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Abstract

Deep reinforcement learning has achieved superhuman performance in many chal-
lenging environments, but its practicality is limited by the high sample cost of
current algorithms. Many have argued that sample-efficient reinforcement learning
must be undergirded by significant unsupervised and supervised learning. It has
also been noted that current Deep RL algorithms begin learning with very little
information about the world, and that by including priors for environments of
practical interest we could achieve gains in sample efficiency. In particular, the
visual world is composed of objects, for which humans have modelling, exploration,
and causality priors that allow them to learn in visual environments many orders
of magnitude faster than current deep RL algorithms. We use these observations
as inspiration for a new object oriented reinforcement learning framework. Our
framework learns a succinct object representation of the environment from pixels
and trains models of those objects’ behaviors from observations. We then use the
prior that important events occur when objects contact to develop a reinforcement
learner with object contact-focused exploration, planning, and value and reward
estimators. Our system achieves DQN-level performance with up to 10,000x fewer
samples, learning faster than even humans.

1 Introduction

Deep reinforcement learning has achieved impressive performance in many environments (Mnih,
Kavukcuoglu, et al. 2015; Mnih, Badia, et al. 2016; Silver et al. 2017). However, the sample
inefficiency of deep reinforcement learning algorithms limits their applicability to real-world domains.
These algorithms are very general, in theory capable of learning in all environments. However, we
are only interested in real-world environments, suggesting that current deep reinforcement learning
algorithms could be improved by incorporating additional priors or heuristics.

In most real-world environments, humans are able to achieve good performance after much less
experience than machines, pointing to the incorporation of human-inspired priors as a means of
improving sample efficiency. As extensively documented in psychology, humans perceive the world
in terms of objects: groups of percepts that behave similarly across time (Spelke 1990). Humans are
then able to use this powerful state representation to model, plan, and formulate goals. In contrast,
most deep reinforcement learning algorithms rely on end-to-end trained deep neural networks to
choose actions from pixels, forcing the agent to learn approximations of objects, object dynamics,
and planning from scratch for each environment.

We incorporate human object priors into a reinforcement learner by developing a compact object-level
representation and model of the environment from pixels with no supervision by oversegmenting,
modeling segment dynamics, and then combining segments with dynamics that can be described
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by a single model equally well as separate models into objects. In addition to being compact and
powerful, this environment representation allows our agent to explore at an object level, exploring
contacts between an agent-controlled object and other objects instead of taking ε-random actions. We
combine these object priors with a simple linear reinforcement learner and brute-force planner to
create an Object-Level Reinforcement Learner (OLRL). We compare this OLRL with humans, deep
reinforcement learners, and the current state-of-the-art object feature set, Blob-PROST (Liang et al.
2016) on Atari environments, and show that it yields large improvements in sample and computational
efficiency, as well as interpretability. Our object detection and tracking module can be used as a
general preprocessor for reinforcement learning in domains like Atari video games, potentially greatly
increasing the pace of experiments in this area.

2 Related Work

Deep reinforcement learners are the current state-of-the art for many complex and high-dimensional
environments. At a high level, they use an end-to-end neural network policy to choose actions from
raw inputs. DQN (Mnih, Kavukcuoglu, et al. 2015) established the efficacy of these methods on Atari
2600 games, and has seen many improvements including A3C (Mnih, Badia, et al. 2016), Double
Q-Learning (Van Hasselt, Guez, and Silver 2016), and Prioritized Replay (Schaul et al. 2016), and
Dueling Networks (Wang et al. 2016). However, even the current best deep agents for Atari games,
Rainbow (Hessel et al. 2017) and NEC (Pritzel et al. 2017), take millions of experiences to match
humans.

Our work is most closely related to Blob-PROST (Liang et al. 2016, Machado et al. 2018), BASS,
(Naddaf 2010), and other feature sets which specify millions of features in an attempt to capture
object-level relations. Blob-PROST is the current state of the art, and functions by first segmenting
an image into monocolor blobs. It then approximates relative object distance by dividing an image
into tiles and having binary features φk1,k2,(i,j) to represent a pair of blobs of colors k1, k2 offset by
(i, j) tiles. A similar set of binary features are used to approximate relative velocities, φk1,k2,(i,j),t,
indicating whether the relative position feature φk1,k2,(i,j) was true t timesteps in the past. We
improve on these feature sets by demonstrating how to track percepts such as monocolor blobs across
frames and combine these percepts into higher-level objects without any supervision. This allows
object relative position and velocity to be obtained exactly and represented much more naturally and
compactly with a few hundred scalar values rather than several million binary features. In addition,
we are able to create of new features such as accelerations and contacts.

There has been much work on model-based deep reinforcement learning and predicting future states
or values with deep networks. Oh, Guo, et al. 2015 and Chiappa et al. 2017 use deep neural
networks to accurately predict Atari frames hundreds of steps into the future. However, they rely
on hundreds of thousands of training frames, computationally intensive deep architectures, do not
consider environment stochasticity, and predict at the pixel level rather than the more efficient object
level. Dosovitskiy and Koltun 2017 predict future state for Doom, specifically health, ammunition,
and monster kills and use this to plan actions. However, unlike objects, these features Doom-specific
and have complex dynamics. Garnelo, Arulkumaran, and Shanahan 2016 does reinforcement learning
on a high-level symbolic world representation learned with no supervision, but must still learn what
good world representations are and is only successful on very simple environments. Xue et al. 2016;
Ebert et al. 2017; Oh, S. Singh, and Lee 2017; Higuera, Meger, and Dudek 2018 all learn to predict
future state, but still predict either very low-level features difficult to learn on or high-level features
that require many sample to effectively model. AlphaZero (Silver et al. 2017) uses a model of its
environment, Go, a deep neural network to estimate state value, and Monte Carlo tree search to plan
Go moves remarkably well. However, its model relies on strong self-play developed with an immense
number of experiences and human specified game rules. In contrast, we use highly general priors to
quickly learn a model from data with no supervision or human engineering.

Relational MDPs (Guestrin et al. 2003) propose generalizing across objects to improve planning.
Diuk, Cohen, and Littman 2008 propose reinforcement learning on Object Oriented MDPs, and
Scholz et al. 2014 extends this by learning parameters to physics based models. Kansky et al. 2017
learn more general probabilistic object models and demonstrate how to plan on such models using
inference. demonstrate the power of object-like features and linear policies to rival the performance of
deep reinforcement agents, but sacrifice sample efficiency, interpretability, and the potential to model
and plan by using millions of features. By learning the parameters of physics-based environments
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models. Woof and K. Chen 2018 develop an object embedding network to achieve great performance
in complex environments, but require labeled objects, which we demonstrate how to obtain with no
supervision.

Reward shaping is another way to incorporate human priors into reinforcement learning (Ng, Harada,
and Russell 1999). Hybrid Reward Architectures (Van Seijen et al. 2017) show the potential of
object-level reinforcement learning by using per-object reward functions to achieve approximately
10x the score of Rainbow, the current state-of-the-art model-free agent (and 400x when using a simple
form of memorization/planning), but relies on humans to label objects in its domain, Ms. Pacman.

There has been much work on augmenting agents using imitation learning (Ziebart et al. 2008; Hester
et al. 2018; Le et al. 2018), where agents learn from demonstrations, often by humans, which may
be viewed as another technique of incorporating human priors, albeit priors that are much more
task-specific. However, demonstrations are typically very limited in number, making generalization
difficult.

3 Background

Reinforcement learning attempts to solve the problem of taking actions in some environment to
maximize some reward. Formally, let a ∈ A be actions, s ∈ S be environment states, t ∈ 0, 1, . . . ,∞
be time steps, T (s′, s, a) = P (s′|s, a) be a stochastic transition function, R(s, a) be a stochastic
reward function, and γ ∈ [0, 1] be a discount factor. These define a Markov decision process where
the goal at each time ti is to take the action ai that maximizes the expected discounted reward,∑∞
t=0R(st, at)γ

t. Reinforcement learning solves this MDP by learning a policy π which specifies
the probability of the agent choosing each action given the current state. Define the state value function
to be Vπ(s) = Eπ[

∑∞
k=0 γ

kRt+k+1(st+k+1, at+k)|st = s] and the state-action value function to be
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kRt+k+1(st+k+1, at+k))|st = s, at = a], where Eπ[·] denotes the expected
value of the random variable given that the agent follows π. Then the optimal state value and
state-action value functions are V∗(s) = maxπ Vπ(s) and Q∗(s, a) = maxπ Qπ(s, a) for all s ∈ S
and a ∈ A, and an optimal policy π is one that is greedy with respect to the optimal state value or
state-action value function. A near-optimal π is typically created by learning approximations of V∗(s)
or Q∗(s, a) and implementing π by greedily choosing the best state or state-action, taking random
actions with probability ε to achieve exploration.

Model-based reinforcement learning allows the agent access to a model of the world. The model can
take several forms, such as only allowing sampling possible future states, or outputting all possible
future states and their probabilities given the current state and action. When the model is perfect and
the MDP small, the problem may be solved using dynamic programming. However, this is rarely
the case and the model must often be learned from experience on very large state spaces. For this
case algorithms such as Dyna (Sutton 1991) and Real-time Dynamic Programming (Barto, Bradtke,
and S. P. Singh 1995) learn policies by using the model as a simulator to generate additional training
experiences.

Model-based reinforcement learning algorithms use their models to generate simulated trajectories
to train the policy on. One of the most effective algorithms for such planning is Monte Carlo Tree
Search (MCTS), which repeatedly samples the most promising action sequences according to a tree
policy, approximating the return of a state by playing to the end of the episode from that state using
a rollout policy. A learned approximation of state or state-action return may be used in place of
this rollout. One common tree policy is UCT: a new action sequence is sampled by, at each action
decision, selecting an unexplored action and returning the new action sequence, or, if none, selecting

the child action Ai that maximizes the UCB1 confidence bound, UCB1 = Āi + c
√

2 logn
ni

, where n

and ni are the number of times the parent and child actions, respectively, have been sampled. Āi is
the mean terminal value of all sampled action sequences that take Ai, where the terminal value is the
sum of rewards plus the value of the last sampled state.

4 Object-Level Reinforcement Learning

In this section we describe our Object-Level Reinforcement Learning (OLRL) framework which
uses standard tools from computer vision, planning, and reinforcement learning to develop an agent
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that incorporates human object priors. At a high level, our agent learns an object representation
of the environment from pixels by oversegmenting images, modeling segment dynamics, and then
combining segments with similar dynamics into objects. Our agent then learns state reward and value
estimators as functions of object features. Finally, our agent determines optimal actions by planning
using the dynamics models and reward and value estimators.

4.1 Object Recognition, Tracking, and Dynamics Modeling

We define objects as groups of percepts with very similar behavior. This definition provides a path
to unsupervised object recognition, tracking, and modeling from pixels through coupled object
recognition and dynamics modeling. Our agent first oversegments an input image into percepts using
a standard image segmentation algorithm such as the Watershed algorithm (Haris et al. 1998) or SLIC
(Achanta et al. 2012). These percepts are then tracked across images using a tracking algorithm such
as SemiBoost (Grabner, Leistner, and Bischof 2008) or median flow (Kalal, Mikolajczyk, and Matas
2010) biased to under-track. This information allows us to represent the state of the world in terms of
powerful object level features, such a positions, velocities, accelerations, and collisions. Our agent
then trains a supervised model to predict the next game state given the current and past game states.

While any tracking algorithm could work, we developed the following for fast, reliable performance
even in environments with complex object dynamics. First we segment the image into objects o ∈ O,
where each object o is a set of pixels, and then track objects across frames by scoring each object in
the current frame, oc ∈ Oc, against the last seen instance of all previous objects, op ∈ Op, using a
linear combination of several intuitive scores. Let Pdm(x) be the probability of event x according to
the dynamics model. Let e1, . . . , ei = E be the i experiences the agent has encountered. Let loc(o)
for o ∈ O be the mean coordinates of the pixels composing object o.

S(oc, op) = c0Sdisp + c1Sshape + c2Sperm + c3Ssize + c4Smotion
Sdisp is the total change in relative distance between oc and op and all objects contacting op, capturing
the notion that over small changes in time the positions of objects generally do not change too much.

Sshape =

25∑
i=1

| log(Zi(oc))− log(Zi(op))|

where Zi(o) = ith Zernike moment (Khotanzad and Hong 1990) of o, encoding object shape
consistency.

Sperm captures the intuition that objects generally do not appear or disappear and is the number of
experiences since op was last seen, clipped at 5,

Ssize = max(
|oc|
|op|

,
|op|
|oc|

)− 1.

Smotion encodes that many objects are background objects and are unlikely-move:

Smotion = log(max(Pmotion(oc, op), ε)),

where ε is some small positive constant.

Pmotion(oc, op) =

{
Pdm(Moves(op)|e1, . . . , ei), if loc(oc) 6= loc(op)

Pdm(NotMoves(op)|e1, . . . , ei), if loc(oc) = loc(op)

We track objects by assigning oc to op where oc, op = arg minoc∈Oc\Oac,op∈Op\Oap
S(oc, op) and

S(oc, op) ≤ t, the threshold and adding oc to Oac and op to Oap until no more such assignments can
be made. Any objects remaining in Oc \ Oac are considered new objects.

As long as the object recognition and tracking always oversegments, so no two objects are perceived
as one, and under-tracks, so no two objects are tracked as one across frames, we argue that this state
representation is functionally as expressive as raw pixels. The requirements of oversegmenting and
under-tracking are generally easily met by adjusting segmentation and tracking algorithm thresholds.
However, an object-level representation must be succinct in addition to fully expressive in order to
be useful, and our algorithm of always oversegmenting and under-tracking will produce many more
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objects than necessary. To remedy this we use our definition of an object as a group of percepts with
similar behavior: we combine two percepts into one object by testing if the error of a dynamics model
with the two percepts as one object is not more than the error of the current dynamics model with
the two percepts as separate objects. In addition to creating a more compact object representation,
this percept combining gives us labels for when our tracking algorithm correctly and incorrectly
recognized and tracked objects. These labels allow us to train supervised learners to fit the tracking
to the environment, quickly allowing our perceptual system to segment and track the environment as
a succinct set of objects in real time rather than requiring observations of percepts to correct its errors
by combining those precepts into objects.

We learn an improved tracker by training a set of XGBoost (T. Chen and Guestrin 2016) trees, one
per known object, on the history of observed attempted trackings. That is, for every pair of objects op
and oc considered, where oc would be the next observation of op, we trained the tree to output a 1 if
oc was actually determined to be the next observation of op, and a 0 if not, given the tracking scores
for op and oc described above as inputs. If we combine two separate objects, o0 ∈ O and o1 ∈ O, we
search through the history of observed experiences {O0,O1, ...}, and everywhere we see o0 ∈ On
and o1 ∈ On+1, or vice versa, we retroactively mark the objects as predecessor and successor.

An intuitive and powerful way to model object dynamics is by training a set of models, mo,d ∈M,
one for each object oi in dimension dj , to output a distribution over future velocities for oi in dj . We
then sampled from this velocity distribution to obtain a prediction of oi’s velocity in dj . Let

Err(mo,d, o′, E) =
∑
e∈E

∫ vmax

vpred=vmin

|vobs(e, o′)− vpred|Pmo,d
(vpred)

We attempt to combine two objects, oi and oj into a new object, ok, by training a new model,
M ′ over the new set of objects, O′, and comparing its error to the current model M . When
evaluating m′, we desire that the error for the combined objects has not increased. Let freq(o, E)

be the number of times object o appears in experiences E . We define Err(M, E , o) =
error(mo,d,o,E)

freq(o,E)

and Err’(M ′, E , o, ok) =
error(m′

ok,d,o,E)
freq(o,E) . We combine two objects only if Err’(M ′, E , o, ok) ≤

(1 + r)Err(M, E , o) ∀o ∈ {oi, ok}, where r is a regularization parameter.

By coupling object recognition. tracking, and modeling we learn a succinct object representation
of environments with no supervision. Object recognition and tracking provide data for training a
dynamics model, which in turn allows low-level percepts to be combined into higher-level objects.

4.2 Learning

We use our object-level representation to generate powerful features for learning: we represent the
environment as object absolute and relative distances, velocities, accelerations, and contacts to the
agent. We then learn a state-action value function in terms of this representation using one of the
many available reinforcement learning algorithms, such as Monte Carlo or Temporal Difference
methods (Sutton 1988). We also learn a state-reward estimator in terms of these features.

4.3 Planning

A state value and state reward estimator along with a predictive environment model allows us to
utilize many powerful planning algorithms, including UCT and its many variants (Browne et al.
2012), to plan optimal action sequences.

4.4 Object Exploration

Rather than explore using ε-random actions, we use our object prior to develop a much more powerful
exploration method. Objects generally affect each other when making contact or otherwise in close
proximity (Spelke 1990). Therefore, a good way to obtain interesting experiences is to make objects
contact. We do this by choosing a pair of objects, at least heavily one influenced by agent actions,
and modifying the value function to proximity and contact between the two objects very highly for
some number of future steps.
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Figure 1: Object-level representations of Atari games. On the left we show the normal Atari game
frames. On the right we show the same frame with each high-level object our agent perceives colored
differently.

5 Experiments and Results

We first demonstrate that our object-level framework is capable of creating succinct and accurate
object-level models on a variety of Atari games with very few samples, and little time and com-
putational resources. We then demonstrate the potential of our representation by using simple
reinforcement learning and planning algorithms to learn faster than humans and achieve better
performance than DQN and Blob-PROST.

5.1 OLRL Implementation

We oversegment images into monocolor blobs, then track, model, and combine those low-level
percepts as described in section 4.1. As shown in in Figure 1, our method of combining low-level
percepts by searching for smaller yet still accurate models reduces the number of objects from dozens
to a core few. We set the regularization parameter to 0.15, causing scores and other numbers to be
combined with the background; reducing the regularization would prevent this if undesirable.

We modeled object dynamics by training a set of Lightgbm (Ke et al. 2017) trees to output a
distribution over discretized velocities clipped to be in [-30, 30] given object position, position
relative to other objects, velocity, acceleration, current contacts with other objects, and predicted
future velocities for oi in dimensions d1≤k<j . We then sampled from this velocity distribution
to obtain a prediction of oi’s velocity in dj . The Lightgbm classifiers were trained to minimize
multiclass log loss.

We use our object prior to build estimator architectures that allow for faster learning while still being
general. We first use the prior that most tasks of interest can be described as combinations of pairwise
relations between objects to justify a deep neural network architecture where the features for each pair
of objects are first processed by several hidden layers which output a single scalar. These scalars, one
for each object pair, are then input to a final fully connected layer which outputs the final estimate,
as shown in Figure 2. The second object prior we use is that interesting events occur when objects
contact, and, conversely, that interesting events do not occur when objects are not touching. This
allows us to break our state-action value estimator into two parts.

The first is a simple linear regressor over the relative positions between objects, which learns which
objects should contact and which objects should not contact.

The second is a deep neural network with the same object-pair architecture as the reward estimator
(Figure 2), but with each object-pair network’s output zeroed when the objects in the corresponding
pair are not close to each other. This network learns how each pair of objects should interact, for
example, how to hit a ball with a paddle to score a point, or how to successfully grasp an object. We
train the object-pair value and reward neural networks on relative positions, relative velocities, and
collisions between each object pair.

We follow the planning algorithm in (Oh, S. Singh, and Lee 2017) to search all possible actions
sequences of length three into the future, choosing the sequence that maximizes the sum of state
values at each future step. We implement object-level exploration by, at each timestep with chance
ε = 0.04, choosing a pair of previously unexplored objects, choosing the first object with probability
equal to the importance of actions in its corresponding models relative to that of the other objects,
and the other uniformly at random.
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Figure 2: Object-Pair Value Network.
Reward network is identical, except sub-
network outputs are not zeroed and ac-
tions are not included in inputs.

Figure 3: Model Error on Atari Games.
Distances are in pixels; for comparison,
the Atari game screen is 210x160 pixels.

5.2 Model Accuracy

We demonstrate the speed and accuracy of our object-level perception and modeling on a variety of
Atari 2600 games. For each Atari game, we trained our model on only 2000 steps, where each step
is 4 game frames, collected while playing random actions. We then evaluated our models by first
playing n random actions, where n was sampled uniformly from [50, 150], and then predicting the
positions of objects for the next 100 steps. Figure 3 shows prediction error as the average Euclidean
distance between the predicted and actual object positions. Since many Atari objects do not move,
also show prediction error for the player-controlled object, which has complex dynamics. For the
same reason, we use predicting object velocity will remain constant as a natural baseline.

Even with very little training data, our models have learned object dynamics with high accuracy tens
of frames into the future, effective for short-term planning. Unlike previous work, model prediction
error generally does not explode for longer prediction horizons, allowing the agent to consider the
approximate positions over objects even 100 steps into the future.

5.3 Comparison to Humans

In Figure 4 we compare the median number of samples required to achieve Breakout scores for
humans and OLRL. Human learning curves were collected from Amazon Mechanical Turk using
the same methodology as in Tsividis et al. 2017. All human experiments were conducted with no
frame skip and no action repeat chance. We divide the number of human frames played by four to
allow comparison to the OLRL tests which used a frameskip of 4; note that this makes the human
environments strictly easier than the OLRL environments, with humans experiencing four frames
for every OLRL experience. We say that humans have learned Breakout when they have achieved at
least the expert player Breakout score given in Mnih, Kavukcuoglu, et al. 2015, and therefore, our
OLRL learns slightly faster than humans.

5.4 Comparison to DQN and Blob-PROST

We compared OLRL to DQN and Blob-PROST in Figure 5 using the ALE parameters recommended
in Machado et al. 2018, with the exception of using the smaller OpenAI Gym action sets (Brockman
et al. 2016). DQN and Blob-PROST data was drawn from Machado et al. 2018. Using our object-level
features, our agent reaches the performance of DQN and Blob-Prost with approximately 10,000x
fewer experiences. We note that the data for DQN and Blob-PROST was collected using a larger
action space than we did, so we include the peak average score of Blob-PROST trained Breakout
with our smaller action set and also no action repeat from Liang et al. 2016, which OLRL also
easily surpassed. Figure 7 shows how quickly our OLRL trains; on only a desktop CPU it achieves
DQN-level performance in under two hours.
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Figure 4: Comparison of OLRL and hu-
mans on Breakout.

Figure 5: Comparison of OLRL and
DQN on Breakout. Note timesteps are
in log-scale.

Figure 6: Comparison of OLRL agent with
object exploration and OLRL agent with ε-
greedy exploration on Breakout.

Figure 7: Learning time for OLRL on
Breakout.

5.5 Object Exploration

We evaluated the effectiveness of our object-level exploration in Figure 6 by comparing it against an
OLRL agent only using ε-greedy exploration, with ε = 0.01. The goal of Breakout may be roughly
summarized as hitting the ball with the paddle. The two agents had similar performance until the
object-exploring agent explored contacts between the ball and paddle, when it rapidly learned the
importance of contacts between the two objects. As these results show, our object prior provides a
powerful new exploration technique.

6 Conclusion and Future Work

In this paper, we have shown that incorporating simple and general human object priors can greatly
improve the sample efficiency of reinforcement learning. In particular, our OLRL system is able
to reach human-level performance on Atari games with up to 10,000x fewer samples than DQNs.
OLRL learns in just hours on a single core, which is dramatically more efficient than previous
approaches. OLRL is also the the first system to learn an Atari game learn in fewer frames than
humans. In addition, we observe that the use of object-level representations makes the results of
learning significantly more interpretable. We plan to open-source the OLRL code, so that it can be
used as a preprocessor and simple baseline to greatly speed up experimentation in this area. The
next step is to integrate our object-level representation with current deep reinforcement learning
algorithms and planning techniques. Currently, OLRL only uses dynamics to determine which objects
are the same. However, this is not failproof: some objects that never move relative to the background
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have high value, and some objects that do move relative to the background have low value. We
propose also using the learned value and reward estimators when determining which percepts may be
treated as a single object. Finally, we plan to apply our approach to real-world problems like robot
manipulation and navigation.
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8 Appendix

8.1 Reward and Value Estimation Details

The hidden layers of the object-pair sub-networks had 16 neurons. Each layer used a leaky ReLU
activation function, with the exception of the output layer, which used a sigmoid activation of the
reward prediction network (rewards were normalized to between 0 and 1) and a ReLU activation
function for the value network. The value network was trained with n-step TD(λ) with n = 100,
λ = 0.99 and γ = 0.99, and the reward network was trained to minimize the L2 error. Each was
trained with RMSprop with a learning rate of 5× 10( − 3), alpha of 0.99, and eps of 10−5, and an
early stopping parameter of 20 epochs, holding out the most recent 25% of experiences as a validation
set. We trained the linear regressor using TD(λ) with λ = 0.99 and γ = 0.99.
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