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Abstract

The next two decades will bring us silicon computation re-
sources that seem unimaginable today. Advances in litho-
graphic technology will enable devices with ten billion tran-
sistors and beyond. Surprisingly, the challenges that face
traditional silicon computing are eerily similar to those
molecular and other nanoscale devices must confront. The
solution we propose for scalable silicon, the computation
cache, is adaptable to molecular devices. A computation
cache is a uniform substrate built from a simple tile. Each
tile encapsulates the functionality to compute a single in-
struction and self-organize with other tiles to execute entire
applications.

This tile serves as a key architectural link between the sil-
icon and non-silicon domains. The network connecting tiles
need not be uniform and we envision encapsulating these
tiles in specialized packages and bonding agents to form
“computational paint.” In the longer term, our research into
the minimal tile for substrate construction has implications
for molecular devices; e.g. if a molecule can be synthesized
with this minimum functionality a molecular computational
paint will be realizable.

1 Introduction

Computer architects are facing three daunting trends with sil-
icon devices. First, relative to computation speeds, on-chip
communication is slowing down. Second, as feature sizes
shrink, manufacturing processes are becoming less reliable.
Third, the pace at which additional computational realestate
becomes available is far outstripping the rate at which de-
signers can effectively utilize it. We foresee analogous chal-
lenges with forthcoming nanoscale and molecular devices.
Nanotechnology will bring enormous quantities of compu-
tational resources, yet data transfer will continue to hinder
scaling. Chemically self-assembled devices will, almost by
definition, require fault tolerant architectures. Finally, there
is no practical way that designers will layout every nanoscale
switch, wire, and bond; hence regular, repeatable designs
will be required.

For silicon-based computing, we propose an entirely new
class of microprocessors, called computation caches that di-
rectly confronts future technological challenges. A compu-
tation cache is best described as a mixed data-instruction
cache that performs processing in-place. Traditionally, de-
signers devote a significant portion of processor resources to
extracting instruction level parallelism and tolerating mem-

ory latency to maximize the performance of a central core.
However, if you take the real estate devoted to register re-
naming, register files, instruction issue and completion you
could build a small processor at each word within the in-
struction cache. If you can effectively use that computational
structure, why have a centralized high-performance core at
all?

A computation cache is a hardware algorithm for dis-
tributed node-based processing. Each node corresponds to a
word in a traditional instruction cache and combines a com-
puting engine with network interfacing logic. Similar to a
traditional cache, the computation cache fetches and places
instruction streams across nodes. A critical difference, how-
ever, is that instructions in the computation cache execute
in place rather moving to a traditional processor for execu-
tion. Once instructions complete execution they explicitly
send their results to dependent nodes and remain in place to
exploit potential temporal locality. The computation cache
only fetches and decodes frequently used instructions once
but executes them many times. When instructions are no
longer needed, they are replaced – exactly like a conven-
tional instruction cache.

In this paper we outline the computational cache architec-
ture and execution model. While our current effort is mo-
tivated towards creating scalable silicon-based systems we
believe the core results of our research – the algorithms and
techniques for instruction placement, node design, computa-
tion and communication will be of interest to the nanoscale
device research community. While our two domains (silicon
and non-silicon) are currently orders of magnitude apart in
terms of scale, they are approaching each other. This raises
many exciting research possibilities for both disciplines.

The first part of this paper (Sections 2 and 3) will out-
line the silicon-based architecture we are currently design-
ing. Section 4 discusses the convergence of scaling trends
between silicon and non-silicon devices and how the com-
putation cache architecture applies to both. We follow this
with Section 5 which describes some of the modifications
necessary for molecular level implementation. Next in Sec-
tion 6 we discuss related architectural work, and in Section 7
we conclude.

2 Computation Cache

A computation cache (CC) is an hardware algorithm we are
developing at the University of Washington for scalable sin-
gle or multithreaded instruction execution. Just as there are
many ways of realizing a Tomasulo-based [1] out-of-order
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Figure 1: Scalable Tiled Architecture
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execution core, there are many possible computation cache-
based architectures. In this section we describe our early
results in developing one such computation cache architec-
ture. The architecture is based around a uniformly con-
structed two-dimensional mesh of computation nodes. Fig-
ures 1 and 2 depict a small section of this mesh and the node,
respectively. Each node has four key components:

� The functional unit.

� An interface to the chip network.

� Operand input and output queues.

� Dynamic configuration logic.

We will discuss each of these in turn.

2.1 The Functional Unit

The computational cache functional unit is a basic 64-bit
arithmetic logic unit. It supports the conventional opera-
tions such as ADD, SUB, OR, etc., and we expect it to operate
within a single clock cycle. The functional unit consumes
operands from the input queues and places results in the out-
put queues. On any cycle it can produce a single result if all
of the needed operands are present in one corresponding set
of slots in the input queues, and there is space in the output
queue. Precisely what operation the functional unit performs
is determined from the dynamic configuration logic that we
describe below.

2.2 Chip Area Network (CAN)

The Chip Area Network (CAN) is a switched network that
connects all of computational cache’s components. The
CAN provides delivery of operands, instructions, and con-
trol packets. Addresses on the network consist of a location
in the computation cache and a port number (e.g. the operand
queue number). Each tile has an input and an output inter-
face to the CAN. While our current investigation will focus
on an in-order delivery reliable network infrastructure this
is not critical to the implementation of the computational

cache hardware algorithm. In fact, central to supporting fu-
ture process technologies will be supporting unreliable and
un-ordered network delivery.

2.3 Operand Queues

Each tile contains input and output operand queues. The
queues provide buffering between dependent nodes. In our
design there are three input queues: two for the arguments
to the instruction and one for control messages. The con-
tents of the three input queues are always synchronized: The
nth entry in each of the queues will combine to produce the
nth result value. Keeping the queues synchronized is simple
using either an in-order delivery network, or simple packet
sequence numbering.

The latency for computing a result and delivering it to its
destination can vary widely due to congestion in the network
and the relative location of the instructions. Operands may
arrive at one input queue more quickly than the other. The
operand queues help hide these inconsistencies by buffering
operands. Our initial design uses 16 entry queues.

Nodes in the computational cache communicate with each
other using a protocol similar to TCP windowing. When the
execution begins, all operand queues are empty, and a tile,A,
can send 16 values to another tile, B, without fear of over-
filling B’s input queues. As B consumes values, it sends
acknowledgments (ACKS) to A so it can send more values.
Many optimizations that TCP uses are applicable, including
selective acknowledgments.

The queuing mechanism also provides an elegant and
completely distributed way to stop computation in the cache.
If the tiles stop sending ACKs, computation will gradually
halt.

2.4 Dynamic Configuration Logic

Unlike a traditional instruction cache, the computation cache
does not use a simple hash of an instruction’s address to de-
cide on the location of an instruction within the overall mesh.
Instead, instructions are initially placed anywhere within the
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Figure 3: Chaotic decentralized placement

Benchmark Ideal In-order Block-
greedy

bzip 4.2 1.9 1.1
crafty 90.4 12.4 13.9
mcf 22.9 12.6 17.7
parser 19.9 8.8 10.7
vpr-place 134.8 68.1 72.4

Table 1: Initial evaluation of cost of chaotic dynamic place-
ment. Here an “infinitely connected” idealized placement is
compared against our dynamic placement algorithms. The
numbers represents the maximum available IPC given a par-
ticular scheduling algorithm.

mesh, and use simple heuristics to optimize placement dur-
ing computation based on the spatial locality of instruction
dependencies and observed program behavior. Each tile in-
cludes logic for this automatic configuration process, includ-
ing support for exchanging information with adjacent tiles
and forwarding instructions to their final destination.

The configuration hardware will be flexible enough that
multiple configuration algorithms could be used on the same
chip. By using different algorithms, parts of the computa-
tional cache could specialize themselves for vector opera-
tions or loops while others might optimize for operating sys-
tem activities.

Placing instructions dynamically, without explicit instruc-
tion from the compiler, is central to being fault tolerant, but
potentially detrimental to performance. Because the goal of
the computational cache is scalable execution performance,
there can be no large, globally accessed structures. Conse-
quently, the placement algorithm the computation cache uses
must only use local information. The algorithm running on
a node will only have information about the local node, its
neighbors, and the nodes it exchanges operands with. If such
algorithms do not exist, the computation cache will never
achieve its goal. Thus our initial investigation has focused
on simple hardware algorithms for dynamic placement, and
whether they can lead to reasonable performance.

Figure 3 depicts the placement of a function (from bzip2)
within a mesh of nodes by a simple stateless algorithm. We
quantified the impact of this process and how much it will
slow down execution relative to an idealized placement for
various applications. As yet, we do not know the perfor-
mance relative to a realistic “ideal” placement into a com-
putational cache. However, we can make a highly pes-
simistic assessment by comparing our placement algorithms
to a completely connected mesh of computation, so instruc-
tions always receive data from adjacent tiles (think of this
as a computational cache existing in a highly-dimensional
physical space). Table 1 illustrates our results for a sub-
set of the SPEC2000 benchmark suite. The data demon-
strate that choosing the best placement algorithm for an ap-
plication yields a 57% performance penalty from an “ideal”
schedule. Choosing the best overall placement algorithm
(block-greedy) for all applications yields a 61% performance
penalty. Work is ongoing to better assess the performance
impact of dynamic placement against a realistic “ideal.”

3 Execution Model

The computational cache executes programs by passing mes-
sages that contain operand values and control information
between dependent nodes. There are no registers and, there-
fore, no notion of a named value (except via memory refer-
ences). Nor is there a notion of “program order”; instruc-
tions execute when their operands are available – whenever
that may be.

This execution model has much in common with previous
dataflow machines. However, dataflow designs traditionally
rely upon a centralized result buffer to store tagged interme-
diate values. The constraints that future process technologies
will place on communication across a silicon device make
these structures infeasible and hence require a radically dif-
ferent design.

As a result, program execution within a computational
cache is far more complicated than execution on a traditional
dataflow or Von Neumann processor. Traditional processors
encode data-flow information in register names and control
information in branches and destination addresses. The com-
putational cache manages control-flow and data dependen-
cies explicitly. The execution model must, therefore, include
these aspects of the program as first-class entities.

To demonstrate how a computational cache actually com-
putes, we will illustrate execution with a simple function.
Figure 3 contains C source code for a function that inter-
leaves the elements of two arrays. Figure 5 contains the data
and control flow graphs for this function. A binary encoding
of these graphs is the executable format for the computation
cache. The next sections describe control-flow and data-flow
in the computational cache execution model and a discussion
of how they operate in the example.



for(i = 0; i < 10; i++) f
if ((i % 2) == 0) f

c[i] = a[i >> 1];
g else f

c[i] = b[i >> 1];
g

g

Figure 4: Source code for the example.

3.1 Control and Speculation

The computation cache uses three kinds of control messages
to manage control flow and speculation: enable, bless, and
poison. Conceptually, the messages pass from one basic
block to another. An enable message signals the basic block
to start executing speculatively and establishes a contract be-
tween the sending and receiving block. The contract ensures
that the sending block will eventually send a corresponding
poison or bless message.

A poison message signals that the basic block executed on
a wrong path, while a bless message signals correct path ex-
ecution. In either case, the basic block must pass these mes-
sages along to follow up on any enable messages it sent to
other blocks. In this way, computation moves through con-
trol flow graphs in two “waves”; an enable wave to initiate
speculative computation, followed by a poison-bless wave to
commit the results. In principle there is no limit to how many
enable message can be outstanding at one time, but in prac-
tice hardware limitations bound the number of outstanding
enables.

The tiles in the computation cache do not manipulate basic
blocks and the instruction stream does not explicitly encode
block boundaries. Instead, each tile has additional inputs
and outputs for the control flow messages. The enable, poi-
son, and bless messages flow from instruction to instruction.
Each basic block has two distinguished instructions, the con-
trol head and control tail. The control head is responsible for
distributing the messages to all the instructions in the block.
The control tail passes messages onto the control heads of
the subsequent basic blocks.

To reduce the number of messages the control head sends,
we allow the control messages to piggyback on operand mes-
sages. The control head only needs to send control messages
to enough instructions to ensure that all the instructions in
the block will eventually see them.

3.2 Instruction Execution

Instructions in the computation cache operate on both control
and data values. Thus each instruction contains two parts:
a control operation and a data operation. Data operations
correspond to normal computations (ADD, SUB, LOAD, etc.).
They consume values from the input queues and produce a
value in the output queue.

s4addq r3,r18,r1

lds r10,0(r2)

sts r10,0(r1)

cmple r3,9,r1

bne r1, B1

B4

addl r3,1,r3

sra r3,1,r2

blbs r3, B2

B1

s4addq r2,r17,r2
B2

s4addq r2,r16,r2
B3

retB5

B:

A:

Figure 5: The data- and control-flow graphs for the example.
Data-flow edges are solid. Control-flow edges are dashed.

The control operation in an instruction depends on its
place within a basic block. Control head and tail instructions
use operations that distribute control messages to other in-
structions in the block and the subsequent control heads, re-
spectively. The remaining instructions simply forward con-
trol messages to the instructions that consume their results.

Branches are always control tails and use a special version
of the tail operation. They immediately forward enable mes-
sages to the following control heads when the enable arrives.
If a branch receives a poison message, it poisons both sides
of the branch. For a bless message, it blesses the taken path
and poisons the non-taken path. This means branches are the
only instruction whose data and control operands interact.

The control and data operations execute independently of
each other. For instance, a control head instruction might
distribute control messages before both operands for the cor-
responding data operation have arrived.

3.3 Discussion

The computation cache execution model leads to some in-
teresting behavior. For instance, instruction A (in Figure 5)
depends only on itself. On the first iteration, it will receive
the initial value and enable from the control tail of the previ-
ous block (not shown). Next, A will fire producing the first
index value. The enable message flows down both sides of
the branch and will return to instruction A via a back edge.
Then instruction A produces a new value.

It is likely that the enable message will move much
faster than the operand values because no computation is re-



quired (careful compiler analysis can further reduce the time
needed). As computation proceeds, the branch (instruction
B) receives a bless message and the direction of the branch
will become known. For the first 10 iterations, the branch
sends a bless message to A, and poisons the instructions in
block B5. Instruction A, in turn, blesses its results.

Eventually, the branch will fall through and then B will
poison instructionA. The poison message will circulate until
it poisons all the wrong-path executions.

4 Silicon vs. Non-silicon

The computational cache is a hardware algorithm designed
for lithographic silicon technology that will not be available
for another decade. Hence, details such as whether a node’s
input queues are 16 or 32 entries are not the type of minutia
we are focusing our attention on at the moment. Our goal
is to develop the scalable algorithms and execution models
for a silicon process technology that is radically different
then what is available today. As we progressed in this work,
we soon realized a convergence of properties between future
lithographic silicon and emerging nanoscale devices.

Despite the fact that even future generations of litho-
graphic silicon will be orders of magnitude larger than
nanoscale molecular devices, architectures for both tech-
nologies will need similar characteristics to be successful:
They must be relatively simple to design, they must be scal-
able in the face of expensive communication, and they must
be fault tolerant. We address each of these issues in turn, ex-
plaining why they are important and demonstrating that the
computation cache paradigm meets all three constraints in
both silicon and non-silicon domains.

4.1 Simple Computing Elements

Future silicon technologies will provide so many transistors
that our ability to engineer them correctly or even find uses
for them comes into question. Signs of this trend already sur-
round us. Modern designs contain ever-larger on-chip caches
and design schedules frequently slip due to verification prob-
lems. Furthermore, while transistor densities consistently
track Moore’s law, manufacturers’ ability to engineer com-
plexity is far less, leading to the so-called productivity-gap.

Engineers working with nanoscale devices face the same
complexity limitations, albeit for somewhat different rea-
sons. The nature of chemical assembly will keep the com-
plexity of molecular devices low. For instance, reliably syn-
thesizing a single molecule the size of a modern processor
is infeasible. Self-assembly will mean that precise place-
ment of different types of molecules in irregular patterns
will be difficult if not impossible. Hence, initial architec-
tures for nanoscale devices rely upon regularly constructed
substrates [2, 3].

For silicon and nanoscale devices, the solution is the same:
build a large number of simple computing elements that
combine into a scalable computing substrate. The small, in-

dividual elements will be simpler, easier to verify and less
difficult to produce. The computation cache takes exactly
this approach with its sea of only a handful of different tile
types.

4.2 Expensive Communication

Silicon devices have entered the era of expensive commu-
nication. While transistors and computation are becoming
nearly free, the relative cost of communication increases
steadily. Since the speed of light limits communication
across a chip, it is unavoidable that long wires on the crit-
ical path will soon become prohibitively expensive in terms
of either clock cycles or clock speed.

While molecular nanoscale devices will provide an enor-
mous amount of computing power per unit area, utilizing
this resource effectively will require sufficient communica-
tion capability. While dense computation “macro blocks”
that require little outside communication, yet still compute a
sufficiently complex function may be realized, precisely how
useful they will be for real applications is unknown. It may
be that future non-silicon systems will have computational
density to communication latency characteristics similar to
silicon. This will particularly plague those systems that rely
upon lithographic scale interfacing logic.

The computational cache does not eliminate long-distance
communication (sometimes data must cross the entire chip),
but it does remove it from the critical path for cycle time.
Our design contains none of the large associative structures
common in modern CPUs (e.g. instruction queues and re-
naming logic), so the computation cache can run at high fre-
quencies. Also, in the common case, operands in the compu-
tation cache need travel only a short distance, often reaching
their destination in one or two cycles. This is a substantial
savings compared to the three or four cycles needed to read
from the register file in next generation processors.

Furthermore, the computation cache does not require any
long wires. While “long-haul” connections would provide
improved performance for the CAN, they are not critical to
the design. The hardware algorithms require only nearest
neighbor communication.

4.3 Fault Tolerance

Designing with smaller transistors and thinner wires means
more manufacturing defects and increased susceptibility to
cosmic rays and other kinds of interference. Already, proces-
sors include error correcting codes (ECC) on memory struc-
tures throughout the chip, and fault-tolerant architectures are
an active area of research [4].

Non-silicon technologies face similar challenges for two
reasons. First, defects are unavoidable in many non-silicon
technologies due to the self-assembly manufacturing pro-
cess. Second, it is conceivable that the imprecise manu-
facturing process will create irregular interconnect topolo-
gies. A fixed mapping of computation onto nanoscale de-
vices thus becomes impossible in such a setting. Current



proposals use a post-manufacturing application compilation
phase to handle this [2]. Even these approaches are “static”
and rely upon redundancy at the molecular level to overcome
transient faults. The architecture itself cannot re-map com-
putation in a dynamic, ad-hoc fashion.

The key to the computational cache’s tolerance of faulty
hardware is the dynamic code layout that precedes computa-
tion. The mapping of instructions onto processing elements
is not fixed, so the instruction placement algorithm can ig-
nore defective tiles and computation will just flow around
them.

In the next section we discuss our preliminary ideas
on the modifications to the computation cache architecture
previously described to support nanoscale chemically self-
assembled devices.

5 Molecular Implemention

We believe (quite optimistically, perhaps) that the design of
conventional architecture and the design of nanoscale de-
vices will converge. That is, one day, we will be able to
chemically assemble a complex molecule designed for com-
putation. Currently, researchers can engineer and assemble a
molecular switch. If they succeed in expanding this capabil-
ity several thousand times in numbers and complexity, just as
nature started out small and arrived at the diversity of life we
see around us, building a molecular tile for the computation
cache would be feasible.

In this section we explore this possibility. Implementing
a tile in a single molecule will require modifications to our
base design. There are several ways to reduce the complex-
ity of the tile to make it easier to synthesize. We discuss two:
narrow bit-width design and function-specific tiles. In addi-
tion we sketch a design for a randomly constructed CAN.

5.1 Narrow Bit-width Design

To be useful for modern applications the computation cache
must use 64 bits as its architectural word length. Internally,
however, its functional units can operate on any width. A
computation cache with elements that operate on small (4 or
8 bit) slices of 64 bit words would be simpler in two areas:
communication and computation. In both cases, we can vary
the slice width to trade off complexity for increased latency.

Narrow communication paths will be necessary in any
non-silicon designs that include a completely ad-hoc inter-
connection network. Full 64 bit parallel communication be-
tween tiles will be nearly impossible in such a system be-
cause the probability of randomly creating 64 connections
between two cells is almost nil. However, the chances of
creating one or two connections are quite good.

5.2 Function-specific Tiles

Because they perform a multitude of operations, func-
tional units would constitute a large share of the com-
plexity in a molecular computation cache tile. Since

the cache configures tiles once and leaves the instruction
in place to re-execute many times, we can simplify the
molecular functional unit by having a specialized molecule
for each operation. There are at least two models for
a molecule-based computational cache using specialized
function-specific tiles.

In one scheme, the dynamic configuration process would
leave each tile with an operation-specific receptor. A solu-
tion containing all types of functional units would flow over
the cache and the appropriate functional-unit would bind to
the tiles that need them.

Alternately, we could specialize the entire tile instead of
just the functional unit. Since dynamic configuration would
be very difficult with fixed-function tiles, an alternative pro-
gramming method is required.

Borrowing from biology, a strand of mRNA could rep-
resent a program. A process similar to the translation of
mRNA into proteins would translate mRNA into a compo-
nent of a computation cache. Each sequence of 4 bases
(codon) would represent a different operation. Molecules
similar to those that assemble proteins would assemble com-
putational “proteins,” strings of tiles that would interconnect
to form the computational cache.

Both of these schemes sacrifice one of the computational
cache’s greatest strengths: reconfigurability. Reprogram-
ming would require dismantling significant portions of the
cache and then reassembling them. This would probably
be a lengthy process. In spite of this, both methods could
still construct special-purpose molecule-based computing
devices. Indeed, given recent advances in handling large bio-
logical molecules it might one day be possible to synthesize
a specialized molecular computing device with a table-top
machine.

5.3 Random Interconnect

Our initial design for a computation cache uses a rectilinear
grid of tiles. The interconnect in this design is fairly sim-
ple, since the coordinates of a tile provide unique names and
make routing almost trivial. Furthermore, we can rely on
many years of research into interconnect fabrics for guid-
ance.

Such an orderly structure may not be possible in a
nanoscale molecular implementation. Tiles may or may not
be connected to all of the neighbors, the number of neighbors
could vary, and connections may fail unexpectedly. Fortu-
nately, a similar problem is already under careful study.

Routing in wireless sensor networks shares many charac-
teristics with routing in this randomly connected CAN. For
instance, in both cases connections are unreliable and may
change unexpectedly, no central control point exists, the net-
work must configure itself without supervision, and the net-
work must be able to reconfigure itself for new applications.
Already there are effective, fully distributed algorithms for
routing, data collection and dispersal as well as rudimentary
self-configuration [5, 6].



Figure 6: Randomly connected computational paint

As a transition phase between silicon and molecular com-
puting we envision packaging our silicon-based tile in a spe-
cialized “sea urchin”-like package. By using several thou-
sand of these mixed with a bonding agent we envision creat-
ing a computing paint. The result is a randomly constructed
substrate with connections formed haphazardly between tiles
(Figure 6).

6 Related Work

Tile-based computing has gained significant interest among
the architecture community. Among several research efforts
there are three that we wish to highlight here. The first is the
RAW [7] reconfigurable wires project from MIT. The sec-
ond is the Smart Memories [8] tiled architecture from Stan-
ford. The third is the GPA processor from the University of
Texas [9]. In addition there is a wealth of decoupled, data-
flow and other related work that is applicable.

The RAW [7] tiled architecture is a scalable computational
mesh built from independently operating R2000-like cores
interconnected with a simple synchronous [10] communica-
tion network. Each node in the mesh contains a data and
instruction memory, register file, and pipelined processor. A
compiler statically schedules instruction streams for each tile
and interconnection switch. The RAW machine performs
best on highly regular and statically schedulable codes. Ir-
regular behavior, such as a long latency cache miss can stall
the entire RAW machine.

Smart Memories [8] is a proposal for a universal comput-
ing substrate. It is based on a tiled architecture that repli-
cates a coarsely configurable processing core and memory
in a grid communication structure. Similar to RAW, each
node in the grid executes an independent instruction stream.
Also similarly, a fine-grained switch communication net-
work is integrated on-chip for fast near-neighbor communi-
cation. Native programming for a Smart Memories device is
similar to development for traditional parallel systems. Im-
pressively, the Smart Memories effort has been able to effi-
ciently emulate existing architectures, such as Imagine [11]
and Hydra [12], on top of their mesh. The computation cache

differs from both RAW and Smart Memories in that it uses a
much simpler computation unit. This provides a much better
match between traditional programming techniques and the
underlying hardware, i.e. the computation cache does not
rely on static scheduling or parallel programming languages.

The GPA [9] processor from the University of Texas at
Austin is an unique hybrid of dataflow and Von-Neumann
architectures. Basic-blocks of instructions are brought into
a processor for execution, similar to a classic Von-Neumann
design. However, once in the core these instructions execute
in a data-flow / systolic array like fashion. The GPA project
is an interesting alternative for future silicon systems; how-
ever, it remains to be seen if this hybrid architecture scales to
extremely large mesh sizes. In particular, this design retains
a costly fetch and decode process to perform computation,
and except for limited circumstances, instructions must be
decoded each time they execute.

Decoupled architectures rely on compiler support to ex-
pose parallelism to independently communicating processor
nodes [13, 14]. The classic decoupled design splits applica-
tions into one or more instruction streams along functional
boundaries. For instance, one stream may focus on mem-
ory input-output, while another on execution. This compiler
directed approach exposes instruction level parallelism in-
herent in a sequential instruction stream. Unfortunately, it is
difficult to generate several independent instruction streams
and those that are executed tend to be tightly coupled. This
coupling creates sequentiality that prevents one stream from
executing far ahead of another, called slip in decoupled ar-
chitectures. The computation cache divides the program, but
along different lines. The enable and poison/bless waves ef-
fectively decouple calculation of control path from the actual
execution of instructions.

Multiscalar [15] from the University of Wisconsin is a
unique design that tries to speculate far ahead within a sin-
gle thread of computation. The architecture consists of a ring
of processors that speculatively execute tasks; short splices
of computation detected with a compiler. While we are cur-
rently exploring decentralized approaches to handling specu-
lative memory operations, the substantial work that went into
this on the Multiscalar design could be adapted for compu-
tation caches.

Dataflow computing has a long history [16, 17, 18, 19, 20,
21]. In some philosophical sense, the concept behind com-
putation caches is to take the best of dataflow and superscalar
designs and build a programmable substrate that decentral-
izes all of it. Centralization, of anything, in future processing
technologies will limit scalability. Dataflow computing suf-
fered from the need for a centralized tagged memory space.
Additionally, the efficient programming interface (via lan-
guages like val [22]) was awkward and difficult for indus-
try to accept. However, if the bottlenecks that underpin past
dataflow systems were removed it would be a compelling
solution to future processor designs. The computation cache
tries to fulfill this vision by removing the centralized hard-
ware structures and allowing programs written in commonly
used languages to execute in dataflow fashion.



7 Conclusion

Computational caches are a unique forging of two traditional
computer architecture concepts: an instruction cache and a
processor. This combination will enable a scalable silicon-
based computing substrate since it directly confronts the
three architectural challenges of distribution, fault-tolerance,
and complexity that we currently face. While our current re-
search focuses on scalable silicon-based systems we believe
the most lasting contribution of our work will be the tech-
niques developed for dynamic-placement, self-adaptation
and migration of instruction streams. In effect, a compu-
tation cache is a hardware algorithm for efficient distributed
instruction-stream processing across irregularly constructed
and connected computing agents. The software-hardware al-
gorithms we develop for this will open up new avenues of
research in ubiquitous “grid computing”, computational fab-
rics and paint, and non-silicon self-assembled nanodevices.
The challenges we currently face with scaling silicon into the
next decade are the same challenges these alternative tech-
nologies will have to confront. As our research progresses
we will look for opportunities to apply our ideas to these
emerging domains.
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