
Microcoded Architectures for Ion-Trap Quantum Computers

Lucas Kreger-Stickles and Mark Oskin
University of Washington

Department of Computer Science & Engineering
{lucasks,oskin}@cs.washington.edu

Abstract
In this paper we present the first ever systematic design

space exploration of microcoded software fault tolerant ion-
trap quantum computers. This exploration reveals the criti-
cal importance of a well-tuned microcode for providing high
performance and ensuring system reliability. In addition, we
find that, despite recent advances in the reliability of quan-
tum memory, the impact of errors due to stored quantum data
is now, and will continue to be, a major source of systemic
error. Finally, our exploration reveals a single design which
out performs all others we considered in run time, fidelity
and area. For completeness our design space exploration
includes designs from prior work [13] and we find a novel
design that is 1

2 the size, 3 times as fast, and an order of
magnitude more reliable.

1. Introduction & Prior Work
Ion traps present the most promising technology from

which to build a large-scale quantum computer. They are
fabricated using existing silicon-manufacturing facilities at
scales that are relatively easy to experiment with. Nonethe-
less, only extremely small-scale experimental systems have
been built, and many of the fundamental technology param-
eters, such as fidelity and operation timing, remain in flux.
Despite this degree of technological uncertainty, computer
architects [15] have been successful in helping to shape the
directions of device physics research [7]. Additionally, prior
work [2] has demonstrated the importance of architecture
development, showing it to be key in making progress to-
wards large scale quantum computing a reality. Ultimately
then, it is the partnership between device researchers, algo-
rithm specialists, and computer architects that will lead to the
advancement of quantum computing technology.

As prior work has articulated [2], microarchitecture re-
search requires at least two things: a representative bench-
mark suite and a solid grasp of the underlying technology.
Prior work [2] in the architecture of quantum computers
has established that, due to the extremely high overhead of
software-based error correction techniques, the best repre-
sentative benchmark is the error correction process. In fact,
the overhead of quantum error correction is so high (> 99%)
that the actual computation that a quantum computer per-
forms is only of secondary concern to the architect. Truly
critical is insulating user programs from the error correction
process by designing an architecture and a microcode that
leverages the architecture to provide an ISA abstraction of
fault-tolerant quantum operation.

Unfortunately, quantum computing device technology is
evolving in ways that are difficult to predict. Researchers
have struggled with how to proceed and taken several ap-
proaches: Quantum theoreticians [5, 18, 1] and algorithms

designers [16] take a very high level approach, either ig-
noring error and communication costs or using generic ab-
stractions. Our earlier work [2] presumed that while the
specific timing and error rates across operations and com-
munication methods might be in flux, the relationship be-
tween them would remain fixed. This allowed us to view all
sets of technology parameters on a single axis from worst to
best. That assumption has begun to break down, as certain
components experienced dramatic performance and fidelity
improvements [10] while others have progressed at a slower
pace [6]. More recent work such as [13, 20] operates un-
der the presumption that the long-term projections [21] of
device researchers in the space will eventually be realized
and use those as the basis for design. We are concerned by
this strictly optimistic approach since relying on such pro-
jections, even within conventional computing, is tenuous at
best. Moreover, such an approach isn’t conducive to leverag-
ing architecture research to hasten the arrival of large-scale
quantum computation, tells us nothing about how to best uti-
lize the components we do have, and doesn’t help us generate
general lessons about the design space.

In this paper, we take a different approach. We develop an
evaluation methodology based on using behavioral simula-
tion coupled with potential fault point counting. This method
allows us to be largely technology parameter agnostic and
cleanly separate research results which are predicated on a
set of parameters from those which are universal and appli-
cable independent of where the underlying technology pro-
gresses.

We utilize this methodology as the basis for the first-ever
thorough design space exploration of ion-trap quantum mi-
croarchitectures performed to date. Our design space explo-
ration includes designs found in prior art [13, 20], several
logical extensions which are nearby in the design space, and
some entirely new configurations. In addition, we take on
the challenge of designing architecturally fault tolerant mi-
crocode1. This is a requirement for fault tolerant quantum
computation, and one that has been neglected by prior work
for its perceived complexity.

While work continues on the development of the com-
ponent pieces of a quantum computer and on algorithms
for fault tolerant quantum computation, work on the study
of quantum architectures has been limited. Our previous
work [2] developed a straw-man architecture for use with
our evaluation tools but since then the only two attempts
at designing ion-trap quantum architectures which have ap-
peared in the architecture community are the QLA [13] and
follow-on CLQA [20]. This is unfortunate since our data
indicates that architectural design has a far greater impact
on system performance and fidelity than control operations.
In fact, through careful construction, we are able to utilize

1We use this term to describe the use of the same hardware resource by
data bits for which correlated errors would negate fault tolerance. Avoiding
such reuse isolates the fault tolerance scheme from the impact of especially
faulty components.

1

the same basic algorithm for software fault tolerance as prior
work [18] but with an architecture and microcode which is
1
2 the size, 3 times as fast, and an order of magnitude more
reliable. Moreover, this design is superior to all others we
considered across a wide range of reasonable technology pa-
rameters. This indicates it will continue to be effective as the
technology matures: serving today as the basis for experi-
mentation and later as the basis for large-scale computation.

Our design space exploration has revealed several impor-
tant lessons pertaining to software error correction on an ion-
trap architecture which generalize across specific technology
assumptions.

• A phenomenon known as storage or memory errors can-
not, as prior research [13, 20] has suggested, be ig-
nored even when using the most optimistic projections
for quantum computing device technology. We find our
best design, given the most optimistic technology pa-
rameters, has over 3500 potential points of failure re-
lated to storage, compared to≈ 50 for all other potential
fault points.

• Due to the high cost in time and fidelity of communica-
tion given even the most optimistic projections [21], al-
gorithms and designs must utilize locality and minimize
communication to achieve high reliability. This is true
even if the number of communication related operations
is small compared to all other potential sources of error.
In fact, using optimistic projections for the technology,
we find that for many designs nearly 50% of systemic
failures occur due to errors in communication.

• Designs that are nearby in the microarchitecture design
space vary significantly in resulting performance and fi-
delity.

• The microarchitecture of a quantum computer can have
a greater impact on fidelity and performance than al-
gorithmic advancements. In particular, algorithms that
appear efficient due to fewer control operations can be
substantially slower and less reliable than others once
mapped onto hardware. In one instance a design which
utilizes a seemingly more efficient algorithm has over
4 times the number of potential points of failure than
another, seemingly less efficient design.

• Designing for robust fault tolerance requires consider-
ations at the architectural level as well as the software
level. Prior work [13, 20, 2] implemented the software
error correction process correctly but did not consider
the impact of correlated hardware errors. In this paper
we address the issue.

The rest of this paper is structured as follows: Section 2
briefly covers the state of the art of ion-trap systems and
the basics of software-based error correction schemes for
quantum computation. Section 3 addresses the methods we
use to explore the design space and evaluate the results in
a largely technology parameter agnostic way. Sections 4
and 5 present the designs we explored and their evaluation.
Section 6 discusses avenues for future research and presents
some preliminary results of that work. Section 7 concludes.

Figure 1. The Basic Building Blocks of an Ion-Trap
Quantum Computer showing an inset from a "Sea of
Traps" style homogonous microarchitecture as propossed in
[12, 3]. Traps contain trapping regions which hold
and manipulate ions which are the physical manifestation of
qubits and store quantum state. Ions move around the com-
puter by moving through traps and turning corners via junc-
tions.

q

{L0: 1 Logical bit
= 1 Physical Bit

L1: 1 Logical bit = n Physical Bits

{ { {L2: 1 Logical bit = n L1 Logical bits = n*n Physical Bits

L1 Logical Bit L1 Logical Bit L1 Logical Bit

q.0 q.1 q.2 q.n

q.0.0 q.0.1 q.0.n q.1.0 q.1.1 q.1.n q.n.0 q.n.1 q.n.n

Figure 2. Recursive Logical Encodings Showing logical
qubits encoded at 0,1, and 2 levels of error correction and
utilizing 1,n and n2 physical bits respectively.

2. Ion-Trap Computers and Quantum Error
Correction

At the highest level, ion-trap technology consists of 4
basic components, shown in Figure 1. Ions are the physi-
cal manifestation of a quantum bit or qubit. An ion’s state
is manipulated through the use of lasers which reside out-
side the quantum computer2. Since quantum state cannot be
copied [22], ions must be physically relocated in order to in-
teract with one another. Because the ions have a charge this
can be done through the use of magnetic fields which propel
ions around corner junctions, between and through traps,
hold them in place in trapping regions, and split them apart
after interaction. In addition to these communication opera-
tions, there are a number of operations which manipulate a

2We do not, nor has prior art, considered the lasers as part of the archi-
tecture design since their placement is highly flexible and largely orthogonal
to the rest of system design.

Syndrome n
(Classical Data)

Prepare
Ancilla

Verify
Ancilla

Verified Ancilla

Ancilla
Bits

Verification
Bits

Ancilla Preparation
 and Verification

Encoded Data

Test Error
Syndrome 1

Ancilla
Prep &
Verify

Ancilla
Prep &
Verify

Test Error
Syndrome 2

Test Error
Syndrome n

Ancilla
Prep &
Verify

CORRECT
DATA

Syndrome 1
(Classical Data)

Syndrome 2
(Classical Data)

Tested Data
Corrected Data

Figure 3. Highlevel Overview of the Error Detection
and Correction Process, including ancilla preparation and
verification

qubit’s state.
Unfortunately, all of these operations are highly error

prone and it is unlikely that component fidelity rates will
ever be high enough to support large scale quantum com-
putation natively [14, 2]. Fortunately, software techniques
have been developed to make quantum computers fault toler-
ant. These software techniques work by operating on logical
qubits which are encoded redundantly across many physical
data qubits. In order to ascertain what physical bits, if any,
have become corrupted a set of additional qubits (called an
ancilla) is prepared into a well known state. Since this prepa-
ration is also error prone, yet another set of qubits (called
verification qubits) are used to verify the ancilla. A single
ancilla cannot check for all correctable errors, thus multiple
ancillas are required. If one layer of error correction is in-
sufficent to make a computation reliable, the process can be
recursively applied (error correcting the error correction pro-
cess!). Figure 3 illustrates this process. While this very high
level of understanding is sufficient to appreciate the results
of this paper, we encourage the interested reader to explore
fundamental literature on the subject [19, 14, 1].

3. Methods
3.1. Design Space Exploration

The goal of our experimental setup and evaluation
methodology is to explore the space of software fault toler-
ant ion-trap architectures in a way that is flexible enough to
cope with the wide range of experimental and projected tech-
nology parameters in Table 1. The first step to realizing this
goal lies in our decision to perform a systematic design space
evaluation which is largely independent of specific technol-
ogy parameters. The next step is to develop a measure of
system fidelity which lets us abstract component fidelity.

Our exploration of the design space addresses both the
layout and sizing of the hardware components and the mi-
crocode which utilizes these resources to provide an abstrac-
tion of a fault-tolerant quantum computer to the program.
User software should not have to concern itself with the er-
ror correction process. Our microcode utilizes the Steane
code [17] for software fault tolerance. The Steane code en-
codes a logical qubit across 7 physical qubits and can recover
from a single error on any one of the encoding bits. The pri-
mary reason for this choice was for ready and fair compari-
son against the body of prior work [13, 20, 2] which utilizes
it.

Microarchitecturally, many of the designs we consider ap-
pear similar – they are all “sea of traps” designs; the differ-
ences are one layer down. Each has different microcode and
different allocations of ions to traps and tasks and thus will
utilize the physical resources differently. These differences
will enable builders to specialize areas of the machine, for
instance by removing control logic.

We start our domain space exploration (DSE) by consid-
ering 4 methods for preparing ancillas for use with the Steane
code. We then consider 3 hardware structures on which to
map the ancilla processes. Moving up to the full level one
(L1) error correction process, we consider whether to per-
form the aforementioned ancilla preparations adjacent to the
encoded data or offset from it. Next, we explore the impact
of varying the number of ancillas for a subset of the most
promising designs. This exploration reveals one universally
superior design for L1 across all technology parameters. Fig-
ure 4 provides an overview of how a particular ancilla prepa-
ration method maps onto the hardware for the process of er-
ror correction at L1.

Our exploration of the design space concludes with the
full L1 error correction process. Since no quantum computer
has been built which is large enough to support computation
at L1 we have focused our work on making this process as ef-
ficient and reliable as possible. Furthermore, since L2 is built
on top of L1, any improvements in the L1 process will have
immediate impact at L2. Though space does not permit in-
clusion of a full exploration of the L2 design space, Section 6
(Future Work) provides an overview of novel directions our
research is headed and some preliminary results.

3.2. Evaluation Methodology
Our evaluation methodology relies on potential fault point

counting (PFPC). With this technique every operation is
recorded as a potential point of failure. Then, given an es-
timate of operation fidelities one can compute the proba-
bility that more errors occur than the EC scheme can ac-
commodate, yielding an estimate of system fidelity after er-
ror correction. This method of evaluation has broad prece-
dent [14, 19, 5].

The complicating factor in this setup is the impact of stor-
age errors. Since storage errors are more likely to occur the
longer a qubit sits idle, our PFPC is directly dependent on
component timings. Fortunately, as shown in Table 1, the
range of potential timings is much smaller than the range of
potential fidelity numbers. Furthermore, timing parameters
do not impact the other sources of error. Therefore, we can
construct a PFPC for all other sources of error that will re-
main constant across all timings and augment this with stor-
age PFPCs based on a small set of exemplary timing condi-
tions. These timing scenarios are displayed in Table 1 and
are labeled LOW, MED and HIGH.

To gather data we built a behavioral simulator which takes
as input a candidate architecture, a timing scenario, and a mi-
crocode. The microcode is a hand-scheduled program for the
error correction process which represents the assignments of
qubits to traps, interactions of qubits, and the paths they take
to interact with one another. Thus the microcode encodes
how to efficiently utilize the underlying machine resources
for fault-tolerant quantum computation. This schedule is
used by the simulator to track the flow and source of poten-
tial fault points (PFPs), counting all points which have the

Timing and Error Ranges
Operation Current Optimistic Current Optimistic LOW MED HIGH

Time Projection Fail Rate Projection
Unary Op 1µs 1µs 1 ∗ 10−4 1 ∗ 10−8 1µs 1µs 1µs
Binary Op 10µs 10µs 3 ∗ 10−2 1 ∗ 10−7 10µs 10µs 10µs

Measure 200µs 10µs 1 ∗ 10−2 1 ∗ 10−8 10µs 10µs 10µs
Split 200µs .1µs ? 1 ∗ 10−8 1µs 10µs 10µs

Move 20µs .1µs ? 1 ∗ 10−6 1µs 1µs 10µs
Turn 20µs-80ms 10µs ? 2 ∗ 10−6 10µs 100µs 100µs
Store Measured in Prfail per 1µs 7 ∗ 10−8 7 ∗ 10−9 1µs 1µs 1µs

Table 1. Timing and Error Rates for Operations in an Ion-Trap Computer: Numbers given represent the current state
of the art as well as optimistic projections into the future. LOW, MED, and HIGH indicate the timings used in our behavioral simulator. ?
Represents parameters for which no good experimental results currently exist because experiments have measured fidelity in terms of
how many ions flew out of the trap as opposed to how many ions maintained their state after the operation. These numbers are derived
from [6, 13, 20, 10, 21]

Figure 5. Ancilla Preparation Designs for L1 Error
Correction shown in the context of a “Sea of Traps" style mi-
cro architecture and annotated with initial "home" placements
for qubits.

potential to impact encoded data.3
Post simulation we have a set of PFPs for each operation

type along with a count of storage PFPs related to a variety
of timing scenarios for each candidate architecture. This data
is then used to infer characteristics of each architecture and
their relative sensitivity to each type of error. For illustrative
purposes, we also provide specific fidelity estimates at L1
which were calculated by using a modified version of the
error estimator for PFPCs described in [19]. For comparison
we use the fidelity parameters from prior work [13] as input.
This corresponds to the optimistic column in Table 1.

4. Ancilla Exploration
We begin our DSE by exploring two algorithms for

preparing and utilizing ancillas. The simplest method in-
volves 4 qubits per ancilla and requires that a total of 6 states
be measured [14]. For fault tolerance, each of these states
must be measured at least twice [19] for a grand total of 12
ancilla preparations and interactions. A more complicated

3Not all PFPs have the potential to impact data. For instance, after an
ancilla has been verified the verfication bit sits idle but any storage errors on
that bit have no way to impact encoded data.

Figure 6. Ancilla Level Control and Communication
Potential Fault Point Counts in increasing order of post
verification fault counts, seperated by early and late verification
techniques. (Shorter is better)

method exists which utilizes 7 qubit ancillas and employs
more complicated conventional computation to ascertain the
nature of an error on the data with just 2 state measurements
(for a total of 4 ancilla preparations and interactions) [19].

Each of these methods has an alternate implementation
which we consider: For the 7-bit method, 4 verification bits
are used to ensure that the ancilla has been properly prepared.
There exists a more compact implementation [19] which ver-
ifies as it goes using only one verification bit. While there are
fewer control operations in this method, the disadvantage is
that bits spend more time waiting after verification (which
can be a problem if storage errors are substantial), and it arti-
ficially serializes the verification process leading to a longer
critical path. The 4 bit method typically employs either 2 or
3 additional verification bits but a technique exists by which
all preparation and verification can be done by interacting
only those bits which are nearest neighbors on a linear ar-
ray. The advantage is a potentially substantial reduction in
communication costs. The disadvantage is additional con-
trol operations and a limit on the number of verification bits
which can be simultaneously employed, leading to a longer
critical path. Statistics regarding all four of these methods
can be found in Table 2. We separate those operations which

Figure 4. Overview of the Error Correction Process showing, at a high level, those steps required for the 7 bit, adjacent
methods.

Method Num. Ancillas Unary Ops Binary Ops Measures Critical
Required (Pre/Post-Verify) (Pre/Post-Verify) (Pre/Post-Verify) Path Depth

7-bit [19] 4 10 (3/7) 31 (17/14) 11 (11/0) 15
7-bit Compact [19] 4 10 (1/9) 25 (7/18) 11 (11/0) 19
4-bit [14] 12 5 (1/4) 13 (5/8) 7 (7/0) 5
4-bit Nearest Neighbor 12 5 (1/4) 16 (8/8) 7 (7/0) 10

Table 2. Control Overhead for Various Steane-Code Ancilla Preparation Methods. Note that since the 4 bit methods
must each be performed 3 times as often as the 7 bit methods, they involve a greater total number of control operations.

occur before and after verification since the odds of an error
occurring in the ancilla which escapes detection by the ver-
ification process is orders of magnitude lower than the odds
of all other sources of error. In fact, there is a precedent for
ignoring pre-verification sources of error all together when
estimating system fidelity [19, 5].

Next, we consider 3 hardware layouts for implementing
these algorithms, shown in Figure 5. The first is based on
prior work [13] and arranges the ancilla bits in a linear series
of traps with an adjacent set of unallocated traps for commu-
nication and routing (Vector). The second is a set of uninter-
rupted trapping regions laid out linearly within a single trap
(Linear). Because this design doesn’t feature any means for
routing one qubit around another, it’s only appropriate for
algorithms which have a linear nearest neighbor implemen-
tation such as the preparation of the 4-bit ancilla [8, 11]. The
third design folds the ancilla and verification bits around a
crossbar for maximum interconnect and decreased commu-
nication and latency at a cost of larger size (Folded). Finally,
we consider scheduling each of the algorithms on the hard-
ware in 2 ways: with verification occurring as quickly as pos-
sible or with delayed verification which does not occur until
the ancilla is in place next to the data qubits it will interact

Figure 7. Ancilla Preparation Runtimes in increasing
order, separated by early and late verification schemes

Figure 8. Ancilla Preparation Storage Error PFPs in
increasing order of post-verification PFPs, separated by early
and late verification methods.

with. In total, this yields 10 legal mappings. In addition, we
include results for the 7 bit vector early verification method
as implemented in prior work [13]. When implementing the
schedule from prior work in our microcode it became clear
that the microarchitecture from prior art could be better uti-
lized. So as not to unfairly skew the results against this mi-
croarchitecure, we include results for both implementations
(labeled 7.V.QLA and 7.V.E respectively).

In Figures 6, 7, 8, and 9 we provide and analyze data re-
lated to these ancilla preparation methods4. While we high-
light some interesting statistics and trends, it is important
to note that what really matters isn’t the ancilla preparation
process itself, but how that process impacts the speed and
fidelity of the error correction process as a whole. Further-
more, comparisons across categories are not always valid at
this stage: for instance, the 4-bit methods requires 3 times as
many ancillas as the 7 bit methods, and the “late verification”
methods have not yet incurred the cost of the verification pro-
cess.

First, we draw the reader’s attention to Figures 7 and 8
and those entries relating the the 4-bit linear nearest neighbor
methods (labeled 4.L), performed with both early and late
verification. Because these methods involve no movement or
turns, their performance and fidelity remain invariant across
timing scenarios.

Next, we compare the entries labeled 7.V.E and 7.V.QLA.
There are three points to be made with this data: First, we
can see the importance of a well tuned microcode. Figure 6
shows that our microcode (7.V.E) reduces the communica-
tion overhead of this method by more than half. Second, be-
cause of this decreased communication, coupled with better
utilization of resources (resulting in lower numbers of idle
bits), the run time of the improved method is less than 1

3 that
of the original (Figure 7), and the number of pre- and post-
verification storage PFPs are ≈ 1

8 and ≈ 1
3 that of prior work

respectively. Third, the data makes clear that, despite sub-
stantial improvements in the microcode, this microarchite-
cure is by far the least efficient in terms of both runtime and

4Our shorthand naming convention lists: [num bits 7 or
4].[microarchitecture (Vector, Linear, or Folded].[Early or Late Veri-
fication]. In L1 we add Adjacent and Offset. So the 4 bit linear design with
late verification would be 4.L.L.

PFPs across timing scenarios.
We now draw the reader’s attention to Figure 9 which

shows the combined PFPCs for both communication and
control (which are invariant across timing scenarios) and
storage errors corresponding to the medium communication
scenario5. The most striking result in this chart is the over-
whelming number of storage related potential fault points in
the 7-bit methods. For these methods the number of storage
related PFPs exceeds all other sources of error by at least a
factor of 3, and in the method proposed by prior work [13] a
factor of more than 10. This means that if storage is within an
order of magnitude as error prone as other operations, stor-
age will be a primary source of errors in the system. The 4-bit
methods do not feature the same number of storage related
PFPs because they execute more quickly and most operations
can occur in parallel, leading to fewer idle qubits.

In summary, our ancilla-level exploration has revealed:

• Linear Nearest Neighbor Methods Perform Well
Across A Wide Range of Timing Scenarios.

• A Well Tuned Microcode Can Have a Dramatic Im-
pact on Performance and Fidelity. We were able to
write microcode (7.V.E) for the same design used in
prior art [13](7.V.QLA) which reduces the run time and
post verification PFPs by a factor of 3.

• Storage Related PFPs Dominate the Ancilla Prepa-
ration Process For 7 bit methods, suggesting that 4
bit methods will ultimately be more efficient when the
entire L1 correction process is considered.

5. L1 Exploration
Having seen the wide variance in performance and PFPs

in the previous section, we now explore placing ancilla
preparation in the wider context of error correction. Of par-
ticular interest is understanding how the choice of ancilla
preparation and placement affects ancilla-to-data communi-
cation, data-to-data communication, the ability to hide an-
cilla preparation latency, and ultimately system performance
and fidelity.

To understand these interactions we explore two basic ar-
rangements of data and ancilla: one where the data and an-
cilla are placed ADJACENT to one another, and one where
the ancilla is OFFSET from the data.6 Combining these with
the 10 ancilla mappings yields a total of 16 legal7 L1 design-

5For readability we omit the LOW and HIGH scenarios from the summary
since the relative performance of the architectures was similar. The data for
these scenarios can be found in Figures 6 and 8.

6In the interest of architectural fault tolerance we only consider arrang-
ing the L1 data linearly; in this configuration all of the data bits move along
one axis in parallel, eliminating the need to share a location in time. Moving
along the other axis can be accomplished through the use of a cross-bar such
as that shown in Figure 5. Changing axis should be a very rare occurance
due to the existence of a number of efficient linear-nearest-neighbor im-
plementations of the algorithms of interest for quantum computation [4, 9]
which means that such a cross bar would only be necessary on the edges of
a device.

7The Linear 4 bit method does not make sense adjacent and the 7 bit
folded method results in so much wasted space when offset that it is not
worth considering.

Figure 9. All Potential Fault Points For the Medium Communication Cost Scenario in the same order as previous
Figures for readability and separated by early and late verification methods. Note the extremely high incidence of storage related PFPs
as compared to all other potential sources of error in the 7-bit methods.

Figure 12. Storage Related PFPs, LOW communica-
tion cost scenario

schedules, on 10 circuits8 as shown in Figure 10. Later, we
will explore the impact of additional ancillas and the result-
ing area/performance tradeoffs.

We simulated the designs with a binary operation on two
logical qubits, followed by the error detection and correc-
tion process. This setup forces data-to-data interaction and
ensures that the results reflect the impact of the additional
data-to-data spacing in the adjacent configurations. The re-
sults of our L1 exploration appear in Figures 11, 12, 13, and
14.

Perhaps the most striking aspect of this data is how
much the performance and error point gaps between meth-
ods shrink in the context of the whole L1 error correction
process. The reason is that the overhead of moving the an-
cilla in and out of place for each error check can be quite
high as compared to ancilla preparation, particularly in the
simpler 4-bit cases.

Next, we note the wide variance in performance and PF-
PCs across methods, indicating the importance of a well-
tuned design and microcode.

The data also demonstrates the high incidence of stor-
age PFPs across timing scenarios and designs. Even in the
LOW communication cost scenario the design with the lowest

8Due to the need for verification bits in the early verification scheme the
4 bit folded circuits differ in size (the other circuits have sufficient unused
locations to accommodate them.)

Figure 13. Storage Related PFPs, HIGH communica-
tion cost scenario

number of post verification storage PFPs has ≈ 3500 post-
verify storage PFPs compared to ≈ 50 post-verify PFPs from
all other sources. This suggests that unless storage is ≈ 2
orders of magnitude more reliable than all other operations
it will dominate as the cause of error. In contrast, prior art
[13, 20] has suggested that storage errors are of secondary
importance and can be ignored for the purposes of architec-
tural design.9 Clearly this is not the case.

Figure 14 shows fidelity estimates broken down by source
of error and based on the optimistic projections of prior
art [13] found in Table 1. The results are as expected, since
moves and turns are the only potential sources of error which
are substantially more error prone than stores (10−6 vs. 10−9

respectively) they are the only sources of error which con-
tend with stores for substantial systemic impact. Figure 14
shows that for the 8 most reliable designs, 60% of failures are
due to storage or movement. These are errors that computer

9This contention is based on a subtle misunderstanding of experimental
results in the field. The QLA and CQLA papers [13, 20] utilize optimistic
fidelity projections for their design process. Recent work [10] has demon-
strated qubits which maintain their state for an average of ≈ 10sec.. This
fact is interpreted incorrectly in [13, 20] to mean that qubits are guaranteed
not to corrupt for 10sec.. Given this misunderstanding those papers show
the error correction process to take less than 10 sec. and contend that is
sufficient to ignore storage related errors.

Figure 10. Methods for Performing Error Correction at One Level of Encoding Here we see the placement of various
ancilla methods relative to the encoded data. Note that while most designs feature unique microcode mappings on a homogenous“Sea
of Traps" microarchitecture, the three uninterrupted traps of (J) necessitate a different micro-architectural design.

Figure 11. Control and Communication Related PFPs for L1 Methods separated between pre- and post-verification sources
and sorted in increasing order of total post verification PFPs.

architects are in the best position to address as we move for-
ward into larger scale quantum systems. Furthermore, those
designs which do not feature predominately storage related
errors have the worst system fidelity. This is because they
have poor locality, forcing the bits to move. In other words,
the reason the bits aren’t idle is because they are doing some-
thing worse for system fidelity, they are in transit. Even given
different fidelity scenarios, it should be clear that due to the
much higher incidence of storage PFPs across designs, min-
imizing the impact of storage errors will be one of the is-
sues of first order concern for quantum architects in the years
ahead.

Finally, it is interesting to compare the data in Figures 12
and 11 with the estimated PFPC given in [19]. In that work
an analytical approach is used to estimate the number of con-
trol and storage fault points. The model for storage errors is
that every bit not involved in an operation incurs a storage
PFP. However, since this model does not account for com-
munication costs, this results in a substantial undercount of
storage and communication PFPs. In fact, that model would
not indicate any difference in expected fidelity between any
of the 7 bit methods we consider. In actuality, the best 7
bit method has over 5000 storage PFPs in the LOW com-
munication cost scenario. In contrast, the analytical model
predicts ≈ 600. This is an order of magnitude gap in the
projected number of PFPs for storage fault points alone and
indicates that if theoreticians desire an accurate estimate of
system fidelity they must develop models more closely tied
to the hardware architecture.

Finally, these results show the universal value of the 4
bit-offset-linear nearest neighbor method. It is the smallest,
fastest, and most reliable design across all the timing and fi-
delity scenarios we consider. Furthermore, because no other
design has fewer total PFPs and the 4.O.L.L method has the
lowest incidence of communication related PFPs, it is virtu-
ally guaranteed that this design will be the most robust for
any reasonable set of technology parameters.

In summary, our L1 exploration shows:

• There is a Wide Variance in Performance and PF-
PCs Across Methods.

• At L1 the incidence of Storage Related Errors is
Highly Pronounced.

• At Times, Architecture Matters More than Theoret-
ical Efficiency. Even with highly tuned designs and op-
timistic projections for component fidelity, when sys-
tems fail it is predominately due to faults relating to
communication or memory.

• An Architecture and Microcode Based on An Off-
set 4 bit Linear Nearest Neighbor Scheme is the Best
Choice Across a Wide Range of Technology Scenar-
ios. This design occupies less than 1

2 the space of the
design proposed in prior work and operates with an ex-
pected fidelity that is over an order of magnitude more
reliable given prior art’s technology assumptions.

5.1. Varied Ancilla Resources
To get a sense of how these architectures respond to and

utilize additional ancillary resources we now examine two
test cases: The 4-bit offset linear nearest neightbor design

Figure 15. 4 bit Linear Offset and 7 bit Array Adja-
cent Microarchitectures With Increasing Numbers
of Ancillary Resources and Communication Chan-
nels

Figure 16. L1 Error Correction Runtimes with increas-
ing number of physical Ancillas (shorter is better)

Figure 17. L1 Error Correction Performance/Area.
With increasing number of physical ancillas.(taller is bet-
ter, LOW has been omitted for readibility, Performance =

1
runtime)

Figure 14. Fidelity Estimates, in Order of Propensity to Err (least to most) and Broken Down by Source of Error.
Note that the late verification methods almost universally outperform early methods in terms of fidelity, and that communication related
PFPs (such as move) and storage related PFPs dominate sources of error.

Figure 18. Expected L1 Error Correction Fail Rates
indicating how likely it is that the encoded data is still in error
after the QEC process has completed (shorter is better)

Figure 19. Expected Number of Error Free Com-
putational Steps on Encoded Data. Calcluated as

1
Prfail

/AREA (taller is better).

and the 7-bit vector adjacent design. For each of these we
increase the number of ancillas and the number of traps de-
voted to communication (communication channels). Figure
15 shows the different architectures we consider. For 4-bit
offset we utilize 1 and 3 ancillas on a single communication
channel and then 6 ancilla divided between two communica-
tion channels. In the 7-bit case we explore 1, 2 and 4 ancillas
and communication channels. The results of this exploration
appear in Figures 16, 17, 18, and 19.

The data indicates that the 4-bit method makes good use
of additional ancilla on a single channel. Figures 17 and 19
show a maximal value for the 4 bit method with 3 ancilla on
a single channel. In contrast, the 7 bit method has strictly de-
creasing performance per area with additional ancilla (Fig-
ure 17) and only slightly better fidelity over area with the
addition of a second ancilla (Figure 19).

Next, we draw the reader’s attention to Figure 18. Here
we can see the 4 bit method strictly improving in fidelity as
we increase ancilla (though not all ancilla can be well uti-
lized so there are diminishing returns). In contrast the 7-bit
method actually suffers an increase in propensity to err with
the addition of 4 ancilla. The reason for this difference is
that the 4 bit method is an offset type, so increasing the num-
ber of ancilla does not increase data to data communication
costs. In contrast, the 7-bit method is an adjacent type so
each additional ancilla pushes logical qubits further apart.

Also of note is that the 7 bit method increases in perfor-
mance while decreasing in fidelity with 4 ancilla. This shows
that the relationship between runtime and fidelity is not one
to one.

We note that utilizing additional ancilla in parallel will
result in increased reliability only if the impact of storage
errors is substantial. With more ancillas the same number
of control operations must be carried out, and in fact, the
additional structures can increase the distance between en-
coded data words or ancillas and encoded data thus increas-
ing the number of communication related PFPs. The only
PFPs that additional ancillas can address are storage related
because the additional ancillas decrease error correction time
and thus decrease the time that bits sit idle. If storage errors
could be ignored, then any additional ancillas would result in
a net decrease in system reliability.

Figure 18 shows that, based on the optimistic fidelity
numbers from prior work [13], the 4-bit method outperforms
the 7-bit method and is more reliable, even as the number of
ancillas are increased. Furthermore, the small size of the 4
bit ancillas means that performance and reliability per unit
area are higher across the board for the 4 bit methods. Since
area considerations will be a major issue when scaling ion
traps up to large systems [14], we believe this is an impor-
tant metric to consider.

In general our exploration of the impact of additional an-
cillas has shown:

• The 4 bit Offset Method makes Good Use of Addi-
tional Ancilla on a Single Channel

• The 7 bit Adjacent Method Suffers a Decrease in
System Fidelity with 4 Ancilla This is due to the ad-
ditional overhead of data to data communication that
occurs when L1 data is pushed further apart by each ad-
ditional ancilla.

• Increased Fidelity from Increasing Ancilla is Due
Exclusively to the Impact of Storage PFPs In the ab-
sence of storage errors additional ancillas may decrease
runtime but they will not improve fidelity (and may
worsen it).

• The 4 bit method is Superior to the 7-bit Method
given Comparable Numbers of Ancilla and in much
less area.

6. Future Work
Looking ahead, there are several avenues of future work

that we are starting to consider:

• Grouping Pre-Error Correction Steps: Currently, all
the overhead of the error correction process, 10’s of
thousands of operations, is used to error correct a single
operation. The actual error of the corrected operation
then is minimal as compared to all other PFPs. There-
fore, we are exploring the impact of grouping together
more operations before performing the error correction
process.

• Automatic Construction of the Microcode: While we
contend that a hand scheduled microcode is most likely
to achieve near optimal results, we are developing au-
tomated tools for scheduling so as to provide a means
for faster first pass evaluations of fault tolerant schemes
and micro-architectures.

• More Fault Tolerant Schemes: While the Steane code
has been the most widely adopted code in the archi-
tecture community, many other error correcting codes
exist. We would like to combine some sort of auto-
mated microcode process with an exploration of more
error correcting codes.

• A Similar Design Space Exploration For Two Lev-
els of Error Correction (L2): While the results of
this work will have immediate impact on any L2 imple-
mentation (since L2 must necessarily be composed of
L1 error correction schemes) we believe there is value
in performing a similar DSE for the L2 design space.
Figure 20 shows one of the axes of exploration that is

unique to L2. In this diagram we see two means for
error correcting the error correction process. On the
left is the most straight forward design which is simi-
lar to that proposed in prior work [13, 20]. In this de-
sign, the structure of the error correction process at L1
is directly mirrored at L2. We are particularly excited
about the prospects for our novel design on the right.
We call this design “striped” recursion because the data
is arranged in stripes with the nth bit of all the L1 logi-
cal bits aligned in a single column. There are several
advantages to this design. First, by aligning data in
this way no two bits from the same L1 logical bit need
ever utilize the same hardware resource when perform-
ing the L2 error correction process. This is not true of
the design on the left since the construction of the L2
ancilla requires interacting encoded ancilla bits which
must move vertically in a single file column, thus vio-
lating architectural fault tolerance for the encoded an-
cilla bits. We have generated some preliminary perfor-
mance numbers for these designs with increasing num-
ber of encoded ancilla and find that in addition to ad-
dressing architectural fault tolerance, the striped design
is 3 times faster than the array method when both em-
ploy the improved L1 designs from this study.

7. Conclusion
This paper has explored how to design and microcode ion-

trap quantum computers. We have examined a wide range of
designs for ancilla preparation and L1 error correction. Our
data reveals several important lessons for physicists, theo-
reticians and architects.

For physicists, our data demonstrates the huge importance
of reliable quantum storage and communication. Ion trap
technology has made tremendous strides in regards to stor-
age, with average stable qubit lifetimes up to 10 seconds.
However, moving and turning ions remain the most error
prone operations by far, transforming the relativly few in-
stances of these operations into major sources of systemic
error.

For theoreticians, our results are more ominous. When
algorithms are mapped onto actual microarchitectures, the
constraints of communication and storage can make algo-
rithmic techniques which look good on “paper” inefficient
in practice. In addition, we find that even when using highly
optimistic projections for communication timings, theoreti-
cal models such as [19] undercount the number of PFPs by
nearly an order of magnitude. What we can conclude from
this is that quantum theoreticians working in the error correc-
tion space need a more technology-driven model with which
to design algorithms.

For architects, our results illustrate the value of explor-
ing this space now, as opposed to when device technology is
completely stable. The reasons for this are twofold. First,
we have demonstrated the huge impact architects can have
on system fidelity and performance. This implies that we
can accelerate the arrival of large scale quantum systems.
Second, since we have found a single architecture and mi-
crocode which outperforms all others across a range of tech-
nology parameters, we can have confidence that as the tech-
nology space evolves, the architectural contributions of this
work will hold.

Figure 20. Methods for Constructing an L2 Error Correction Block out of L1 Blocks

Acknowledgements
We would like to thank David Bacon for the invaluable

information and expertise he provided as we worked on this
paper. This work is made possible with generous support
from NSF CCF-0523359 and CCF-0621621 and the Sloan
Foundation.

References
[1] D. Bacon. Operator quantum error correcting subsystems for

self-correcting quantum memories, 2005.
[2] S. Balensiefer, L. Kreger-Stickles, and M. Oskin. An eval-

uation framework and instruction set architecture for ion-
trap based quantum micro-architectures. In Proc. Interna-
tional Symposium on Computer Architecture (ISCA 2005),
New York, 2005. ACM Press.

[3] C. M. D. Kielpinski and D. J. Wineland. Architecture for a
large-scale ion-trap quantum computer. nature, 417:709–711,
June 2002.

[4] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg. Imple-
mentation of shor’s algorithm on a linear nearest neighbour
qubit array. QUANT.INFO.COMPUT., 4:237, 2004.

[5] D. Gottesman. Fault-tolerant quantum computation with local
gates. Journal of Modern Optics, 47:333, 2000.

[6] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo,
M. Acton, L. Deslauriers, C. Monroe, and J. Rabchuk. T-
junction ion trap array for two-dimensional ion shuttling,
storage, and manipulation. Applied Physics Letters, 88:4101–
+, Jan. 2006.

[7] L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and
C. J. Wellard. Two-dimensional architectures for donor-based
quantum computing. pages 045311–+, 2006.

[8] D. Kielpinski, A. Ben-Kish, J. Britton, V. Meyer, M. A.
Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and D. J.
Wineland. Recent results in trapped-ion quantum computing,
2001.

[9] S. A. Kutin. Shor’s algorithm on a nearest-neighbor machine,
2006.

[10] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco,
A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M.
Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz,

P. O. Schmidt, and D. J. Wineland. Long-lived qubit memory
using atomic ions. Physical Review Letters, 95(6):060502,
2005.

[11] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad,
J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer,
R. Ozeri, R. Reichle, and D. J. Wineland. Creation of a
six-atom ‘Schrödinger cat’ state. nature, 438:639–642, Dec.
2005.

[12] S. Lloyd. Quantum mechanical computers. Scientific Ameri-
can, october 1995.

[13] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L.
Chuang. A quantum logic array microarchitecture: Scalable
quantum data movement and computation, 2005.

[14] M. A. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, Cam-
bridge, UK, 2000.

[15] M. Oskin, F. T. Chong, I. Chuang, , and J. Kubiatowicz.
Building quantum wires, the long and short of it. In Proc.
International Symposium on Computer Architecture (ISCA
2003). ACM Press, 2003.

[16] P. W. Shor. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM
J.SCI.STATIST.COMPUT., 26:1484, 1997.

[17] A. Steane. Error correcting codes in quantum theory. Phys.
Rev. Lett., 77, 1996.

[18] A. Steane. Multiple particle interference and quantum error
correction. PROC.ROY.SOC.LOND.A, 452:2551, 1996.

[19] A. Steane. Space, time, parallelism and noise requirements
for reliable quantum computing. ArXiv Quantum Physics e-
prints, Aug. 1997.

[20] D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and
F. T. Chong. Quantum memory hierarchies: Efficient de-
signs to match available parallelism in quantum computing.
SIGARCH Comput. Archit. News, 34(2):378–390, 2006.

[21] D. Wineland and T. Heinrich. Ion trap approaches to quantum
information processing and quantum computation. 2004.

[22] W. K. Wootters and W. H. Zurek. A single quantum cannot
be cloned. Nature, 299:802–+, Oct. 1982.

