
Instruction Scheduling for a Tiled Dataflow Architecture

Martha Mercaldi, Steven Swanson, Andrew Petersen, Andrew Putnam, Andrew Schwerin,
Mark Oskin, Susan J. Eggers

University of Washington
{mercaldi,swanson,petersen,aputnam,schwerin,oskin,eggers}@cs.washington.edu

Abstract
This paper explores hierarchical instruction scheduling for a tiled
processor. Our results show that at the top level of the hierarchy,
a simple profile-driven algorithm effectively minimizes operand
latency. After this schedule has been partitioned into large sections,
the bottom-level algorithm must more carefully analyze program
structure when producing the final schedule.

Our analysis reveals that at this bottom level, good schedul-
ing depends upon carefully balancing instruction contention for
processing elements and operand latency between producer and
consumer instructions. We develop a parameterizable instruction
scheduler that more effectively optimizes this trade-off. We use this
scheduler to determine the contention-latency sweet spot that gen-
erates the best instruction schedule for each application. To avoid
this application-specific tuning, we also determine the parameters
that produce the best performance across all applications. The re-
sult is a contention-latency setting that generates instruction sched-
ules for all applications in our workload that come within 17% of
the best schedule for each.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Other Architecture Styles—Data-flow Architectures; C.0
[Computer Systems Organization]: General—Hardware/software
interfaces

General Terms Algorithms,Design,Experimentation,Performance

Keywords dataflow, instruction placement, tiled architectures

1. Introduction
Tiled architectures consist of multiple simple processing elements
(PEs) connected by an on-chip interconnect. RAW [39], Smart-
Memories [23], TRIPS [25] and WaveScalar [36] are all examples.
Tiled architectures address several emerging, critical problems in
monolithic processor design, including design complexity, wire de-
lay, and fabrication reliability. A simple PE decreases both design
and verification time; PE replication provides robustness in the face
of fabrication errors; and the combination reduces wire delay for
both data and control signal transmission. The result is a scalable
architecture that allows a chip designer to target different levels of
performance, with different area budgets [37].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

To achieve their best performance, tiled architectures require an
instruction scheduling algorithm that is adapted to their tiled na-
ture. (Our results comparing several algorithms show over an or-
der of magnitude difference in their performance when executing
single-threaded applications.) For monolithic processors, instruc-
tion schedulers focus on deciding when an instruction should be
fetched. For example, scheduling a load instructions early helps
hide its latency. On a tiled architecture, the scheduler also decides
where an instruction will execute [19]. For example, placing depen-
dent instructions on the same or adjacent tiles reduces producer-to-
consumer operand latency.

The goal of this work is to find a practical scheduling algorithm
that generates efficient code schedules for tiled architectures. Our
target architecture is WaveScalar [36]. WaveScalar’s microarchitec-
ture is hierarchical. Its basic tile is a processing element (PE). Two
PEs form a pod and share a common low-latency bypass network.
Four pods connected via a fixed-latency, pipelined network make
up a domain. Four domains form a cluster and communicate over a
fixed-route packet network. Finally, clusters can be replicated, with
inter-cluster communication occurring over a dynamically-routed
on-chip packet network. We use 16-cluster designs in this study.

On WaveScalar, the scheduling question of where to execute
each instruction amounts to mapping each instruction to a particular
processing element. Because of differences in the microarchitecture
above and below the domain level, we broke the mapping process
into two phases. In the first phase, called coarse scheduling, the
scheduler assigns each instruction to a domain. In the subsequent
phase, called fine scheduling, it assigns each instruction to a specific
PE in the domain selected by the coarse phase.

We experiment with three coarse scheduling algorithms:
COARSE-BY-FUNCTION, COARSE-BY-TOPOLOGY, and
COARSE-BY-EXE-ORDER. COARSE-BY-FUNCTION and
COARSE-BY-TOPOLOGY partition instructions according to
function and producer-consumer dependencies, respectively.
COARSE-BY-EXE-ORDER employs profiling information to
partition instructions by their execution order. We also sample
three algorithms for fine scheduling: FINE-BUG, FINE-UAS, and
FINE-BY-EXE-ORDER. FINE-BUG and FINE-UAS are adapta-
tions of two existing scheduling algorithms, Bottom-Up-Greedy
[12] and Unified Assign and Schedule [26], that were developed
for clustered microarchitectures. FINE-BY-EXE-ORDER, like
COARSE-BY-EXE-ORDER, uses profile information to assign
instructions to PEs according to their execution order.

We created placements using each combination of coarse and
fine scheduling algorithms. Among the coarse scheduling schemes,
COARSE-BY-EXE-ORDER most effectively contained communi-
cation within the fewest neighboring domains. This is because its
profiling knowledge enables it to place more tightly the subset of a
function’s instructions that are actually executed. For fine schedul-
ing, FINE-BUG outperformed the others, because it makes the best

trade-off between contention among instructions for PE resources
and producer-consumer operand latency.

Based on our analysis of the strengths and weaknesses of
the coarse and fine scheduling algorithms, we developed a new
fine scheduling algorithm, FINE-DAWG (Depth and Width Graph
Scheduling). FINE-DAWG partitions the dataflow graph into sub-
graphs. Using information about the topology of a dataflow graph,
such as the length of producer-consumer chains or the number of
consumers of a particular value, it determines the instruction com-
position of the subgraph. This topological information is parame-
terized, enabling us to explore the trade-off between and ultimately
balance the overheads of operand latency and resource conflicts.
With a full exploration of the latency-conflict parameter space, the
best FINE-DAWG-generated instruction schedules execute on av-
erage 28% faster than those generated by FINE-BUG. This effort
is therefore warranted for critical applications. However, if one
wishes to dispense with the design-space exploration, using the sin-
gle FINE-DAWG parameter set that generates the best schedule for
all applications still outperforms FINE-BUG by 14%.

In the next section we describe the salient features of the
WaveScalar architecture. Section 3 motivates the hierarchical
scheduling approach, and describes the coarse and fine algorithms
used in this study. In Section 4 we explore how these algorithms
perform on the WaveScalar microarchitecture. FINE-DAWG is de-
scribed and evaluated in Section 5. We survey related work in Sec-
tion 6 and conclude in Section 7.

2. Overview of WaveScalar
We begin by describing WaveScalar, the target architecture for the
scheduling techniques presented here. We confine our description
to a high level, except when specific details are relevant to instruc-
tion scheduling. A more exhaustive description of the architecture
appears in [36].

2.1 Dataflow instruction set architecture
WaveScalar is a dataflow architecture. As with all dataflow archi-
tectures (e.g. [9, 8, 17, 33, 15, 28, 31, 14, 27, 7, 3]), an applica-
tion is represented as a dataflow graph (DFG), with control depen-
dences converted into data dependences. Nodes in the graph are in-
structions, and directed edges between them represent operand de-
pendences. Unlike traditional processors, dataflow machines do not
have a program counter; instead instruction fetch, like instruction
execution, is data-driven. Also, instead of a register file, they have
a token store which associates tokens, comprised of operand values
and instruction-identification tags, to the appropriate instruction.
WaveScalar’s token store is distributed across the processor, with
the processing elements. When all of the operands for a particular
instruction have arrived at a PE’s token store, the instruction can be
executed. This is known as the dataflow firing rule [9, 8].

Unlike previous dataflow ISAs, WaveScalar supports a memory
model which commits memory accesses in program order. This en-
ables it to execute applications composed in imperative languages,
such as C. In WaveScalar, the store buffer implements this memory
model, the details of which are not relevant to our work here. The
interested reader can find them in [36].

2.2 Microarchitecture
WaveScalar’s microarchitecture consists of a grid of simple, 5-stage
pipelined dataflow processing elements (PEs). Each static instruc-
tion in a WaveScalar program executes in a PE. Each PE contains
a small, local instruction cache, which can hold up to 64 static in-
structions at a time. The microarchitecture swaps instructions in
and out of these caches, as program execution requires.

To reduce communication costs within the grid, we organize
PEs hierarchically, as depicted in Figure 1. Two PEs are first cou-

pled, forming a pod; within a pod, instructions can execute and
send their results to their partner PE in a single cycle. Four PE
pods are grouped into a domain, within which producer-consumer
latency is five cycles. Four domains form a cluster, which also con-
tains a store buffer and a traditional L1 data cache. A single clus-
ter, combined with an L2 cache and main memory, suffices to run
any WaveScalar program. To build larger machines, a dynamically-
routed on-chip packet network connects multiple clusters. Commu-
nication latency between clusters depends upon how far apart they
are on the chip. A directory-based coherence protocol maintains
data cache coherence. The coherence directory and the L2 cache
are distributed around the edge of the grid of clusters. Table 1 de-
picts the microarchitectural parameters used for this study.

2.3 Instruction loading
The microarchitecture and the runtime system collaborate to load
instructions into the WaveScalar processor. When a token’s con-
sumer instruction is not resident in the processor, the processor
signals the runtime. The runtime then decides where to place the
instruction, either by checking a statically constructed table (pro-
duced by the compiler) that maps instructions to PEs, or by using
an online algorithm to create a new mapping. It also notifies the mi-
croarchitecture of the location of the consumer instruction, to by-
pass the runtime system for future operands. Eventually, the entire
working set of instructions will have been loaded into the PE grid
in this manner and the runtime loading mechanism will be largely
out of the way of execution.

3. Instruction Scheduling for WaveScalar
Instruction schedules for tiled architectures can have both a tempo-
ral (when) and spatial (where) component. The architecture deter-
mines the type of schedule required. If there are multiple locations
where an instruction can execute, be they ALUs, PEs, more com-
plex tiles or register clusters, then the instruction schedule must
have a spatial component. Similarly, any architecture with a pro-
gram counter will require a temporal schedule. As a dataflow ma-
chine, WaveScalar has no program counter. It dispatches instruc-
tions dynamically, and so the temporal execution order is deter-
mined at runtime. Hence, a WaveScalar instruction schedule con-
sists only of the spatial component.

3.1 Hierarchical Approach
We address instruction scheduling hierarchically in two passes. The
first pass, which we call coarse scheduling allocates instructions
to domains. The second pass, fine scheduling, further refines this
initial domain assignment by designating instructions to individual
processing elements. Figure 2 illustrates the process.

We broke the scheduling problem at the domain level, instead
of some other place in the microarchitectural hierarchy, for two
reasons. First, the network designs within and between domains
are quite different. Within a domain, all communication occurs
via a full crossbar interconnect, which has a fixed and relatively
short latency. However, between domains communication latency
is variable and relatively long, as it traverses a buffered packet-
switching network. Second, a domain holds 512 static instructions.
This size captures a large enough instruction working-set that a
coarse scheduling algorithm can make gross decisions based upon
overall program graph structure, without concerning itself about
optimizing every intra-domain microarchitectural trade-off.

The hierarchical approach to scheduling also helps to man-
age the large instruction scheduling problem size. Breaking up the
problem into subproblems allows the scheduler to tackle the prob-
lem in smaller pieces. WaveScalar has a large number of process-
ing elements (2048 in our target design). With the hierarchical ap-

PE

Cluster

DomainPod

L2

L2
L2

L2

L2 L2

Net-
work

D$
SB

Figure 1. The WaveScalar Processor: The hierarchical organization
of the WaveScalar microarchitecture.

coarse scheduling

fine scheduling fine scheduling

Figure 2. Hierarchical Instruction Scheduling on WaveScalar: The
scheduler first assigns each instruction to a domain, and then in a
second phase it assigns each instruction to a PE.

PEs per Domain 8 (4 pods) Domains / Cluster 4
PE Input Queue 16 entries, 4 banks Network Latency within Pod: 1 cycle
PE Output Queue 8 entries, 4 ports (2r, 2w) within Domain: 4 cycles
PE Pipeline Depth 5 stages within Cluster: 7 cycles

inter-Cluster: 7 + cluster distance
L1 Caches 32KB, 4-way set associative, 128B

line, 4 accesses per cycle
L2 Cache 16 MB shared, 1024B line, 4-way

set associative, 20 cycle access
Main RAM 1000 cycle latency Network Switch 4-port, bidirectional

Table 1. Microarchitectural parameters of the WaveScalar processor

proach, instead of considering all instructions and all processing el-
ements at once, the coarse scheduler need only consider all instruc-
tions and the 64 possible domains. Then the fine scheduler is left
with some fraction of the instructions (those assigned to a domain)
and only 8 possible PE locations for each of those instructions.

In the next two sections we explain the coarse- and fine-grained
scheduling algorithms we use in this study.

3.2 Coarse Scheduling Algorithms
The coarse scheduler’s job is to partition instructions into large
groups and to assign each group to a domain. In this study we exam-
ine three approaches. We keep our descriptions of the algorithms to
a high level, as the mechanics of applying them to any architecture
are simple.

3.2.1 COARSE-BY-FUNCTION

COARSE-BY-FUNCTION allocates all instructions in a function to
the same domain. For each function, it cycles through the domains,
assigning the function to the first domain that has room for it. If no
domain qualifies, it selects the domain which currently contains the
fewest instructions, in order to balance the instruction load across
domains.

3.2.2 COARSE-BY-TOPOLOGY

Apart from function boundaries, COARSE-BY-FUNCTION does not
examine the topology of the application dataflow graph. COARSE-
BY-TOPOLOGY inspects the topology in more detail, placing
chains of dependent instructions in the same domain. In partic-
ular, COARSE-BY-TOPOLOGY performs a depth-first traversal of
the dataflow graph, filling domains with instructions in the order
in which it encounters them. Thus the algorithm tends to map
long chains of producer-consumer instructions to the same domain,
thereby localizing instruction communication within a domain.

3.2.3 COARSE-BY-EXE-ORDER

Like COARSE-BY-FUNCTION and COARSE-BY-TOPOLOGY,
COARSE-BY-EXE-ORDER fills domains with instructions in se-
quence, but it does so based on an actual execution profile. As
program execution demands each instruction, COARSE-BY-EXE-
ORDER assigns it to the current domain. Once this domain is full,
COARSE-BY-EXE-ORDER moves on to the next domain. Imple-
menting COARSE-BY-EXE-ORDER requires that the instruction
scheduler have access to an execution profile.

3.3 Fine Scheduling Algorithms
The job of a fine scheduling algorithm is to take the output of the
coarse scheduling phase, i.e., a mapping of instructions to domains,
and to assign each instruction to a specific PE in its domain. Each
of the three fine scheduling algorithms described in this section
processes domains one at a time.

3.3.1 FINE-BUG
FINE-BUG adapts the Bottom-Up-Greedy (BUG) [12] algorithm,
first used in the Bulldog VLIW compiler[11]. BUG was the first
phase of a two-phase scheduling strategy. Processing instructions in
a bottom-up, breadth-first order, it divided instructions into groups,
such that one instruction from each group would form a very long
instruction word. The second phase then produced the temporal
schedule for each group. Originally, BUG assumed zero commu-
nication latency between instructions in different groups. A second
version of BUG that appeared in the Multiflow compiler [22] for
clustered VLIWs, differentiates between local and remote operand
latency. It still processes instructions in a bottom-up, breadth-first
order, but attempts to place dependent instructions in the same
group, in order to reduce operand latency. This second version of
BUG is best-suited to WaveScalar, because it is aware of the non-
uniform operand latency within a domain.

Our version of BUG, FINE-BUG, also schedules instructions
with a bottom-up, breadth-first traversal of the dataflow graph.1

However, to place an instruction, FINE-BUG first calculates, for
each PE, the number of operands the instruction shares with any
of its successors that have already been assigned to the PE. FINE-
BUG assigns the instruction to the PE with the largest number of
communicating operands. Ties between PEs are broken by round-
robin priority.

3.3.2 FINE-UAS
FINE-BUG ignores the resource conflicts that arise when two in-
structions at the same PE can execute at the same time. When this
occurs, one instruction must wait an extra cycle (or more) for the
other to complete. Unified Assign and Schedule (UAS) [26] ac-
counts for stalling due to execution conflicts, as well as operand
latency. It unifies into a single heuristic both the spatial assign-
ment of instructions to execution locations (to minimize operand
latency) and the temporal scheduling of instructions at each loca-
tion (to minimize execution resource conflicts).

Our implementation of UAS, FINE-UAS, uses a heuristic that
reflects WaveScalar’s domain resources and latencies. FINE-UAS
processes instructions in a top-down, breadth-first order. For each
instruction it greedily chooses the best PE, according to a heuristic
that estimates when the instruction will execute, based on input
operand communication latency and projected resource conflicts.

Because WaveScalar fetches instructions for execution dynami-
cally, it is particularly difficult to determine when two instructions
will conflict at execution. We use a simple, but intuitive, heuristic:
if instructions are at the same depth in the dataflow graph, we as-
sume they will conflict, otherwise we assume they will execute at
different times.

3.3.3 FINE-BY-EXE-ORDER

The third fine scheduling algorithm we consider is a profile-
driven scheduler. Like COARSE-BY-EXE-ORDER, FINE-BY-EXE-

1 Some implementations of BUG involve two passes through the dataflow
graph. The first, bottom-up pass collects “candidate assignments” for each
instruction, and then the second pass, top-down, makes the final assignment
based on both the locations of the predecessors and candidate locations of
the successors. We experimented with this version, but found that the single
pass implementation described here was equally effective.

ORDER uses the dynamic execution order to choose PEs for in-
structions. As the program executes and instructions are loaded,
FINE-BY-EXE-ORDER begins with one PE, filling it to capacity
(64 instructions). It then moves on to the other PE in the pod and
then to another pod in the domain.

4. Experimental Evaluation
To evaluate the three coarse and three fine scheduling algorithms
from Sections 3.2 and 3.3, we produced schedules using each com-
bination of coarse and fine algorithm. We scheduled nine sample
applications from the Spec2000 [35] and Splash2 [4] benchmark
suites (art, equake, gzip, mcf, radix, twolf and fft, lu, ocean, re-
spectively).2 The cycle-level simulator used for this study is tuned
to match the latencies, resources, and restrictions of an RTL imple-
mentation [37] of the architecture.

Table 2 shows the average performance of each of these nine
schedules. The IPC for each is normalized to the IPC of COARSE-
BY-TOPOLOGY with FINE-BUG. In this section we discuss only
the results in the top part of Table 2. We will describe the experi-
ments that produced the last two rows of data in Section 5.

4.1 Coarse Scheduler Evaluation
To evaluate the quality of the coarse scheduling algorithms, we
compare the normalized IPCs in each of the first four rows in
Table 2. Each row enables us to evaluate: for a given fine scheduling
algorithm, how do the coarse schedulers compare? The data show
that COARSE-BY-EXE-ORDER has the best overall performance
with two of the three fine schedulers.

Two factors account for the better performance. First, COARSE-
BY-EXE-ORDER uses execution-order information to pack the sub-
set of static instructions that are actually executed more compactly.
(Rarely used paths are placed elsewhere in the processor.) This re-
duces average operand latency.

Second, COARSE-BY-EXE-ORDER-generated schedules incur
cheaper inter-domain operand traffic. The coarse schedulers de-
termine what share of operand traffic crosses domain boundaries.
As Figure 3 shows, COARSE-BY-EXE-ORDER and COARSE-BY-
FUNCTION each incur approximately the same amount of this traf-
fic (6% and 7%, respectively). However, for COARSE-BY-EXE-
ORDER the majority of the inter-domain traffic (85%) is local to
the cluster. In contrast, only 14% of COARSE-BY-FUNCTION’s
inter-domain traffic remains in the cluster, with the rest traversing
the more costly inter-cluster routing network. Thus, while each of
these two coarse algorithms produces the same proportion of inter-
domain traffic, this traffic generally travels farther, with increased
latency, using COARSE-BY-FUNCTION.

The one case in which COARSE-BY-EXE-ORDER is not the best
strategy is when combined with FINE-BY-EXE-ORDER. In this
situation COARSE-BY-FUNCTION produces better performance.
Judging only by the data in Figure 3, this is somewhat surprising,
because COARSE-BY-FUNCTION incurs the smallest amount of
intra-domain traffic of the three coarse schedulers. However, when
paired with a terrible fine scheduling algorithm (which, as we’ll
see in the following Section FINE-BY-EXE-ORDER turns out to
be), the best coarse strategy is to keep operand traffic outside of the
domain and out of the hands of the fine scheduler.

4.2 Fine Scheduler Evaluation
To compare the fine schedulers, we examine the values in each
column of Table 2. No matter the coarse scheduler, FINE-BUG
readily outperforms both FINE-BY-EXE-ORDER and FINE-UAS.
We first use simulator-generated data to examine the reasons why

2 We use these particular applications because both our binary translator-
based compiler and WaveScalar simulator can compile and simulate them.

COARSE-BY-FUNCTION COARSE-BY-TOPOLOGY COARSE-BY-EXE-ORDER Average
FINE-BUG 100% 110% 123% 111%
FINE-UAS 79% 94% 110% 94%
FINE-BY-EXE-ORDER 61% 77% 66% 68%
Average 80% 94% 100%
FINE-DAWG-MAX 108% 120% 141% 123%
FINE-DAWG-SAME 96% 112% 130% 113%

Table 2. Instruction schedule performance: These IPC values are averages across all applications, and normalized to the performance of
COARSE-BY-FUNCTION plus FINE-BUG.

FINE-BY-EXE-ORDER and FINE-UAS fall short, and then analyze
FINE-BUG’s success.

Based only on the distribution of intra-domain traffic shown in
Figure 3, FINE-BY-EXE-ORDER’s poor performance is somewhat
unexpected. Of the three fine scheduling algorithms, it confines
almost all of its intra-domain operand traffic to the cheaper intra-
pod communication. The preponderance of very localized traffic
resulted in average operand latencies that were 68% lower than
that of the other fine schedulers. Operand traffic is not the whole
story, however, as execution resource conflicts also contribute to
performance. Figure 4 shows that FINE-BY-EXE-ORDER incurs on
average 5.3 times the number of ALU conflicts/instruction as the
other fine schedulers. Thus, despite near-perfect communication
locality, its performance is hampered by its aggressive PE-packing
approach to fine scheduling.

As an aside, this validates the intuition described in Section 3
that coarse and fine placement are qualitatively two different prob-
lems. The scheduling strategy that produced the best performance
at the coarse level, resulted in the worst performance at the fine
level. Coarse schedulers can focus single-mindedly on reducing
operand latency and capturing instruction set working locality. Fine
schedulers, however, must carefully balance latency against re-
source contention.

FINE-UAS was designed to optimize the operand latency-
resource contention trade-off for processors that schedule instruc-
tions statically (e.g., VLIW processors). To incorporate the notion
of out-of-order execution, we augmented it with a simple heuristic
to estimate execution resource conflicts that occur from dynamic
dispatch. (Recall that, according to this heuristic, two instructions
will conflict if they are at the same depth in the dataflow graph). Our
results show that this intuitive and simple heuristic will not account
for the variation in instruction order induced by out-of-order exe-
cution. Table 2 shows that FINE-UAS performs more poorly than
FINE-BUG which does not explicitly consider resource conflicts.
Relative to FINE-BUG, FINE-UAS yields not only more execution
conflicts (Figure 4), but longer operand latency as well (Figures 3).

The failure of the conflict prediction heuristic can be traced to
two factors, both of which relate to the topology of the dataflow
graph. First, it is far more likely that two instructions that are
“nearby” in the dataflow graph will conflict. This is because they
are more likely to execute around the same time, even if they lie
at different depths. On the other hand, two instructions in entirely
separate subsections, but at the same depth of the graph, are more
likely to belong to different temporal phases of execution and there-
fore will likely not conflct. Second, not all anticipated resource con-
flicts should carry equal weight. When a dataflow graph is about to
fan out, increasing parallelism, it is best to exploit that parallelism
by dividing the instructions between multiple PEs; thus, these in-
structions should be weighted toward separate PEs. However, if
potentially conflicting instructions lie on paths which are about to
merge together, the scheduler should weigh those conflicts as less
likely to slow down execution.

Figure 3. Operand Traffic: A breakdown of the operand traffic
incurred by each instruction schedule. This data represents the av-
erage across all benchmarks. The coarse scheduling algorithm de-
termines what share of operand traffic travels across domain bound-
aries, and the fine scheduling algorithm determines how much
intra-domain traffic is also intra-PE.

Although more sophisticated heuristics, such as those based
on the discussion above, may improve the quality of FINE-UAS
schedules, we opted to pursue a more general strategy. Instead, we
have developed an algorithm that allows us to explore a range of
schedules in the latency-contention trade-off. We will explain this
algorithm in Section 5.

FINE-BUG does not use an explicit estimate of operand latency
or resource capacity. Nevertheless, its simple approach to balanc-
ing these two factors appears successful. The algorithm generally
tries to disperse instructions across parallel execution units, except
when overridden by operand locality concerns. The resulting mid-
dle ground between latency and conflicts is reflected by the data in
Figures 3 and 4. Coupled with FINE-BUG’s strong IPC results, this
indicates that some middle point, trading off communication local-
ity and execution conflicts, is a good design target. This observation
motivates the development of FINE-DAWG.

5. FINE-DAWG Scheduling
In this section we describe FINE-DAWG, a new scheduling algo-
rithm designed both to explore the latency-contention design space
and to generate quality code for dynamically scheduled processors.
FINE-DAWG operates in two phases, first bundling instructions
into groups, and then assigning each of these groups to a PE. Be-
fore delving into the mechanics of the algorithm, we first describe
these two phases informally.

Phase one forms groups based on the topology of the dataflow
graph. It takes two parameters, MaxDepth and MaxWidth, and
carves the dataflow graph into groups of instructions which have
dependence chains at most MaxDepth instructions long, with
each instruction having at most MaxWidth potentially parallel

0

1

2

3

4

5

6

7

8

F
IN
E
-B
U
G

F
IN
E
-U
A
S

F
IN
E
-B
Y
-E
X
E
-O
R
D
E
R

F
IN
E
-D
A
W
G
-M
A
X

F
IN
E
-D
A
W
G
-S
A
M
E

F
IN
E
-B
U
G

F
IN
E
-U
A
S

F
IN
E
-B
Y
-E
X
E
-O
R
D
E
R

F
IN
E
-D
A
W
G
-M
A
X

F
IN
E
-D
A
W
G
-S
A
M
E

F
IN
E
-B
U
G

F
IN
E
-U
A
S

F
IN
E
-B
Y
-E
X
E
-O
R
D
E
R

F
IN
E
-D
A
W
G
-M
A
X

F
IN
E
-D
A
W
G
-S
A
M
E

COARSE-BY-FUNCTION COARSE-BY-TOPOLOGY COARSE-BY-EXE-
ORDER

A
L
U

 C
o

n
fl

ic
ts

 p
e
r

In
st

ru
ct

io
n

 E
x
e
cu

te
d

Figure 4. ALU Conflicts: The average number of ALU conflicts
per instruction executed for each placement.

successors. The MaxDepth parameter controls how aggressively
FINE-DAWG confines operand communication to within a single
PE: a high value reduces operand latency, as more dependent in-
structions are placed at the same PE; alternatively, a low setting in-
creases operand latency by assigning instructions to different PEs.
MaxWidth limits the amount of parallelism within a single PE:
a high value increases ALU contention, as more parallel instruc-
tions are scheduled to the same PE, and a low value has the op-
posite effect. While all of these values can be selected indepen-
dently, wise choices will take care to observe the capacity at each
PE (64 instructions). Settings where MaxWidth × MaxDepth
vastly exceed this number will likely cause the WaveScalar proces-
sor to thrash.

After phase one has assigned all of the instructions in the
dataflow graph to groups, phase two maps these groups to PEs us-
ing a single parameter, DepDegree. DepDegree is a value be-
tween zero and one, and determines how aggressively inter-group
operand dependencies are used to choose PE locations for groups.
A value close to zero raises the probability of dependent groups
being placed on the same PE; a value close to one separates them.

We will make this brief description of FINE-DAWG more pre-
cise by walking through the algorithm’s pseudocode.

Phase One: Phase one gathers instructions into groups based on
the topology of the dataflow graph. The algorithm maintains a list
of nodes that have no predecessors. To create a group (GRP),
FINE-DAWG first calls CreateGroup(i) on an instruction i from
this list. Then, after the group is created, it removes the instructions
in the group from the graph (adding them to GROUPED) and
updates the list of predecessor-free nodes. The process repeats until
all instructions belong to a group.

Algorithm 1 details how to generate a group, beginning
from some instruction i. CreateGroup(i) traverses levels of the
dataflow graph iteratively from instruction i, up to MaxDepth
levels deep (line 3). At most MaxWidth instructions from each
level are added to the group (lines 4 and 5).

Phase Two: Phase two accepts a single tuning parameter,
DepDegree, and assigns each of the groups produced by phase
one (GROUPS) to a PE. Initially, all of the PEs contain no in-
structions. For each group, GRP , FINE-DAWG identifies the two
PEs, pemax and pemin, with whose instructions GRP has most and
fewest dependences, respectively. With probability DepDegree, it
will assign GRP to pemax; otherwise it assigns it to pemin.

Algorithm 1 FINE-DAWG: CreateGroup(i): A portion of Phase
One

1: GRP = i
2: LEV EL = successors(i)
3: for depth = 1 to MaxDepth do
4: SELECTED = MaxWidth nodes from LEV EL
5: GRP = GRP

S
SELECTED

6: GROUPED = GROUPED
S

SELECTED
7: LEV EL = successors(SELECTED)
8: end for
9: return GRP

Algorithm 2 FINE-DAWG: Phase Two (applied to the output of
Phase One, GROUPS)

1: for all GRP ∈ GROUPS do
2: r = rand()
3: if r < DepDegree then
4: assign GRP to the PE with which it has the most com-

munication
5: else
6: assign GRP to the PE with which it has the least com-

munication
7: end if
8: end for

5.1 Evaluation
We explore the tradeoff between execution resource conflicts
and operand latency by exploring the parameter space of
FINE-DAWG. Beginning with the domain assignments pro-
duced by COARSE-BY-FUNCTION, COARSE-BY-TOPOLOGY,
and COARSE-BY-EXE-ORDER, we produced PE assignments
using FINE-DAWG, parameterized by each combination of
MaxDepth ∈ {2, 4, 8, 12, 16, 32, 50, 64, 128}, MaxWidth ∈
{1, 2, 3, 4, 6, 10}, and DepDegree ∈ {.1, .5, .9}.

We begin our analysis of FINE-DAWG by observing how much
of the latency-contention design space it explores. Using COARSE-
BY-EXE-ORDER as the coarse scheduler, along with FINE-DAWG
with all 162 parameter settings, we scheduled all of the applications
in our workload. Figure 5 depicts the average latency-contention
for the benchmarks for each parameter configuration. The X-axis
measures the percentage of inter-pod operand traffic within total
traffic; the Y-axis measures ALU conflicts per executed instruction.
The graph also shows three additional labeled axes. These depict
how changes in FINE-DAWG-MAX’s input parameters effect the
resulting schedule output. Finally, we have added points for FINE-
BUG, FINE-UAS, FINE-DAWG-SAME, and FINE-DAWG-MAX
(the latter two are explained below). (FINE-BY-EXE-ORDER is an
outlier, with low latency and extremely high conflicts.)

The data provide several insights about FINE-DAWG. First, it
indicates that varying the parameters of FINE-DAWG successfully
manipulates both operand latency and ALU conflicts, providing a
complete exploration of that trade-off space. Second, it shows that
the inter-pod operand traffic threshold below which ALU conflicts
rise dramatically falls at 35%. This gives code schedulers the maxi-
mal end point for PE instruction occupancy. Lastly, FINE-UAS lies
at a non-Pareto optimal point; consequently, because schedules ex-
ist that have both lower latency and ALU contention, one would not
apply FINE-UAS to WaveScalar.

The charts in Figure 7 show how the performance of FINE-
DAWG varies from application to application. The X and Y axes in
the chart show the parameter space MaxWidth and MaxDepth
respectively for DepDegree = 0.1. The shading gradient indi-

cates the performance of each parameter setting relative to the per-
formance for the best parameter setting for that application. The
darker the shading, the stronger the performance.

The applications interact with FINE-DAWG’s parameters in
a variety of ways. In the top row are ocean, mcf, and gzip, for
which the vast majority of the parameter settings settings fall in the
90-100% gradient. This consistency is due to “saturation” of the
dataflow graph, when forming deeper and deeper subgraphs fails to
yield any more improvement in performance. By contrast the appli-
cations in the bottom row, fft, radix, and lu, are all extremely sen-
sitive to MaxWidth and MaxDepth, and each prefers a slightly
different parameter range. This is because kernels drive the per-
formance of these three benchmarks. When the topology of FINE-
DAWG’s subgraphs fits the kernel well, performance is strong; but
if the fit is not good, it quickly drops off. This implies that it may
be fruitful to identify and use hotspots to set FINE-DAWG’s pa-
rameters.

In practice, it is not practical to explore the entire parameter
space as we have. As an alternative, we have identified the single
parameter set which produced the best overall performance. The
analysis in Figure 6 is the basis for this selection. The plot depicts
the cumulative distribution functions of the different parameter set-
tings applied to our set of applications. The X-axis is the perfor-
mance loss relative to the best performing schedule (expressed as
a percentage decrease in maximal IPC). For a particular X-value,
the Y-axis indicates the number of applications whose performance
is at the X-value level or faster. Depending on how close to maxi-
mal we require performance to be (the X value), the Y value is an
indication of how likely it is that that an application will achieve it.

In order to display the information in Figure 6 more clearly,
we have shown only five of the total 162 different parameter com-
binations used in this study, the two best settings and three oth-
ers that are representative of the range of results. The data shows
that (MaxDepth, MaxWidth, DepDegree) = (50, 3, .1) con-
sistently produced better schedules than all other settings, coming
within 17% of maximal for all applications.

Returning to Table 2, we see that the combination of FINE-
DAWG with COARSE-BY-EXE-ORDER produces the best per-
forming schedules. We show two data points for FINE-DAWG:
FINE-DAWG-SAME and FINE-DAWG-MAX. FINE-DAWG-
SAME is the performance when using the strongest consistent
parameter set, (50, 3, .1), across all applications. This exceeds
the previous best combination of COARSE-BY-EXE-ORDER and
FINE-BUG by 14%. FINE-DAWG-MAX is the performance when
using the best parameters for each application, which exceeds
COARSE-BY-EXE-ORDER and FINE-BUG by 28%.

6. Related Work
Instruction scheduling is a classic compiler optimization problem,
which has been widely studied [29, 40, 21, 16]. As they are most
closely related to WaveScalar scheduling, we focus our discussion
of related work on algorithms designed for tiled architectures which
have a spatial component.

Scheduling on Clustered Microarchitectures
Recent processor designs partition hardware resources to counter-
act increasingly slow communication latencies (relative to compu-
tation latencies). Instruction scheduling is used, in part, to mini-
mize the additional cycle(s) spent accessing the remote resources.
Several scheduling algorithms attempt to balance operand locality
with instruction-level parallelism. We opted to begin our schedul-
ing work by implementing Bottom-Up-Greedy [12], because it is
the canonical solution for this type of problem. Unified Assign and
Schedule [26] was also chosen, because it is, in essence, a general
scheduling framework into which a compiler writer inserts a cus-

incre
asing MaxDepth

increasing MaxWidth

increasing DepDegree

Figure 5. Communication Latency-Resource Conflict Trade-
off Exploration: An illustration of the latency-conflict tradeoff,
measured by the percentage of inter-pod operand traffic and ALU
conflicts per executed instruction. This data was generated using
COARSE-BY-EXE-ORDER as the coarse scheduler and represents
the average across all applications. Each cross indicates a design
point explored using FINE-DAWG. The plot also shows where in
the tradeoff the three previous fine scheduling algorithms, FINE-
BUG, FINE-UAS, and FINE-BY-EXE-ORDER, fall.

0

1

2

3

4

5

6

7

8

9

0% 5% 10% 15% 20%

Acceptable Performance Range (as pct. difference from RECT-FINE-MAX IPC)

N
u

m
b

e
r

o
f

A
p

p
li

ca
ti

o
n

s
w

it
h

 A
cc

e
p

ta
b

le
 P

e
rf

o
rm

a
n

ce

(50,3,0.1)

(32,3,0.5)

(12,6,0.1)

(128,6,0.1)

(2,2,0.1)

Figure 6. Cumulative Distribution Function of FINE-DAWG
Parameters: Each line in this graph corresponds to a differ-
ent FINE-DAWG parameter setting (MaxDepth, MaxWidth,
DepDegree). For ease of display, only five parameter settings of
the full 162 are shown: the two best, which have the solid mark-
ers, and three from other parts of the spectrum. The X-value de-
fines a range of acceptable schedule performance; each X value is
some percentage decrease in IPC from the best performing sched-
ule, called FINE-DAWG-MAX. The Y-axis indicates the number
of applications for which a given parameter setting will produce
performance at least as high as the value specified by an X value.
For example, with the parameter setting (50,3,.1), 5 of 9 applica-
tions achieve performance that is no less than 7% lower than the
performance of FINE-DAWG-MAX.

Figure 7. FINE-DAWG Parameter Performance: These plots compare the performance of each parameter setting of FINE-DAWG for
each application. The gradient indicates, for each parameter setting, the percentage of the IPC of the maximal parameter setting, it achieves.
The behavior of the applications varies dramatically, from extreme parameter insensitivity in the top row to extreme parameter sensitivity in
the bottom row.

tom heuristic for the target architecture. The original developers
examined several heuristics for clustered microarchitectures [26].
In adapting UAS for WaveScalar, we developed the WaveScalar-
specific heuristic described in Section 3.3.2.

Other efforts have focused specifically on clustered VLIW ar-
chitectures, including modulo scheduling [32], which, like UAS,
performs both instruction placement and instruction ordering, and
in later versions [43], register spill code insertion, in a single pass.
The work by Zalamea et al. [43] studies the effects of program
transformations on the success of these scheduling algorithms.

The developers of Lx [13], a clustered VLIW microarchitecture,
also studied the spatial aspect of instruction scheduling, and de-
veloped another heuristic-based approach to instruction placement
[10]. This method employs a pared-down list scheduler to evaluate
the ultimate schedule length for a given placement.

Scheduling for Raw
Despite several fundamental differences, Raw [39] and WaveScalar
share a grid topology. Raw tiles are arranged in a 2D mesh, with
distance-dependant communication latencies between tiles. Raw
employs a four-phase instruction scheduler [18, 20]: clustering in-
structions using dominant sequence clustering [42], merging clus-
ters to match the smaller number of tiles, assigning the clusters to
tiles, and finally producing a temporal schedule for the instructions
at each tile using a list scheduler.

Scheduling for TRIPS
The TRIPS compiler [24, 6] assigns instructions to locations in its
grid of processing elements based on the estimated length of the
critical path. The TRIPS compiler applies this algorithm to map
each instruction in a hyperblock (up to 128 instructions) on to one
of execution tiles. This smaller problem size, coupled with addi-
tional mapping constraints such as the location of the register file
and memory interface, significantly reduces the space of possible
mappings.

Partitioning and Scheduling for Data Cache Locality
Data cache-conscious instruction scheduling has seen two primary
thrusts. One approach has been to schedule instructions so as to
improve the locality of the data stream for a single processor
[34, 5, 30, 41]. The second approach, applied to shared memory
multiprocessors, selects and assigns tasks to processors to mini-
mize data sharing between them [38, 1, 2]. Neither of these tech-
niques is particularly well-suited to the scheduling problem that
concerns us in this work. The former deals with temporal sched-
ules which do not exist on a dataflow machine. The latter deals
with cache coherence issues due to distributed memory; because
most WaveScalar execution occurs within cluster boundaries, co-
herence traffic is small enough that we are comfortable leaving the
coherence issue out of placement for the time being.

7. Conclusion
Research is well underway at many universities on tiled architec-
ture designs. This style of microprocessor requires adaptations in
the instruction scheduler to achieve peak performance. This paper
takes a hierarchical approach to instruction scheduling for a par-
ticular tiled architecture, WaveScalar. We find that the hierarchi-
cal technique aids in algorithm design, as coarse- and fine-level
scheduling are qualitatively different problems. Scheduling at the
coarse level, across domains, is entirely about minimizing operand
communication latency. However this strategy fails at the fine level,
within a domain. There schedulers must carefully balance operand
latency with execution resource conflicts. The algorithm developed
in this work, FINE-DAWG, explores this trade-off and efficiently

identifies the optimal latency-conflict design point. FINE-DAWG
also provides a means to attain that goal.

Acknowledgments
This work has been made possible through the generous sup-
port of an NSF CAREER Award (ACR-0133188), ITR grant
(CCR-0325635), and doctoral fellowship (Swanson); Sloan Re-
search Foundation Award (Oskin); Intel Fellowships (Swanson,
Mercaldi); ARCS Fellowships (Putnam, Schwerin); and support
from Intel and Dell.

References
[1] S. P. Amarasinghe and M. S. Lam. Communication optimization and

code generation for distributed memory machines. In Proceedings of
the Conference on Programming Language Design and Implementa-
tion, 1993.

[2] J. M. Anderson and M. S. Lam. Global optimizations for parallelism
and locality on scalable parallel machines. In Proceedings of the
Conference on Programming Language Design and Implementation,
1993.

[3] Arvind and R. Nikhil. Executing a program on the mit tagged-token
dataflow architecture. IEEE Transactions on Computers, 39(3), 1990.

[4] D. Buell et al. Splash 2: FPGAs in a Custom Computing Machine.
IEEE Computer Society, 1996.

[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. In Proceedings of the Conference on Programming Language
Design and Implementation, 1999.

[6] K. Coons, X. Chen, S. Kushwaha, K. McKinley, and D. Burger.
A spatial path scheduling algorithm for EDGE architectures. In
Symposium on Architectural Support for Programming Languages
and Operating Systems, 2006.

[7] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek. Fine-grain parallelism with minimal hardware sup-
port: A compiler-controlled threaded abstract machine. In Proceed-
ings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, 1991.

[8] A. L. Davis. The architecure and system method of DDM1: A
recursively structured data driven machine. In Proceedings of the
Annual Symposium on Computer Architecture, Palo Alto, California,
April 3–5, 1978. IEEE Computer Society and ACM SIGARCH.

[9] J. B. Dennis. A preliminary architecture for a basic dataflow pro-
cessor. In Proceedings of the Symposium on Computer Architecture,
1975.

[10] G. Desoli. Instruction assignment for clustered VLIW DSP compilers:
A new approach. Technical Report HPL-98-13, Hewlett-Packard
Laboratories, January 1998.

[11] J. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis,
MIT, 1986.

[12] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. ACM
doctoral dissertation award; 1985. The MIT Press, 1986.

[13] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood.
Lx: A technology platform for customizable VLIW embedded
processing. In International Symposium on Computer Architecture,
2000.

[14] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The
Epsilon dataflow processor. In Proceedings of the International
Symposium on Computer Architecture, 1989.

[15] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype
dataflow computer. Communications of the ACM, 28(1), 1985.

[16] D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction
scheduling when memory latency is uncertain. In Proceedings of the
Conference on Programming Language Design and Implementation,
1993.

[17] M. Kishi, H. Yasuhara, and Y. Kawamura. DDDP-A distributed data
driven processor. In Proceedings of the International Symposium on
Computer Architecture, 1983.

[18] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,
and S. Amarasinghe. Space-time scheduling of instruction-level
parallelism on a Raw machine. In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems, 1998.

[19] W. Lee et al. Space-time scheduling of instruction-level parallelism
on a Raw machine. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating,
1998.

[20] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent
scheduling. In Proceedings of the International Symposium on
Microarchitecture, 2002.

[21] J. L. Lo and S. J. Eggers. Improving balanced scheduling with
compiler optimizations that increase instruction-level parallelism. In
Proceedings of the Conference on Programming Language Design
and Implementation, 1995.

[22] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein,
R. P. Nix, J. S. O’Donnell, and J. Ruttenberg. The multiflow trace
scheduling compiler. J. Supercomputing, 1993.

[23] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz.
Smart memories: A modular reconfigurable architecture. In
International Symposium on Computer Architecture, 2002.

[24] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin,
and S. W. Keckler. Static placement, dynamic issue (SPDI) scheduling
for EDGE architectures. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
2004.

[25] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. A design
space evaluation of grid processor architectures. In Proceedings of
the International Symposium on Microarchitecture, 2001.

[26] E. Özer, S. Banerjia, and T. M. Conte. Unified assign and
schedule: A new approach to scheduling for clustered register file
microarchitectures. In Proceedings of the International Symposium
on Microarchitecture, 1998.

[27] G. Papadopoulos and D. Culler. Monsoon: An explicit token-store
architecture. In Proceedings of the International Symposium on
Computer Architecture, 1990.

[28] G. M. Papadopoulos and K. R. Traub. Multithreading: A revisionist
view of dataflow architectures. In Proceedings of the International
Symposium on Computer Architecture, 1991.

[29] T. A. Proebsting and C. N. Fischer. Linear-time, optimal code
scheduling for delayed-load architectures. In Proceedings of the
Conference on Programming Language Design and Implementation,
1991.

[30] G. Rivera and C.-W. Tseng. Data transformations for eliminating
conflict misses. In Proceedings of the Conference on Programming
Language Design and Implementation, 1998.

[31] S. Sakai, y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An
architecture of a dataflow single chip processor. In Proceedings of the
International Symposium on Computer Architecture, 1989.

[32] J. Sanchez and A. Gonzalez. Instruction scheduling for clustered
VLIW architectures. In Proceedings of the International Symposium
on System Synthesis, 2000.

[33] T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguchi. Evaluation
of a prototype data flow processor of the sigma-1 for scientific
computations. In Proceedings of the International Symposium on
Computer Architecture, 1986.

[34] Y. Song and Z. Li. New tiling techniques to improve cache temporal
locality. In Proceedings of the Conference on Programming Language
Design and Implementation, 1999.

[35] SPEC. Spec CPU 2000 benchmark specifications. SPEC2000
Benchmark Release, 2000.

[36] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar.
In Proceedings of the International Symposium on Microarchitecture,
2003.

[37] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Petersen,
A. Schwerin, M. Oskin, and S. Eggers. Area-performance trade-offs
in tiled dataflow architectures. In Proceedings of the International
Symposium on Computer Architecture, 2006.

[38] R. von Hanxleden and K. Kennedy. Give-n-take - a balanced
code placement framework. In Proceedings of the Conference on
Programming Language Design and Implementation, 1994.

[39] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring it all to software: Raw machines. Computer,
30(9), 1997.

[40] K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling
using integer programming. In Proceedings of the Conference on
Programming Language Design and Implementation, 2000.

[41] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In
Proceedings of the Conference on Programming Language Design
and Implementation, 1991.

[42] T. Yang and A. Gerasoulis. PYRROS: static task scheduling and code
generation for message passing multiprocessors. In Proceedings of
the International Conference on Supercomputing, 1992.

[43] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Modulo scheduling
with integrated register spilling for clustered vliw architectures. In
Proceedings of International Symposium on Microarchitecture, 2001.

