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Abstract—
Advances in die-stacking (3D) technology have enabled

the tight integration of significant quantities of DRAM with
high-performance computation logic. How to integrate this
technology into the overall architecture of a computing system
is an open question. While much recent effort has focused on
hardware-based techniques for using die-stacked memory (e.g.,
caching), in this paper we explore what it takes for a software-
driven approach to be effective. First we consider exposing
die-stacked DRAM directly to applications, relying on the static
partitioning of allocations between fast on-chip and slow off-
chip DRAM. We see only marginal benefits from this approach
(9% speedup). Next, we explore OS-based page caches that
dynamically partition application memory, but we find such
approaches to be worse than not having stacked DRAM at all!
We analyze the performance bottlenecks in OS page caches,
and propose two simple techniques that make the OS approach
viable. The first is a hardware-assisted TLB shoot-down, which
is a more general mechanism that is valuable beyond stacked
DRAM, and enables OS-managed page caches to achieve a
27% speedup; the second is a software-implemented prefetcher
that extends classic hardware prefetching algorithms to the
page level, leading to 39% speedup. With these simple and
lightweight components, the OS page cache can provide 70%
of the performance benefit that would be achievable with an
ideal and unrealistic system where all of main memory is
die-stacked. However, we also found that applications with
poor locality (e.g., graph analyses) are not amenable to any
page-caching schemes – whether hardware or software – and
therefore we recommend that the system still provides APIs to
the application layers to explicitly control die-stacked DRAM
allocations.

Keywords-DRAM caching; die stacking; prefetching; mem-
ory; TLB

I. INTRODUCTION

Recent advances in die-stacking (3D) technology have en-
abled the tight integration of significant quantities of DRAM
with high-performance computation logic [1], [2]. Architects
have focused on microarchitecture proposals for utilizing
this resource as a cache for external off-chip DRAM [3],
[4], [5], [6], [7]. Microarchitecture-only changes have the
advantage of eliminating software adoption barriers, but they
have the disadvantage of adding hardware complexity. A
hardware-managed cache is only a small portion of the die-
stacked DRAM design space, however, and in this work we
consider an alternative perspective, which is what would it
take to enable software to manage die-stacked DRAM?

Application-driven Allocations: The seemingly most
straightforward software approach to using die-stacked

DRAM is to expose its existence to applications with a con-
ventional memory interface. This can be accomplished with
adaptations of the existing NUMA allocation [8] facilities
of modern operating systems. We call this an application-
driven approach to die-stacked DRAM. We find that if
applications could direct all of their memory requests to
stacked DRAM, they would be 56% faster over a con-
ventional system with non-stacked DRAM – the memory
wall [9] still matters. Using all die-stacked DRAM is not
reasonable, however, as it will constitute only a fraction
of the total physical memory (20% in our model). Hence,
applications must partition their allocations between fast and
slow memory. Unfortunately, we find that for all but the
most trivial of applications, it is not obvious which objects
should be allocated into stacked or off-chip memory. The
challenge confronting the software developer is a novel one:
traditional reasoning about a NUMA system considers which
threads access a chunk of data; here, the question is how
much locality is in the access stream of all threads to this
data? Feedback-directed compilation can assist matters, but
ultimately even the optimal static partitioning of memory
allocations leads to a meager speedup (9% over non-stacked
DRAM). The reason is if an application accesses a memory
region with high locality, then the existing processor caches
serve most loads and stores. If a region has low locality,
then it also tends to be large and unable to fit in die-stacked
DRAM.

OS Page cache: If static partitioning of application data
between on- and off-chip memory in software is insufficient,
how does dynamic partitioning in software perform? The
page table already maps virtual addresses to different physi-
cal memory pages. We propose to use the page fault handler
to manage die-stacked DRAM as if it was a cache for off-
chip DRAM. This is similar (in spirit) to how today’s page
fault handlers manage (off-chip) DRAM as a “cache” for
virtual memory pages on disk. We call this approach an OS-
managed page cache. Unfortunately, we find this approach
does not work well. Performance is 48% slower with an OS-
managed die-stacked DRAM cache than having no stacked
DRAM at all.

Improving the OS-managed Page cache: On x86/x64,
the reasons for this slow-down surprised us: the high cost
of the OS-managed page cache is due to the high cost of
TLB shoot-downs required on page table changes and not
the cost of the processor trap and migration of data. To



address this, we propose a simple architectural mechanism
to selectively invalidate entries in the TLB of remote proces-
sors. This mechanism is a special inter-processor signal that
invokes microcode on the receiving processor(s) that silently
performs the TLB shoot-down and synchronizes with the
sending processor, all without switching processor protection
modes or invoking system code. This mechanism is useful
for any page table change, thereby addressing a more general
design problem with multicore processors. We find that
with a hardware-assisted TLB shoot-down, using die-stacked
DRAM as a software-managed page cache achieves a 27%
speedup (about half of the possible benefit of the ideal all-
stacked DRAM case). By comparison, a hardware-managed
page cache achieves a 39% speedup.

Next we consider OS-directed prefetching, as prefetching
in general is an effective technique to increase the hit rate
of last level caches [5]. Critically, prefetchers exploit the
predictability, not just the locality, inherent in the access (or
miss) stream of a cache. While prior work has extensively
studied prefetching at typical cacheline size granularities
(32-64B), it is not entirely clear that a straightforward adap-
tation of prefetching will work with page caches where the
line size is 4KB. We find there is indeed ample predictability
in the miss-stream of a page cache at page-size granularities.
We study both stride and correlation [10] Markov-model
prefetching [11]. A software-based prefetcher increases the
performance of our software page cache from 27% to 39%
(70% of the ideal benefit).

The modest, yet observable, performance difference be-
tween all of these options suggests there is a rich design
space that system architects can pick and choose solutions
from for their target market. We explore each of these ideas
in turn in this work. We begin, however, in the next section
with background on die-stacked DRAM and a review of past
architectural approaches in this design space.

II. BACKGROUND

A. Die-Stacked Memory

Die-stacking technology enables multiple disparate silicon
die to be packaged together with many low-latency, low-
energy interconnects among the different die. This technol-
ogy has been used to implement vertical stacks of memory,
which can then be stacked on top of [12], [13] or next
to (“2.5D stacking”) [14] a processing chip. With 2.5D
stacking, it is possible to incorporate multiple memory stacks
into the same package.

Size: Engineering samples of the Hybrid Memory Cube
(HMC) from Micron provide 2GB of capacity [1]. Projecting
forward, if the process technology continues to shrink for
another two generations (4× increase in density), and the
number of stacked layers also increases by a factor of 2-
4, this would provide an overall per-stack capacity of 16-
32GB. Allowing for two or four stacks of DRAM on an

interposer using 2.5D integration brings the total to 32-
128GB of in-package, high-bandwidth memory (assuming
two stacks with a doubling of layer counts, and four stacks
with 4× layer counts, respectively). Some current servers
already support hundreds of gigabytes of main memory.
Assuming 512GB of off-package memory combined with
128GB of in-package die-stacked memory, the die-stacked
DRAM would account for approximately 20% of the overall
available DRAM. The exact fraction will naturally vary
depending on how integration technology progresses and the
required memory capacity of the target system.

Performance: Current servers typically employ DDR3
memory interfaces. A single channel of DDR3-1600 mem-
ory provides a peak bandwidth of 12.8GB/s. Server chips
also support multiple memory channels; for example, an
AMD OpteronTM 6300-series processor has four channels,
for a total bandwidth of 51.2GB/s. Emerging die-stacked
DRAM, however, supports significantly higher levels of
bandwidth because the integration of the memory directly
in the same package as the microprocessor avoids the con-
ventional pin-count limits on both the memory and proces-
sor packages. As an example, the JEDEC High-Bandwidth
Memory (HBM) standard [15] provides an interface con-
sisting of eight independent 128-bit channels running at
500MHz DDR (1Gbps/pin). This provides 128GB/s per
HBM stack; with two or four stacks, the total die-stacked
memory bandwidth is 256GB/s or 512GB/s, respectively.
Compared to the conventional off-package DDR3 interface,
the die-stacked DRAM can provide a 4-8× improvement in
memory bandwidth.

B. Related work

Die-stacked DRAM caches: Past work has proposed us-
ing die-stacked DRAM as a software-transparent, hardware-
managed cache at conventional cacheline [3], [4], [7] and
page granularities [5], [6], [16]. Such approaches minimize
software changes, but they also come with intrinsic imple-
mentation challenges. If a typical cacheline size is used (e.g.,
64B), then the area devoted to tag storage will be egregious.
Various solutions that trade-off performance and flexibil-
ity have been proposed [5], [6] to mitigate this. If large
(page-size) cachelines are used, then off chip bandwidth is
not always efficiently used. Thus mechanisms that manage
blocks at the page-granularity but fill them at a finer one have
been proposed [5]. Finally, because on-chip DRAM is only
slightly faster than off-chip DRAM, the added latency of
checking tags on a miss can be costly, and thus mechanisms
to predict a hit or miss [17], [18] have been developed.

Software approaches are desirable from a hardware im-
plementation standpoint as changes required of the mi-
croprocessor are minimal: the processor memory complex
(e.g., Northbridge) must check the address of an incom-
ing request, and route it to either fast or slow DRAM.
This is not fundamentally different than what occurs now,



routing address-to-{bank,channel,NUMA node} in existing
hardware. We believe that this is the first work that explores
the effectiveness of having the software directly manage
a die-stacked DRAM cache, rather than relying on more
complex hardware-management implementations.

NUMA & DSM: There has been extensive research
on optimizing memory allocations on NUMA systems [19],
[20], [21], [22], [23], [24], [25]. Prior work, however, has
focused on systems where there is an opportunity to move
computation relative to memory. The die-stacked “NUMA”
system we consider here has no such degree of freedom;
all processors are equally close to the stacked DRAM (and
equally far from off-chip memory). Solutions therefore must
focus on partitioning allocations based on the access patterns
of all threads in the computation, instead of focusing on
matching the access patterns of a particular thread to a
given memory store. Ramos et al. considered an intelligent
memory controller working in conjunction with an oper-
ating system that dynamically partitioned memory pages
between phase-change memory (PCM) and DRAM [26].
While related in spirit, the design (dynamic partitioning
versus caching), focus (robustness versus performance and
easy integration into the x86/x64 platform), and technology
(PCM versus die-stacked DRAM) are distinct.

Software distributed shared memory (DSM) systems have
been studied extensively [27], [28], [29], [30], [31]. The sim-
ilarity between our work on software-managed die-stacked
DRAM caches and prior DSM efforts is that both rely on
software control of the page-fault handler implemented en-
tirely in the operating system or partially in user-mode [32].
DSM systems aimed to provide a global shared address
space with sequential [27] or more relaxed [28], [29], [30]
consistency model semantics. In contrast, our goal is to
migrate pages efficiently between on- and off-chip DRAM
of a single-system. Nevertheless, the innovations described
in this paper on improving the TLB shoot-down cost would
be applicable to DSM systems. Finally, while not studied
in our present work, utilizing different page sizes [31] may
prove useful.

TLB Shoot-down: In this work we propose and evaluate
a hardware-assisted TLB shoot-down mechanism. The cost
of TLB shoot-downs and ideas to improve it have been
explored at length by researchers [33], [34], [35], [36],
[37], [38]. These previous designs attack the cost of TLB
consistency from different directions: shared TLB structures,
coherence between the page table and the TLB, and filtering
of shoot-down requests. The ARM11mp core supports a
shared-TLB structure, where invalidations flush the micro-
TLBs contained in each core [39]. Our work focuses on
a simple and selective mechanism that is implementable
via microcode patching of existing x86/x64 processors. The
creativity in our design stems from threading the complex
path through the legacy x86/x64 architecture to devise a
method that requires little practical implementation effort.

Prefetching: In this work we consider stride [40], [41],
[42] and Markov [11] prefetching schemes, but extended
to page granularities. We also explore prefetching strategies
that rely on separate prefetch caches [43] and those that
do not. These ideas have a long history of research in
computer architecture. The innovative component of our
work is the application of these ideas to page-level caching
and the exploration of whether prefetching should be done
in hardware or software.

C. Baseline Hardware

To ground our work in realistic data points, we consider
a processor design similar to the AMD Opteron 6168 pro-
cessor (1.9Ghz, 512KB caches, 64B cache lines). We also
assume conventional DDR3 channels to off-chip memory,
and the previously described in-package, high-bandwidth
interface to stacked DRAM.

Our target environment is large server-class systems, and
as such we do not expect to be able to stack all of system
memory on chip. In fact, we expect only about 20% of
total system DRAM will be die-stacked with the remainder
being off-chip, accessible over conventional DDR interfaces.
Because of this configuration, main memory will appear to
the processor to have two different speeds. In this paper we
refer to the in-package, die-stacked DRAM as “fast” and the
conventional, off-package, DDR-based DRAM as “slow.”

III. APPLICATION-DRIVEN ALLOCATIONS

The simplest solution for managing two speeds of DRAM
does not involve hardware at all, but only software. An
application explicitly chooses to allocate objects in slow or
fast DRAM. While implementing this approach it became
apparent there are at least three challenges facing a software
developer:

Challenge #1: Modifying legacy source code to use
these speed-specific allocation functions is not a trivial task.
At each call site, the software developer must reason about
the size, significance, and locality of accesses to the memory
being allocated. Manually porting large code bases with
thousands of allocation call sites does not seem practical.

Challenge #2: Many applications centralize or intercept
allocation functions. They do this for at least two reasons
that we found: (1) to add debugging code, such as routines
that track allocations and frees; or (2) to provide different
allocation semantics, such as allocation pools.

Challenge #3: Allocations are often buried deep in
library calls. For example, applications that use the fftw [44]
library invoke that library to allocate memory that will be
used to carry out the FFT. Whether that memory should be
allocated on fast or slow DRAM is really a joint question
for both the caller and callee to decide. This is not a trivial
interface for a software engineer to design.



Program L1 accesses (L+S) LLC loads DRAM accesses L1 load-miss rate LLC load-miss rate Footprint
CoMD 112141M 1749M 201M .72% 11.49% 112MB
LU-c 9060M 58M 6M .34% 10.34% 32MB

LU-nc 9487M 1157M 72M 6.37% 6.22% 32MB
LULESH 86223M 4873M 650M 1.79% 13.33% 19MB
BARNES 28071M 482M 31M 1.44% 6.43% 1303MB
OCEAN 8604M 722M 37M .90% 5.12% 887MB

FMM 28125M 271M 111M .73% 40.95% 528MB
FFT 3910M 184M 21M 1.70% 11.41% 768MB

g500csr 7884M 1679M 911M 21.84% 54.25% 139MB
miniFE - - - - - 370MB

Table I: Test programs: The following benchmarks were used to gauge performance. In addition cache behavior and
memory footprint is depicted. Cache behavior for miniFE is omitted due to limitations in our ability to collect data on MPI
applications.

Methodology: To study whether application-directed
allocation functions are a viable approach, we created a
modeling infrastructure that takes an existing hardware plat-
form and, through the introduction of contention, creates two
different speeds of DRAM. We use a 48-core four-socket
(12 cores/socket) system board to mimic a one-socket 12-
core system. Each socket has two DDR3 DRAM memory
channels (8 channels total). Our emulator dedicates the first
socket for execution of the application and the hosting of
“fast” memory. The second socket is dedicated to host
the “slow” memory. The memory on the third and fourth
socket is not used, but the processors on those sockets are
configured to introduce contention on the memory channels
on the second socket. For our experiments, we calibrated the
level of contention such that the emulated stacked DRAM
is 4.5× faster compared to the emulated slow memory (or
in reality, the slow memory has been slowed down by 4.5×)
for sequential accesses. This provides a similar memory
bandwidth performance ratio of a 51.2GB/s off-chip memory
system compared to 256GB/s of die-stacked DRAM.

Equipped with a system with distinct memory regions
with different memory performance characteristics, we can
then use the libnuma [8] support within Linux to specifically
place allocations on “fast” memory as needed for each
experiment. We replaced all memory allocation functions
from libc with our own, which can be configured on a per-
call site basis to direct allocations to fast or slow memory.
In addition, we modified the source code of our applications
(Table I), as needed, to remove any application-level memory
debuggers or intercepts (see Challenge #2 above).

Selecting Fast vs. Slow Allocations: While Challenges
#2 and #3 are only fixable through invasive source code
changes, tools can potentially help automate the process of
tackling Challenge #1. We developed a feedback-directed
compilation system that partitions malloc calls (by static
call site) with a hill-climbing algorithm between fast and
slow memory. The tool begins by forcing all allocations
(larger than 32KB) to use slow off-chip DRAM. The tool
then selectively measures the performance of changing a
single allocation to use fast on-chip memory. After trying
each individual allocation, the one with the greatest perfor-
mance increase for the lowest memory footprint is chosen
to be placed in fast on-chip DRAM. This process is then

Figure 1: Baseline performance: speedup obtained from
(unrealistically) storing all program data in die-stacked
DRAM compared to the speedup from an optimal (found
via hill-climbing) static partitioning between die-stacked and
off-chip DRAM.

repeated until all fast memory is allocated. This hill-climbing
strategy is quadratic in the number of memory allocations.
We compared this strategy to an exhaustive search (where
tractable) and found placement results to be qualitatively
similar. Our experiments provide the best chance for static,
application-driven partitioning to work: we use the same
input sets to train and measure final performance, and
running an application a quadratic number of iterations is
likely impractical in many real scenarios.

Results: Figure 1 shows the results of our experiment.
The results depict the average of 20 runs per application.
For each application, the first bar shows the ideal speedup if
all program data are stored in on-chip, die-stacked DRAM,
normalized to the baseline where everything is in off-
chip DRAM (56% on average). The second bar shows
the speedup achieved when using our static partitioning
(via near-optimal hill climbing) of allocations. Overall the
average performance benefit of static partitioning is 9%.
This is not entirely surprising, as at most only 20% of
an application’s memory can be statically placed in fast
memory.

Looking at individual applications, we see some with
little performance difference between ideal and near-optimal
(BARNES, CoMD, FMM), others that see moderate dif-
ferences (LU-c, LULESH, FFT, LU-nc, OCEAN), and still



others that see a significant difference (g500-csr, miniFE).
In general, in order for an application to see a performance
impact from a faster DRAM subsystem, it must access it
frequently. Table I shows measured cache behavior for our
test applications (from hardware performance counters). The
data show why g500-csr performs poorly: both the L1 and
LLC cache hit rates are poor. Similarly, the data explain
why LU-nc sees a moderate impact. Applications such as
LULESH and FFT lie in the middle as well, but due to
a coupling of reasonably high L1 hit rates and reasonably
low LLC hit rates. Finally, applications such as CoMD and
FMM have extremely high L1 hit rates, indicating most of
their accesses are captured by the L1 cache.

Overall, the conclusion here is if a region is accessed
frequently it tends to end up in the processor cache anyway.
Thus, statically partitioning memory regions between fast
and slow memory is only effective if a small region of
a program’s memory, exceeding the size of the processor
cache yet being smaller than the size of die-stacked DRAM,
is accessed with poor locality. This is not the common
case for the applications evaluated, and therefore the meager
performance benefits of manually partitioning the allocations
at source-code level likely do not justify the high level of
programmer effort.

IV. OS-DEFINED PAGE CACHING

The previous section explored whether statically partition-
ing application memory between fast and slow memory was
an effective idea. We found that in general, it is not. Another
option is to dynamically partition memory. The classic
architectural approach to do so is to use a cache. Researchers
have previously explored using die-stacked DRAM as a
hardware cache for off-chip DRAM [45], [3], [4], [5],
[6], [16]. But if the “cache-line” size is the same size as
a virtual memory page (4KB), a tantalizing software-only
approach to building a cache exists. The existing hardware
support for virtual address translation can be dual-purposed
to build a page cache. To do this, the OS initially maps
application memory to the slower off-chip memory, but
access is disabled via the page table. The OS then maintains
a set of DRAM pages in fast memory to act as a page
cache. As the application executes, it will generate page-
fault exceptions when a request is not in the die-stacked
DRAM cache. The OS then copies the data from slow to
fast memory, and adjusts the application’s page table entry
accordingly. Just as with a hardware cache, the OS must,
in time, remove a page from fast memory. To do so, access
to it must be disabled to the application, and then the page,
if dirty, must be copied back to slow memory. While this
minimizes the hardware support required to implement a
stacked-DRAM cache, in such a design there are several
additional costs:

Processor fault: When an application accesses memory
not addressable from its page table, a fault occurs. This fault

is a precise interrupt, and because the access must be assured
to be non-speculative, the processor pipeline is drained. The
processor privilege mode is switched (if execution was in
user-mode), and a trap handler is invoked. If a user-mode
software trap handler is used, the kernel trap handler reflects
the fault (via a SIGSEGV for POSIX systems) back to the
application, thereby causing yet another privilege switch.

Page migration: An all-software cache requires that
the entire page of data be migrated from off-chip to on-
chip, and, in the common case, an evicted page of data be
migrated from on- to off-chip. Because of the time (and
energy), prior hardware approaches considered allocating
cache space at the page granularity, but filling it with data
at a finer level (64B) [5]. A software page cache does not
permit such sectored approaches [46], which implies that a
write to even a single byte causes a write-back of a full page
upon eviction.

TLB shoot-down: The OS-defined cache manipulates
the page table to reflect the fact that an application’s accesses
to a region of memory should be directed at the copy of that
data stored in fast on-chip memory. In addition, when the
cache evicts a page from on-chip memory, the page table
must be updated to disable access to it. On x86/x64 systems,
changes to the page table are not kept coherent with the
translation look-aside buffers (TLB) of the processors. As
such, when the page table is changed by the OS, the TLBs
potentially contain stale entries. It is up to the OS to “flush”
these stale entries via a software routine executed on each
processor that may contain them. This process is known as
a “TLB shoot-down”.

To study the effectiveness of an OS-based page cache, we
extended our platform to functionally emulate the page cache
activity; for the purposes of rapid design-space exploration,
we also use this facility to collect traces for faster off-
line analysis and performance modeling. The trace generator
is compiled into applications and provides a malloc paged
call to the user application. Memory that is allocated on
a paged region is initially not mapped into user space.
When the application first touches a paged memory region, a
SIGSEGV is generated and handled by the user process. The
signal handler uses the Linux API calls to map the faulting
memory into the process address space. It also maps out
a paged memory region on a page cache eviction. In this
way only a finite amount of paged memory is accessible to
the user application at any one point in time. Ultimately,
this tool generates a trace of page faults that reflect the
“misses” to the page cache. Using the trace, we can use
offline analysis to determine the performance impact of,
for example, varying the cache-miss/page-fault overheads.
Because our page cache is implemented in user-mode we
cannot manipulate the access and dirty bits within the
page table; consequently, a first-in/first-out page replacement
policy is utilized.



Figure 2: Baseline performance: speedup obtained from
using an OS-managed cache; results include a sweep over
various fault-times. Idealized performance is also shown for
comparison.

Results: Figure 2 shows application performance when
the OS page cache is used. The graph consists of seven sets
of bars. Within each set, each bar is the speedup with a page
cache assuming a given cycle-cost for a page cache miss.
Depending on the fault overhead (typical measured values
are 13K-55K cycles), the OS-managed page cache suffers a
7-48% slow-down compared to not using stacked DRAM at
all. In comparison, a hardware-managed page cache would
achieve approximately a 39% speedup for these applications
(a hardware cache would have a cache miss overhead in the
range of ∼700-1,400 cycles, corresponding to the left-most
two bars per set). These results show that an OS-based page
cache, at least without any additional help, is not likely to
provide an attractive solution. In the next section, we take
a closer look at the sources of overhead in the OS-based
page cache, and then propose techniques to address these
issues and ultimately make the OS-based approach much
more practical.

V. FIXING THE OS-BASED PAGE CACHE

The previous section demonstrated that an OS-driven page
cache seems like a poor implementation choice. We find that
the primary culprit is the trap overhead related to TLB shoot-
downs. We tackle this in two ways: (1) reduce the cost of
the trap and cache management routines, and (2) reduce the
frequency with which the traps occur. In this section we
explore each of these.

A. Reducing Trap Overhead

Figure 3 shows the cost of a page cache miss broken
up into its constituent parts. Overall the cost of servicing a
page cache miss is ∼13K-55K cycles, or roughly 20-80× the
cost of just moving the data. But it is worthwhile to explore
where the cycles are spent in the miss handler. There are
four components: the first is the data migration to and from
fast and slow memory; the second is the added cycles if
a user-mode instead of kernel-mode trap handler is used.
This reflects the measured cost of a fault in user space, the

Figure 3: Trap overhead: In this graph, the runtime cost
of handling a trap for the page cache is broken out into its
constituent parts. Each bar is for a given number of user-
mode threads in the application being measured. For each
bar, four components are broken out: (a) the cost of the
actual data migration from off-chip to on-package DRAM;
(b) the added overhead if the trap is handled in user space
instead of kernel space; (c and d) the cost of the Linux kernel
map and unmap functions for adjusting the page table.

entry into the kernel, scheduling, re-entry to user space to
handle the fault, leaving user space to re-enter the kernel,
scheduling, and then re-entering the user mode application to
continue execution. In total, four user/kernel mode switches
are required by our handler; the third and fourth are the costs
of adjusting the page tables to map and unmap memory
from the page cache. These components also require two
to four user/kernel mode switches if a user-mode handler
is employed. We measured this component to be highly
dependent on the number of threads in the user application
on our hardware platform.

The data in Figure 3 illustrate a surprising fact about the
page cache with a user-mode handler: the dominant cost
is not the “user-mode” aspect of it, but rather the kernel
implementation of the page table manipulations. There are
two types of page table changes required to implement a
page cache. The first is an unmap operation, that removes
access to the physical page from the processor. The second
is a map operation making it accessible. We have found
that in both cases, the Linux kernel dispatches an inter-
processor interrupt (IPI) to all processors executing with the
page table being manipulated in order to synchronize page
table changes, even though in the map case the shoot-down is
not actually required. This makes performance dependent on
the number of active threads in an application, and moreover
this TLB shoot-down process is the dominant cost in the
software-based page cache.

Prior work [33] traced the cost of TLB shoot-downs. In
that work, the authors found the average cost of shoot-down
grows with thread count, starting at ∼2K cycles with two
threads and rising to ∼11K with 16 threads. We wrote a
microbenchmark to explore TLB shoot-down cost in Linux



and corroborated their results, finding a further jump to
∼25K cycles with 32 threads. There is no fundamental
reason why a TLB shoot-down needs to be this expensive.
Not only does the high cost of a TLB shoot-down make
a software-defined DRAM cache prohibitively expensive,
it also can have a major performance impact on systems
without die-stacked DRAM. Prior work has shown that TLB
shoot-downs cost up to 10-20% of system performance [47].

How TLB shoot-downs work today: To understand how
to accelerate the TLB shoot-down process, it is worthwhile
to examine how it currently works in software. The OS
issues a TLB shoot-down when it changes a page table1.
The OS does this because the processor does not keep its
TLBs coherent with the page table in memory. Changes to
the page table necessitate flushing the TLB of the older
(stale) entry/entries. On x86/x64 processors, the INVLPG
instruction flushes the TLB of a specific mapping, while
certain changes to the CR3 and CR4 registers flush the TLB
of all local and/or global (shared across page tables) entries.
Invoking this flushing process on a single processor core
clears the TLB of the relevant entries on that core only.
Hence the OS must, in software, issue the necessary TLB
flushing instructions on each core of the system where there
potentially is a stale TLB entry. This process is known as a
TLB shoot-down.

To perform a TLB shoot-down, the OS notes which
actions to perform in a data-structure stored in shared
memory. It then initiates an IPI to all other processors in
the system in order to invoke an operating system routine
to conduct TLB invalidations. An obvious optimization, and
one implemented in Linux, is to only send an IPI to those
processors that have or potentially have the stale mappings.
This is implemented by tracking which page tables have
been set for each processor. Changes to the page table are
typically synchronous with program execution. A critical
fact to note is that because of this, the OS-IPI path for
a TLB shoot-down also includes synchronization with the
processor that dispatched the shoot-down.

The Linux TLB shoot-down pseudo-code is shown in
Figure 4. Villavieja et al. found the dispatch loop contributes
the majority of the time cost [33]. We found the source
appears to be the high cost of interfacing with the Advanced
Programmable Interrupt Controller (APIC) [49]. The APIC,
first introduced as an external chip (the 82489DX) in the 486
series of processors, lives on in present day x64 multicore
processors largely unchanged except for being integrated

1Certain changes to the page table, specifically those that enhance the
permissions (e.g., read-only to read/write), don’t necessarily require an
immediate TLB shoot down. The processor with the outdated TLB mapping
will issue a page fault and the page fault handler can inspect the mapping
to determine that the fault is caused by a stale TLB entry and not by a true
fault in program execution. This is known as lazy TLB updating [48]. Past
work has shown this to be a useful optimization, but our own measurements
show that the Linux kernel does not utilize it in all cases where it could
have.

tlb_shootdown(void *addr) {
mailbox.addr = addr;
mailbox.count = affected_processors.size();
for (processor in affected_processors) {

wait_for_APIC_to_be_idle();
send_IPI(shootdown_entry);

}
shootdown_entry();
block_until_zero(mailbox.count);

}

shootdown_entry() {
invtlb(mailbox.addr);
atomic_decrement(&mailbox.count);
send_eoi_to_local_apic();

}

Figure 4: Pseudo-code of Linux TLB shoot-down code

on-die. The TLB shoot-down routine interacts with the
APIC in two calls: waiting for the idle bit in the interrupt
dispatch register, and then initiating the IPI. The idle bit has
already been deprecated by the X2 APIC [50] (presenting
an always-idle interface), although it exists in the legacy
(and more widely used) APIC. Once the APIC is idle, the
kernel then initiates an IPI dispatch to a specific processor.
The current APIC hardware interface is fairly rigid about
broadcasting to either all processors or only to preconfigured
processor groups. Because of this rigidity, Linux converts
any (selective) broadcast IPI into a loop of individual IPIs
on the legacy APIC, and a loop across processor clusters
(with per-processor selectivity) on the X2 APIC. Once the
IPI is received, the receiving processor switches out of user
mode (if needed), switches stacks (if needed and configured),
saves registers, and executes a kernel mode handler. This
handler reads which invalidations it must perform from
shared memory, performs the actual invalidation, performs
a synchronization operation via shared memory with the
sending processor, sends an end-of-interrupt (EOI) signal to
its local APIC, and then returns, which causes the processor
to restore registers, switch stacks (if needed), and (if needed)
returns to user mode.

Hardware-assisted TLB shoot-down: As previously dis-
cussed, many researchers have proposed hardware designs
to improve the cost of TLB coherence [51], [33], [34],
[35], [36], [37], [38]. These designs all have their merits,
particularly in architectures designed from a clean slate.
Our goal is slightly different, which is to accelerate the
TLB shoot-down process with minimal changes that are
compatible with the x86/x64 ecosystem. There are many
practical legacy architecture and microarchitecture factors
to consider. We propose a simple change involving two
new architectural features. The first is a special form of
IPI, which we call a REMOTE INVLPG, and the second
is a microcode change that receives this special IPI and
issues a TLB shoot-down process entirely in microcode
without necessitating any OS interaction. Because the APIC
on x86/x64 processors is implemented as RTL, changes
to that portion of the architecture are more complex to
implement than microcode changes. Hence, in our proposal
we leave the APIC untouched. Because of this, the majority



struct tlb_shootdown {
u_int64_t ipi_count;
u_int64_t processor_mask_size;
u_int64_t processor_mask[];
int64_t entry_count;
u_int64_t entries[];
};

Figure 5: Data structure used to communicate TLB shoot-
down information/parameters.

of information communicated for the TLB shoot-down is
sent via shared memory with a data structure shown in
Figure 5.

When the OS needs to issue a TLB shoot-down process,
it atomically acquires access to this structure by setting
the IPI COUNT variable to the number of processors whose
TLBs need to be invalidated, plus one using the compare-
and-swap instruction (the structure is logically not in use
when IPI COUNT is equal to zero). The OS configures the
structure as follows: the ENTRY COUNT field is set to the
number of values in the ENTRIES array, with two special
ENTRY COUNT values, “all local” and “all global”, being
provided. These special values indicate to the receiving
processor that the ENTRIES array should be ignored and
instead all local or all global entries should be invalidated;
ENTRIES is a list of addresses to be invalidated; finally,
the PROCESSOR MASK and PROCESSOR MASK SIZE fields
provide a bitmask representing which processors should
perform the TLB invalidations. These last two fields are not
necessarily required if more invasive changes to the APIC
RTL design and interface are carried out. Once the invali-
dation structure is filled in by the dispatching processor, the
OS dispatches a REMOTE INVLPG operation via a broadcast
interrupt sent via the APIC.

The REMOTE INVLPG signal is really nothing more than
an interrupt configured via a model specific register (MSR)
to be the TLB shoot-down interrupt. When a processor
receives an interrupt dispatch request from its local APIC,
it checks the MSR holding the interrupt number for the
REMOTE INVLPG routine. If a match is not found, it invokes
the existing interrupt microcode. If a match is found, it
inspects the TLB SHOOTDOWN structure in microcode. The
location of this structure is pre-configured by the OS in
each processor via an MSR register. If the processor is
not in the PROCESSOR MASK field, it sends an end-of-
interrupt (EOI) signal to its local APIC and carries on
with what it was previously doing. While this does cause
all processors to spend a few extra cycles in their front-
end processing an interrupt in microcode, the performance
impact is minimal. The main cost is the cacheline holding
the PROCESSOR MASK field must be migrated to the L1
cache of all processors (read-only for processors not in the
receive set). If the processor is in the PROCESSOR MASK
field, it performs the requested TLB invalidate operations,
atomically decrements the IPI COUNT value, and sends an
EOI signal to the local APIC on completion. The receiving

processor then continues to execute normally. Note that no
user/kernel mode or stack switch is required as no actual
user or kernel code is executed to complete the operation.

The processor that initiates the TLB shoot-down operation
can determine when all receiving processors have completed
their TLB invalidations by monitoring the IPI COUNT vari-
able. When the value goes to one (1), the operation is
complete. It can then set the value IPI COUNT field to 0
which releases the lock on the structure.

To understand the performance impact of this improved
TLB shoot-down mechanism, we measured three separate
operations that represent the constituent parts. The first is
the cost of acquiring access to the shared data structure
and filling in the relevant entries. We found this cost to
be ∼377 cycles on average when 16 processors contend for
this resource (an unrealistically high amount of contention
in our system, but sufficient to bound the cost). The second
is the cost of sending and processing the REMOTE INVLPG
operation. Our measurements for dispatching an IPI are in
line with past measurements [33] and require ∼1,500 cycles.
The third component is the synchronization cost, which we
found to be approximately ∼300 cycles when 16 processors
are issued the TLB shoot-down routine. In total we expect
the microcode-assisted TLB shoot-down to require less than
∼2,500 cycles, with the dominant cost being interfacing
with the legacy APIC hardware (which we imagine can be
further accelerated, but is not something we consider in this
work). Note this value corroborates fairly closely with our
measurements for a two processor end-to-end remote TLB
shoot-down request (∼2,200 cycles) as measured on our test
system. It also corroborates with the same two processor
end-to-end remote TLB process from prior work [33].

Results: When a fast micro-code assisted TLB shoot-
down is used, we find that an OS-managed page cache is
a viable idea. What used to be a 1.5-5.8× slowdown is
now a 27% speedup (corresponding to the “2800-cycle, no
prefetching” data in Figure 2). This makes the OS-managed
page cache faster than the static application-driven approach,
and provides nearly half (48%) of the performance gains
available with an unrealistic all-fast memory system.

B. Prefetching

Next we consider the question, what if prefetching is
employed to reduce the frequency of traps/TLB shoot-
downs? When servicing a page cache miss, in addition to
copying the requested page to the fast memory, the OS
can attempt to prefetch additional pages, and then update
all of the page table entries and shoot-down all affected
TLBs at once. However, it is not entirely obvious that
prefetching will be effective for caches with page-sized lines.
For example, strides within a page would not be visible to
the software (only the first access to the page will generate
an OS-visible miss), and therefore the strides must exhibit
some repetitive pattern at the inter-page level. While stride



prefetching exploits the predictability of accesses, it can
also be effective simply because of more intrinsic spatial
locality existing in the access stream than the cache line
size is naturally exploiting. We consider two different types
of prefetchers: stride [40], [41], [42] and Markov-model [11]
based in this work.

Methodology: We extended our trace-based page cache
model to study stride and Markov-model prefetching. This
model is configurable and enables us to study a variety of
stride and Markov-model parameters. Moreover, it models
prefetching carried out in software or in hardware. Finite
DRAM bandwidth and true latencies are modeled, as well as
the cost to generate and manage all prefetch data structures.
For stride prefetching, we consider a finite number of
strides, maintained in an LRU fashion. Prefetch requests are
generated by applying strides to elements in a history buffer
of past page cache misses. For each stride and element in
the history buffer, multiple prefetch requests are generated
in order to aggressively prefetch pages many stride lengths
away. For each prefetch request generated, a priority is
assigned, with nearer strides receiving higher priority.

The Markov-model prefetcher is configurable in terms
of number of states, edges, and edges per state. Markov
prefetches are generated from the current state (the most
recent miss in the page cache), and the outbound edges,
which represent different prefetch request possibilities, are
considered in most recently followed order (i.e., which
misses have most recently occurred immediately after the
currently missed page). Because Markov states (unlike
strides) are tagged, if a match is found in the model, we favor
prefetching the outgoing edges in the model over distant
stride prefetches.

Overall results: The data in Figures 1 and 6 suggest
that different applications have more or less locality and
predictability. For example, because BARNES and FMM
perform well with all application memory in slower off-chip
DRAM (Figure 1), the overall memory reference pattern
must have high locality, as the on-chip processor caches
are servicing most memory references. On the other hand,
g500-csr has poor locality in its raw memory reference
stream. To differentiate applications by their predictabil-
ity/prefetchability, we consider the relative runtimes of the
page cache with and without using a prefetcher (Figure 6).
What we see is that several applications (OCEAN, LU-c,
miniFE, g500-csr) see a large benefit from prefetching, while
other applications (BARNES, FMM, FFT, LU-nc) see less
of a benefit. Overall, prefetching at page granularity boosts
the performance of an OS page cache from 27% to 39%
speedup.

C. Implementation Considerations

It is straightforward to implement a page cache in soft-
ware (performance considerations aside), but not so with
prefetching. While the decision logic about what to prefetch

Figure 6: Prefetching HW/SW Interface: the impact
of prefetching all in hardware, all in software, or with
hardware-assisted software routines.

is easily implemented in software, exactly when to issue
a prefetch and when to manipulate the application’s page
table to reflect the completion of a prefetch is unclear.
A variety of implementation options exist, from an all-
software approach that prefetches pages entirely in the fault
handler that manages the page cache, or an all-hardware
approach that observes the page cache accesses and works in
concert with the software (or hardware) page cache routine
to insert prefetched pages. To understand the efficacy of any
of these options, we consider two key design considerations
that transcend any specific implementation: (1) How critical
is it that the prefetches occur outside the critical path of
the page cache miss handler routine? (2) How important
is it to trigger additional prefetches when the processor
accesses a prefetched page? Figure 6 depicts the result
when a stride prefetcher is used (history = 1, strides =
4, depth = 1) with different combinations of hardware
and software implementation options. For each application,
performance is shown relative to a page cache design that
has no prefetching.

How important is asynchronous prefetching? As expected,
in all cases, a hardware-only prefetcher proves the best
performing option. When we disable background prefetching
and force the software handler to complete all prefetches
prior to continuing program execution, we see that perfor-
mance deceases slightly (by 4%). While this is true for a OS
page cache trap handler that uses the fast-TLB shoot-down
mechanism, if present-day unmodified hardware is used,
then there are some exceptions to this general performance
trend. For instance, with only present-day hardware, LU-nc
sees a performance increase from disabling asynchronous
prefetches. The reason is it does very little computation per
memory access. If the fault-handler dispatches prefetches
to be completed asynchronously with application execution,



they fail to complete in a timely manner [52]. In our HW/SW
model, another software fault is triggered to wait for the
prefetch to complete. The cost of this second fault is more
than simply completing the prefetches synchronously within
the first fault handler.

How important are prefetches triggered on a successful
prefetch? When we disable the generation of additional
prefetches on the access of a page that was successfully
prefetched – as would happen if hardware wasn’t tracking
the prefetched pages – we see that performance is uniformly
decreased for all applications (by 5% on average). The ap-
plications impacted most significantly are miniFE, OCEAN,
LULESH, FFT, and LU-nc. These applications decease the
prefetching accuracy when depth increases (Figure 7(a))
and in most cases when the number of strides supported
decreases (Figure 7(c)). Consider a straightforward access
stream of {1, 2, 3, 4, 5, 6, ...}. If the stride prefetcher does
not see the successful access of its stride = 1 prefetch, its
reduced information will enable it to see only {1, 3, 5, ...}.
The prefetcher will then configure itself to fetch stride = 1
and stride = 2, because in our explorations we enable up
to four different strides to be considered simultaneously.
This continues for all four strides. The net effect of the
reduced information is the depth is artificially increased and
the number of strides considered is artificially decreased.
As noted earlier, this is precisely the situation where these
applications exhibit a less accurate prefetcher.

Finally, we consider when an all-software prefetcher is
used. Prefetches must be generated and completed entirely
within the software fault handler and the prefetcher is
not aware of the additional information about whether a
prefetch was actually used. Prefetches are inserted directly
into the main page cache, potentially causing pollution. This
achieves a 39% speedup overall. By comparison, a middle
ground, a software page cache coupled with a hardware-
prefetcher is only modestly faster (44% speedup). Finally,
an all-hardware based page cache and prefetcher optimized
to reduce wasted off-chip DRAM bandwidth achieves a
50% speedup. Overall, we note that a simple software-only
prefetcher achieves ∼88% of the performance of a hardware
approach and within ∼70% of an idealized one.

D. Prefetcher Parameters

In the next few paragraphs we explore the design space
of stride and Markov-model prefetchers to understand what
types of prefetching works well for a page cache.

Prefetch Cache Size: We found the single most im-
portant determiner of prefetching performance to be the
size of the buffer used to hold prefetches (Figure 7(d)).
In our prefetching model we do not place prefetches in
the main page cache, but instead hold them separate region
of on-package DRAM. As expected, applications with high
predictability see little benefit from an increased cache size
(BARNES, OCEAN, LU-c, miniFE). Applications with poor

Figure 8: Stride prefetching parameters: In this graph
we depict the success of a prefetcher versus the fraction
of wasted DRAM bandwidth from useless prefetches.

predictability (FMM, LU-nc, FFT) benefit from an increase
in prefetch-cache size, allowing the prefetcher to more
aggressively prefetch. The g500-csr application sits between
these two extremes, being at the top end of applications
that benefit from an increased prefetch-cache size, but also
having relatively high predictability.

Stride prefetch parameters: Figure 7(a,b,c) shows
prefetch accuracy versus various configuration parameters
for the stride prefetcher. The results in Figure 7(a) show
that stride prefetching gains no benefit from looking too far
ahead. In fact, the added pollution to the prefetching cache
slightly decreases prefetching accuracy. Figure 7(b) shows
that basing prefetches on anything but the last page cache
miss is not effective. Figure 7(c) shows that four strides
(utilized in an LRU fashion) is better than one or two.

Markov prefetching: Figure 7(e) shows that Markov
prefetching is effective only if a relatively large (256K state)
prefetcher is utilized. Additional states beyond this add little
to the prefetch accuracy. We also explored designs that
followed deep within the chain of Markov-model links. We
did not find a viable approach to using/prioritizing these
requests. The data shown come from utilizing Markov states
that are only one hop away from the present state. Figure 7(f)
compares stride, Markov, and combined stride+Markov
prefetching. Overall, the data show that stride prefetching
is more effective than Markov prefetching. For most ap-
plications, Markov prefetching adds a performance boost,
and at least for some applications (notably FFT) Markov
prefetching leads to a performance decrease. This is likely
due to the generation of spurious prefetches polluting the
prefetch cache, as Figure 7(d) illustrates that FFT is ex-
tremely sensitive to prefetch cache size.

Stride-prefetching design space: Figure 8 shows the
entire design space of stride-prefetchers we explored com-



(a) Depth (b) History (c) Strides

(d) Prefetch-cache size (e) Markov states (f) Prefetch policy

Figure 7: Prefetching parameters: In these charts we depict performance with varying stride prefetch parameters. Depth
refers to how far in advance (in unit strides) a page address should be prefetched. History is the number of past addresses
to use to base prefetches from. Stride is the number of strides to maintain (LRU replacement). Prefetch-cache size is the
size (in pages) of the prefetch cache. Markov states is the size of the Markov predictor (in states). Prefetch policy compares
stride, Markov and combined stride+Markov prefetching policies

paring successful (useful) prefetches against prefetches that
had no value and simply wasted DRAM bandwidth. The
design points along the lower convex hull represent the
Pareto frontier. Inner points waste bandwidth unnecessarily.
What we observe is not too surprising: prefetches based
off of only the last miss (history = 1) and that do not
prefetch far ahead (depth = 1) make the most efficient
use of bandwidth. Prefetching improves with the addition of
more strides (1− 4). After this, prefetching slightly farther
ahead (depth = 2) does slightly increase the number of
successful prefetches, but at a high cost in useless prefetches.

VI. LOW-LOCALITY APPLICATIONS

In addition to the above studied applications, we also
explored the g500-list benchmark from the Graph 500
benchmark suite [53]. This benchmark uses a list data
structure to represent the graph, instead of a compressed
sparse-row as with g500-csr. The idealized speedup from
using all die-stacked memory is 4.4×. Unfortunately, page-
caching is entirely ineffective on this application, leading to
a 42× slowdown. Prefetching improves matters slightly, to
“only” a 17× slowdown. The reason g500-list performs so
poorly with the page cache is there is almost no locality
in the data access stream. In almost all cases, following an
edge in the graph involves referencing a new page of data.

The work performed per edge-traversal is trivial – a read and
update of a small array data-structure. A marginally effective
approach we found was static partitioning allocations, which
provides 8% speedup.

Rather than include this benchmark throughout the text of
our discussion, which would have skewed and obscured the
discussion of average benchmark results, we instead have
called out its performance separately in this section. While
we did not come across another benchmark in our research
with such pathologically poor locality, we suspect that many
graph algorithms and data structures are like this. For this
reason it is critical that any hardware or software designed
page cache have mechanisms to bypass the page cache
and access off-chip DRAM at the cacheline (or smaller)
granularity. As is well known, caches and graph-applications
are a poor mix [54].

VII. CONCLUSION

This paper shows there is a wealth of options for using
die-stacked DRAM beyond the hardware-based caches of
past work. While a straightforward implementation of a
software-based DRAM page cache is ineffective, we showed
that by sufficiently reducing the frequency and cost of
page migration events (in particular TLB shoot-downs), a
software-based DRAM cache can in fact be effective. Vary-
ing levels of hardware support (e.g., performing prefetching
in hardware vs. software) can improve the effectiveness of



the solution, and designers can choose among the range of
ideas explored here to best fit the cost and constraints of
their target market. This work opens up a wide range of
future research to determine the best balance of hardware
and software for managing future heterogeneous memory
organizations.
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