide by separate, explicit representation of be- 
havioral relationships as mediators. 

5 USING SELECTORS TO DISPATCH TOOL PANELS 

In addition to displaying the contents of sets, selectors also 
allow objects to be selected for viewing and editing in new 
panels. One selects the plan fixed grid, for example, by 
pressing the button so labeled on the plan selector of the pa- 
tient panel. This action highlights the button and launches a 
plan panel. The plan panel itself includes selectors that dis- 
play and allow selection of the parts of a plan. A plan in- 
cludes a set of radiation beams, a set of views of the treat- 
ment plan, and other object sets. Selecting one of the views 
from the view selector would launch a new view panel. 

Fig. 10 depicts one view panel. This particular panel pres- 
ents a transverse view. The background displays a radio- 
graphic image. The contour lines in the foreground outline 
the organs in the patient model (ludneys, liver, spine, and 
skin), the tumor and enclosing region to be irradiated, and 
the two radiation beams defined in the selected plan (one 
entering from the lower right, the other from the upper left). 

5.1 Behavioral ER Model: Another Bijection 
The behavior that we require of the selectors, then, is a dy- 
namically maintained association between the subset of 
selected menu items and a set of editing panels. When a 
button is selected (highlighting it), a panel is dispatched. 
When the panel is closed the button is deselected. Fig. 11 
presents the behavioral ER model for the overall selector 
subsystem. This model extends the one we presented 
above. We have added a set of panels and a new relation- 
ship. The new structures are colored gray in the figure. 

The new relationship requires the panel set to be consis- 
tent in a bijective sense with the subset of selected buttons. 
The connection from the new relationship to the old one 
indicates that the new one “uses” the old. Specifically, it 
uses the relation between buttons and organs that is main- 
tained by the old relationship to determine which object 
corresponds to a selected button. That information is 
needed to associate a new panel with the object designated 
by the selected button. 

With the selector problem solved once, we applied the 
solution to all selectors in Prism. The same code, parame- 
terized to create different kinds of panels for different kinds 
of set elements, is shared by all selectors. 

5.2 Design: Reusing Sets and the Bijection Mediator 
To accommodate the change in requirements reflected in 
the extension of the behavioral ER model, we add another 
Set ABT and another bijection mediator to the existing se- 
lector subsystem. We do not change existing modules. Fig. 
12 details the extended design. 

Specifically, we add a set of panels and a mediator be- 
tween it and the menu. (The figure presents a more com- 
plete menu ABT interface in this example.) When a button 
is selected, the new mediator reads the relation maintained 
by the old mediator, as depicted by the curving arrow, to 
find out which object is designated by the selected button. 
The mediator then creates a new panel, attaches it to the 
designated object, and adds the panel to the panel set. 
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Fig. 10. A transverse view of a Prism radiation treatment plan. 

Fig. 11. Simplified behavioral ER model of the selector subsystem. 

The mediator approach transports the ease with which we 
extended the behavioral ER model to the design and imple- 
mentation levels. Extending the implementation in parallel 
with the behavioral ER model-integrating new parts with- 
out disrupting the existing design or implementation-is the 
way we constructed and continue to evolve Prism. 

The preceding examples illustrate how we apply the ap- 
proach at multiple scales, or granularities. We viewed the 
dialbox as an independent system to be integrated into the 
beam panel. We viewed the set of panels as an independent 
system to be integrated with the menu. We then shifted our 
perspective to the selector as an independent system to be 
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Fig. 12 Mediator design of the selector subsystem 

integrated into the plan and patient panels (as well as some 
others). The patient panel is in turn integrated with the over- 
all patient case object (the details of which we do not discuss 
in this paper). The decomposition of behaviors at all granu- 
larities into independent behaviors integrated by mediators 
provided us with real intellectual and managerial leverage. 
This sort of decomposition serves the essential purpose of 
modularization, after all: to conquer by dividing effectively [7]. 

6 KEEPING GRAPHICAL VIEWS CONSISTENT 

We now complete our elaboration of the behavioral ER 
model presented in Section 3.2.1 by discussing the integra- 
tion of object sets with views. Fig. 13 illustrates the four 
kinds of views that Prism supports: orthographic projec- 
tions along the axes of the "patient coordinate system," and 
(in the lower left) perspective views taken from the origins 
of radiation beams. The user can define any number of 
views, and can have any number of view panels active. 

The aspect of integration we address in this section is the 
need to keep views consistent as the patient case changes. 
Specifically, we wanted to display each organ, tumor, tar- 
get, point, dose distribution, etc., in each view. We want to 
keep views consistent as objects are added to, deleted from 
or changed within the patient case, and as views are added 
and deleted. Adding an organ, for example, should be re- 
flected in each view; adding a view should cause each or- 
gan to be rendered in the view; and changing an organ 
should cause the corresponding graphic in each view to be 
updated as necessary. 

I I 

6.1 Behavioral ER Model: Maintaining a Cross- 

Given a set of objects and a set o iews, we saw that we 
needed a mediator between the two sets. This mediator 
would use submediators to keep each object consistent with a 
graphic depicting it in each view in the set of views. Thus, 
one such submediator would be needed for each element in 
the cross product of the object and view sets. We modeled the 
architecture of the view system with the behavioral ER model 
in Fig. 14. One of these mediating structures is needed be- 
tween each object set in the overall patient model (organs, 
tumors, etc.) and the set of views. Note that we are able to 
ignore the participation of the object set in other behavioral 
relationships, such as the one between the object set and the 
menu part of the selector for the set. In this way, the mediator 
approach achieves an effective separation of concerns. 

6.2 Design: The Cross-Product Mediator 
The mediator in this model is similar to that in the selector 
subsystem, but instead of computing and maintaining a 
bijection, it maintains the cross product relation. As ele- 
ments are added to and deleted from either set, the media- 
tor updates the cross product, inserts or deletes graphics as 
necessary, and dispatches submediators to keep individual 
objects consistent with their graphical depictions. 

These submediators are complex. They embody design 
decisions about how to render objects. This design sepa- 
rated the implementation of the graphics pipeline from the 
code responsible for deploying the submediators. This 
modularization paid off when Kalet discovered that his 

Product 
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initial design for rendering views was unworkable. The 
problem was in rendering multilayered images in the X 
windows system 1371. The specific difficulty was in incre- 
mentally updating renderings of contours drawn over 
background radiographic images. 

The mediator architecture that isolated the graphics code 
in submediators enabled Kalet to fix the problem with no 
impact on the superstructure that actually deployed the 
submediators. We did not have to change or even consider 
in detail the organ set, view set, or the mediator between 
the organ set and set of views. Also insulated from the 
change were the organs themselves, the mediator between 
the organ set and the menu in the organ selector, between 
the menu and the panel set, and so on. The mediator archi- 
tecture effectively separated these concerns, allowing Kalet 
to correct the problem with confidence that the changes 
would not disrupt the rest of the system. 

7 INTEGRATING MULTIPLE VIEWS 
In this and the next two sections, we discuss additional as- 
pects of the Prism design. In this section we address the 
user’s understanding of spatial relationships among differ- 
ent graphical views. 

With many orthographic views, a problem for the user is 
to understand how views relate to each other. Along what 
line does a transverse view intersect a coronal view? In this 
section, we discuss how we enriched the viewing system by 
depicting the intersections of the viewing planes of ortho- 
graphic views in each orthographic view. We did this to 
help the user to mentally integrate two-dimensional views 
into a three-dimensional mental model of a plan. Specifi- 
cally, each orthographic view presents a set of graphics 
called locators, each indicating how the given view inter- 
sects with the viewing plane of another orthographic view. 

A locator is a displayed as a white line, illustrated by the 
“crosshairs” in Fig. 13. The vertical locator in the transverse 
view represents the intersection of that view with the sag- 
ittal view. The horizontal locator in the transverse view 
represents the intersection with the coronal view. The hori- 
zontal locator in the coronal view indicates the intersection 
with the transverse view; and the vertical locator represents 
the intersection with the sagittal view. Mentally rotating a 
view around one of its locators relates the given view to the 
view corresponding to the locator. 

Views and locators are tightly integrated. Locators are 
created and deleted as views are added to and deleted from 
the view set, and each locator must remain consistent with 
the viewing plane of the view it depicts. So, creating a new 
view adds locators to existing views; moving the viewing 
plane of a view updates the corresponding locators in other 
views; and moving a locator (using the mouse) updates the 
viewing plane of the other view, and hence also updates 
locators that depict that view in all other intersecting views. 

7.1 Behavioral ER Model: The Intersects Relation on 
Views 

In this situation, behavioral ER modeling led us to decom- 
pose the system into a set of views, a set of locators, and a 
relationship to keep the sets and their elements consistent. 

The question, again, was what relation does the “main” 
mediator maintain? Rather than a bijection or cross- 
product, the key relation here is the symmetric intersection 
relation over orthographic views. We want one locator for 
each intersection. We want that locator to be displayed in 
the intersected view. And we want it to remain consistent 
in position and orientation with the intersecting view. Fig. 
15 presents a behavioral ER model representing this con- 
ceptual design. 

7.2 Design: The View Intersection Mediator 
The design for this subsystem is analogous to the designs 
discussed above. A mediator maintains a relation between 
aggregates, deploying submediators to integrate associated 
elements. These submediators are identical, but for details, 
to mediators already discussed. We optimized the design 
by dispensing with the set of locators. The main mediator 
just adds locators directly to the sets of objects displayed in 
the views. 

Computing the intersection relation is simple. Only or- 
thographic views are relevant, and two such views will 
intersect if and only if their types (i.e., transverse, sagittal, 
coronal) differ. These types are encoded in attributes of 
view objects, so only attribute comparison is needed to de- 
termine an intersection of a new view with views already in 
the view set. 

Again, the mediator approach enabled the development 
and integration of this machinery independently of that for 
other roles in which views participate: involvement with 
the views selector; the relationships linking views to the 
elements they display; and so on. 

8 THE BEAM PANEL AND ITS COLLIMATOR 
SUBPANEL 

We now briefly consider a different sort of mediator-one 
that keeps one part of a user interface consistent with a se- 
lection in a different part of the interface. The beam panel 
(see Fig. 2) has this behavior. The dialboxes at the top of the 
panel rotate the couch, the gantry carrying the treatment 
apparatus, and the collimator that shapes the radiation 
beam. The sliders in the middle of the panel adjust the lat- 
eral and longitudinal positions and height of the couch. The 
remaining sliders comprise the collimator subpanel, which is 
used to set the collimator opening. 

Different makes and models of treatment machines have 
different kinds of collimators. Changing the kind of ma- 
chine designated as generating a radiation beam may imply 
a change in collimation system, requiring a change in the 
collimator subpanel. A Clinac-4, for example, requires two 
sliders to adjust its two ”jaws.” Changing to a machine with 
a collimator that has more jaws requires more sliders. 
Changing to a ”multileaf collimator” (a kind of collimator 
we discuss further in Section 9) requires a different colli- 
mator interface. 

8.1 Why We Chose Not To Inherit 
One question when designing this part of the system was 
whether to use inheritance to model different kinds of beams 
and beam panels. We first tried defining a beam class with 

. 
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Fig. 13. Four view panels: transverse, coronal, sagittal, and beam's eye. 
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subclasses specialized first by the kind of collimator used, 
and then by other parameters (such as particle type). The 
result seemed arbitrary. Why specialize first by collimator 
type then by particle type? We tried other orders, too. 

This approach had two problems. First, every speciali- 
zation ordering seemed artificial because the specialization 
dimensions are independent. The beam "types" occupy a 
grid not a hierarchy. Second, changing a beam's machine 
attribute would have required dynamically changing the 
class of the beam being edited and dynamic replacement of 
the beam panel doing the editing. Although CLOS does 
support dynamic type conversion, we found that mecha- 
nism to be too complex for such a straightforward concept. 

8.2 A Mediator Dynamically Selects the Right Part 
Instead, we defined a single beam class with attribute val- 
ues indicating specializations in particle type, collimation 
system, and other dimensions. We then used inheritance to 
model different kinds of collimators. To change the colli- 
mator type of a beam, we assign a collimator object of a 
different subtype to the collimator attribute. We modeled 
the beam panel in the same way, with a collimator subpanel 
as an attribute. 

This made it easy to maintain the correspondence between 
machine type and collimator subtype within the beam, and to 
integrate the beam and beam panel. When the machine type 
changes, the collimator object in the beam is easily replaced. 
When the type of collimator changes, the beam announces an 
event. A mediator linking the beam and the beam panel re- 
sponds by replacing the collimator subpanel. 

9 ACCOMMODATING REQUIREMENTS EVOLUTION 
Thus far, we have discussed aspects of Prism that were 
specified by Kalet before he knew of the mediator design 
approach. It is fair to take such requirements-clearly not 
contrived to yield predetermined outcomes-as a reason- 
able test of whether the mediator method eases the devel- 
opment of integrated systems like Prism. Kalet's success in 
meeting the Prism requirements in a timely manner and on 
a modest budget provides strong evidence for our claim 
that the approach overcomes the serious structural prob- 
lems that plague common approaches. Our approach eases 
the development of integrated systems like Prism-rich in 
function, tightly integrated, sequential in execution. 

What we cannot as conclude quite as confidently based 
on the initial effort is that the mediator approach eases 
software evolution in the face of changes in requirements 
not foreseen by the specifier but that arise in the course of 
the actual use of the system [26]. Of course there is no way 
for any approach to reliably accommodate entirely unfore- 
seen requirements changes. However, we constructed the 
mediator method to accommodate key kinds of changes 
that are characteristic of integrated systems-namely the 
addition, deletion and modification of new behavioral enti- 
ties and relationships. 

The question is, does it work for behaviors and relation- 
ships that were not anticipated? The data are limited, and it is 
easy to construct situations in which change is hard. Never- 
theless, our actual experience with Prism has been positive. 

We conclude our technical discussion of Prism with a brief 
description of one such unanticipated change and the ease 
with which the mediator architecture accommodated it. 

The change was the integration into Prism of a new tool 
to handle leaf collimators. A leaf collimator has many inde- 
pendently adjustable leaves that provide flexibility in 
shaping a radiation beam. Two machines with leaf colli- 
mators are in use at the University of Washington Cancer 
Center. One is a cyclotron generating neutron beams. The 
other is a more conventional treatment machine generating 
X-rays and electrons. 

The collimator subpanel of the new beam panel has a 
button called leaf display that brings up the leaf panel. The 
leaf panel shows a beam's eye view, the desired beam's 
portal contour (i.e., the shape of the hole through which the 
beam is to pass), and one text line for each leaf setting. The 
contour is drawn with the beam portal editor, which is not 
discussed here, but which reuses the same contour editing 
function used to model organs. A white, zig-zag line ap- 
pears showing the best fit of the collimator leaves to the 
specified portal for the current rotational angle of the colli- 
mation device. If the collimator angle is changed (e.g., by a 
dialbox on the beam panel), the white "leaf-setting" shapes 
change to show the best fit for the new angle, and all the 
leaf text lines update, as well. 

The leaf panel was added in the period between clinical 
deployment, July of 1994, and November of 1994. It re- 
quired no modifications of the beam object, the beam panel 
object, the beam graphics, the beam's eye view graphics, the 
leaf collimator object, or anything else, except to add a 
button to the collimator subpanel and have the button call 
the leaf panel constructor. The panel code itself is small 
since it reuses a lot of the machinery of the system, includ- 
ing the beam's eye view. It is integrated with the collimator 
angle by registering a small function (eleven lines of Com- 
mon Lisp code) with the existing new-coll-angle event of the 
beam object. 

10 RELATED WORK 
The benefits of the mediator approach appear to be signifi- 
cant, yet none of the basic elements of the approach is 
novel. Rather, the novelty and utility are largely in the care- 
ful engineering of macro- and micro-architectural elements 
into a combination designed to ease the development and 
evolution of a broad class of integrated systems. In this sec- 
tion we briefly compare and contrast our work with some 
key related work. 

The notions of separate representations of relations, and 
of the benefits of making such separations, are well estab- 
lished. Chen's entity-relation data modeling approach [51 
established this pattern, albeit for the purpose of data rather 
than behavior modeling. The Object Modeling Technique of 
Rumbaugh et al. was perhaps the first major work to intro- 
duce it into object-oriented design [36]. In contrast to our 
work, however, the ability of Rumbaugh's relations to re- 
spond to the activities of the components they relate is lim- 
ited to propagation of operations. Designer-specified ABT 
events allow us to implement more complex integration 
semantics. 
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Specification of behavioral relationships has also received 
attention. The IS0 General Relationship Model 1151 provided 
syntax for specifymg relationships with behaviors. Helm et 
al. devised contracts to specify the obligations of objects that 
interact with each other [12]. In contrast to the IS0 work, we 
do not present a specification notation. Our notion of behav- 
ioral relationship differs from contracts in that contracts state 
how given components call and notify each other, whereas 
our behavioral relationships require objects to work together 
without structural dependencies. 

Implicit invocation has also received much attention as a 
software design and programming construct. An earlier 
paper describing the basic mediator concept [42] provides a 
survey, taxonomy and a semi-formal model of the design 
space for implicit invocation mechanisms, as they have ap- 
peared in a variety of domains, including database and arti- 
ficial intelligence programming. Implicit invocation has 
been used as well for tool integration [33], consistency 
management of user interfaces [24], and general procedural 
programming [281. Formal models of implicit invocation 
mechanisms [38], the codification of implicit invocation in 
numerous design patterns, and the support for the con- 
struct provided by technical architectures such as OLE [3] 
and CORBA [29] attest to the widespread recognition of 
implicit invocation as a key construct for structuring soft- 
ware systems. 

Nor are class interfaces that export events new. IS0 
module specifications [14] include events. TICKLE events 
are explicit in interfaces [61. There are many other exam- 
ples. One of our concerns was the usability of our method 
by engineers trained in abstract data type and classical ob- 
ject-oriented design, which led us to present the ABT as a 
straightforward generalization of the familiar ADT, with 
events defined as ”dual” to operations. 

The mediator concept also has precedents. Objects that 
make other objects interact is the heart of Borning’s ThingLab 
constraint programming system [2]. The structure and se- 
mantics of ThingLab objects are quite restricted, however. 
Wiederhold has developed a rich mediator concept [45]. 
Wiederholds mediators essentially provide intermediate 
abstractions that insulate workstation-based applications 
from the complexities of heterogeneous, distributed data 
sources. Perhaps the key distinction from our work is that 
applications ”know about” and use Weiderhold’s mediators 
directly, whereas our mediators integrate stand-alone objects 
that do not “know about” the mediators that integrate them 
with other objects. 

The Gamma et al. Mediator design pattern [9] is similar to 
our mediator. However, the Gamma et al. Mediator pattern 
requires the mediated objects to call the mediators. The ease 
of software development and evolution afforded by our 
approach depends on the use of mediators to integrate 
structurally independent objects. Our mediator concept 
both anticipated and can be emulated by a combination of 
the Gamma et al. Mediator and Observer patterns. However, 
there is more to our approach than that combination. The 
observer pattern does not suggest the ABT module con- 
struct as a micro-architectural building block. Nor does it 
address the macro-architectural issues covered by behav- 
ioral ER modeling, for example. 

11 DEVELOPMENT EFFORT AND SYSTEM SIZE 

Our application of the mediator approach to Prism has 
clearly been profitable. To give a sense of the scale of Prism 
and of the effort that produced it, we present detailed figures. 

Prism has grown from about 18,000 lines of Common 
LISP and CLOS, 4,500 lines of Pascal, and 11,000 lines of 
LATEX documentation in September, 1993 (when the core 
system was completed), to about 43,000 lines of Common 
Lisp and CLOS, the same 4,500 lines of Pascal code, and 
23,000 lines of LA‘72.X documentation. 

The Lisp code handles modeling, visualization, and file 
management. The Pascal, adapted from an earlier system, 
computes dose distributions. Of the Lisp, about 8,300 lines 
now handle user interface widgets, sets, relations, and 
events. Prism model objects take 6,200 lines; mediators take 
2,200 (excluding code in panels, which include the ”object- 
panel” mediators); panels take 9,500; graphics take 3,500; 
and the rest includes file input and output and other mis- 
cellaneous functions. 

The code density is about 30 characters per line, with 
blank lines and concise documentation text included. In 
comparison to our core system, Kalet’s first system has 
47,000 Pascal lines. Kalet’s second system has 41,000 lines of 
Pascal, 5,000 for dose distributions. Comparing with an- 
other system, the basic functions taking 18,000 lines in the 
original core system required about 60,000 of C [23] and 
C++ [41] in GRATIS [35], of which about 14,000 are for in- 
terface widgets. Those functions taking 4,500 lines of Pascal 
in Prism, take about 12,000 lines of C in GRATIS.’ Prism is 
small and clean relative to its function. 

Prism was built on a modest budget in person-hours and 
with a small project team. The effort lasted from January, 
1990 to present. Eleven people were involved at different 
times. The total effort to build the core was about five per- 
son years. Out of this total, requirements specification 
(done before the collaboration between Kalet and the de- 
velopers of the mediator approach began) took 24 person 
months. Design and implementation, which were the focus 
of the collaboration, took 20. Developing electron beam 
dose calculation code took 11. The total effort expended to 
date is just under eight person years. 

Prism is portable. It runs without source code modifica- 
tion using Allegro Common Lisp (CL) and Lucid CL on Sun 
Sparcstations (2 and 10). It runs using Allegro CL on DEC- 
station 5000, IBM RS6000, Silicon Graphics Indigo, HP9000 
series 700 workstations, and on DEC Alpha machines. The 
Prism Pascal code is IS0 level 0 compliant and runs with- 
out modification on all of the above systems. 

Prism performs adequately on high-end workstatioms. We 
use HP9000 series 700 workstations for development and 
production. The costliest operations by far are rendering 
pictures with projected three-dimensional graphics and com- 
puting background images. Background image display can 
be turned off in a given panel for faster response. Updates to 
interface widgets-menus, buttons, etc.-are comfortably 
fast. Event registration, unregistration, and announcement 

1. Personal communication with Gregg Tracton, Department of R,ndiation 
Oncology, University of North Carolina. 
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are performed many times, but the cost in memory and CPU 
is negligible in comparison with other functions. 

12 CONCLUSION: PRISM AS EVIDENCE 
The collaboration that began when Kalet (Radiation Oncol- 
ogy) decided to use the mediator method of Sullivan and 
Notkin (Computer Science and Engineering) has succeeded. 
Kalet and his colleagues now routinely apply behavioral ER 
modeling and design. Prism implements Kalet’s original 
specification. It is in clinical use as the primary radiation 
treatment planning system at several cancer centers. It con- 
tinues to evolve. It is rich in functioning compared to related 
systems; and despite tight integration, it has retained archi- 
tectural integrity and flexibility. The system is a good plat- 
form not only for treatment planning at present and into the 
future, but also for software engineering research on issues of 
integration, architecture and software evolution. 

Many factors were critical to the success of the project. 
One was Kalet’s aversion to ”gold plating” during re- 
quirements definition. It is possible that using Common 
Lisp was critical. The expertise of Kalet and his team of de- 
velopers, built up over two previous RTP system building 
efforts, was indispensable. So, how can we assess the im- 
pact of the mediator approach? 

The mediator approach permitted us to achieve behav- 
ioral integration while averting the structural problems 
inherent in common approaches to designing integrated 
systems-problems that foster all manner of derivative dif- 
ficulties, in design, debugging, testing, understanding, 
evolution, and so on. Prism thus serves in some sense as a 
case study in the proper anticipation and avoidance of a 
certain important kind of failure 1321. 

Nevertheless, we do not present our conclusions as 
truthful and rigorous findings, which Brooks defines as, 
”results properly established by soundly-designed experi- 
ments and stated in terms of the domain for which gener- 
alization is valid 141.” Rather, we submit them as useful rules 
of thumb, ”generalizations, even those unsupported by 
testing over the whole domain of generalization, believed 
by the investigators willing to attach their names to them 

Why, then, do we believe our rules of thumb? First, we 
can evaluate the artifact and the approach that produced it 
using widely accepted design criteria, such as modularity 
[7], information hiding 1311, modular continuity [27]. Prism 
is clearly factored into independent parts integrated by 
separate mediators; and it was the mediator approach that 
produced this modularization. We have presented but a 
few parts of Prism, but parts that are representative of the 
whole Prism architecture. 

Second, we can ask the client Kalet (admittedly a co- 
author of this paper) whether the approach helped signifi- 
cantly. Kalet’s basic claim is that without the conceptual 
and structural benefits of the mediator approach, meeting 
the functional requirements for Prism would have taken far 
more resources than were spent or even available; and the 
resulting system architecture would have been overly com- 
plex, hard to develop, and inflexible with respect to the 
ongoing integration of new capabilities. 

14, p. 21.” 

This assessment is not the uninformed opinion of a nov- 
ice designer in an unfamiliar application domain. Kalet and 
colleagues built two previous RTP systems 1181, 1171. These 
systems have seen extensive clinical use. The second system 
was designed using object-oriented techniques, as de- 
scribed in the archival computer science literature [161,[171. 
And the difficulties with the evolution of the system built 
using the common techniques are well documented [30]. 

Finally, as software engineering researchers, we can 
evaluate whether the mediator method helped make the 
clients more effective software designers. Our evaluation is 
that it did, but the transition was harder than expected. The 
mediator approach represents a significant change in how 
one models, designs, and implements systems. Just as the 
transition from a structured to object-oriented style requires 
time and a visceral understanding, so does shifting from 
the common object-oriented techniques to behavioral ER 
modeling and mediators. Superficially, one can believe this 
is a small shift. Our experience with several members of 
this project and with students and other colleagues indi- 
cates that the shift is significant (even though the method 
can be characterized as a variation of object orientation). 
Proficiency with the approach requires judgement and in- 
sight that is gained through repeated, practical application 
of the basic concepts over a substantial period of time. 

Brooks identifies as a major issue facing the research 
community the tension between “narrow conclusions 
proved convincingly by statistically sound experiments and 
broad conclusions generally applicable, but supported only 
by unrepresentative observations.” Brooks states that, 
”Over-generalized findings from other designers’ experiences are 
more apt to be right than the designer’s uninformed intuition 
[4, p. 21.” The careful, aggressive application of new tech- 
niques to demanding projects and the engineering evalua- 
tion of the resulting experiences provide both the re- 
searcher and practitioner with an indispensable basis for 
evaluating new design techniques. Our evaluation of the 
mediator approach, while not scientifically rigorous, does 
provide a substantial factual basis for assessing its prob- 
lems and promise. 
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