TWO-WAY INDUCTION

PEDRO DOMINGOS
Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717, U.S.A.

Received 14 April 1995
Revised 10 January 1996

ABSTRACT

General-to-specific learners like ID3 and CN2 perform well when the target concept de-
scriptions are general, but often have difficulties when they are specific or mixed. This
problem can be alleviated by combining them with a specific-to-general learning com-
ponent, resulting in a two-way induction system. In this paper one design for such
a component is proposed, as well as two methods for combining the two components.
Experiments on artificial domains show the combined learner to match or outperform
“pure” versions of C4.5 and CN2 across the entire generality spectrum, with the advan-
tage increasing for greater concept specificity. Experiments on 24 real-world domains
from the UCI repository confirm the utility of two-way induction: the combined learner
achieves higher accuracy than C4.5 in 17 domains (at the 5% significance level in 12),
and similar results are obtained with CN2. Closer observation of the system’s behavior
leads to a better understanding of its ability to correct overly-general rules with specific
ones, and shows that there is still room for improvement.

Keywords: Machine learning, rule induction, knowledge acquisition, search.

1 Introduction and Motivation

Most widely-used decision-tree and rule learners perform general-to-specific induc-
tion: they start with an empty concept description, and gradually add restrictions
to it until there is not enough evidence to continue, or perfect discrimination is
achieved. ID3/C4.5 [14] and CN2 [4] are examples of systems that function in this
way. They have some significant advantages: because only statistical measures are
used to evaluate induction steps, as opposed to individual examples being consid-
ered, good noise immunity can be achieved. Also, when the induction process stops
early, as it often does, learning can be fast, and the resulting descriptions concise.

However, as in any search process, finding the target tends to be harder when
it lies farther from the search’s starting point, in this case the null concept descrip-
tion. The opportunities for the search to take the wrong path accumulate, and
the probability of an incorrect end result increases. As a result, if all or part of
the concept description is fairly specific, i.e., if it includes a large fraction of the
attributes used to describe examples, systems like C4.5 and CN2 may be unable to
find it; they are prone to either stopping the search too soon, leading to an overly
general description, or to inducing erroneous rules/branches that may or may not
be pruned. This performance degradation as concept specificity increases is indeed
verified in artificial domains in a later section of this paper.

Specific-to-general learners, on the other hand, should find it easier to induce
fairly specific descriptions. They have other disadvantages, however: search has to
start from specific examples, making it more sensitive to noise, and early decisions,
based on little evidence, can be wrong and difficult to correct later on. As a result,
even though some specific-to-general learners exist (e.g., EACH [16]), they have not
come into widespread use.

More generally, when the target description is a mix of general rules and more
specific “exception” areas—a pattern which appears to occur frequently in real
applications—we can expect both approaches to have problems: general-to-specific
learners may not recognize the exception areas, and specific-to-general ones may
induce only imperfect, corrupted versions of the general rules. A natural solution
would then be to combine the two search directions in a single system, allowing both
the induction of rules starting from the null description and from specific examples,
and employing some conflict resolution strategy in parts of the instance space where
rules’ predictions disagree. This paper describes and evaluates one realization of
this idea.

C4.5 and CN2 were used in turn as the general-to-specific learner. The next
section describes the specific-to-general component used, and the following one de-
scribes two methods for combining the two components. The results of experiments
on natural and artificial domains are then reported and interpreted. Finally re-
lated work is discussed, and some conclusions and directions for future work are
presented.

2 Specific-to-General Induction

Specific-to-general induction is performed by the RISE algorithm, of which the
learning and classification procedures will be considered in turn. More details can

be found in [7, 6].
2.1 Representation and search

Each example is a vector of attribute-value pairs, together with a specification
of the class to which it belongs; attributes can be either nominal (symbolic) or

Table 1: The RISE algorithm.

Input: ES is the training set.
Procedure RISE (ES)

Let RS be ES.
Compute Ace(RS).
Repeat
For each rule R in RS,
Find the nearest example F to R not already covered by it
(and of the same class).
Let R’ = Most_Specific_Generalization(R, E).
Let RS’ = RS with R replaced by R'.
If Ace(RS") > Acc(RS)
Then Replace RS by RS’,
If R is identical to another rule in RS,
Then delete R’ from RS.
Until no increase in Acc(RS) is obtained.

Return RS.

numeric. Each rule consists of a conjunction of antecedents and a predicted class.
Each antecedent is a condition on a single attribute, and there is at most one
antecedent per attribute. Conditions on nominal attributes are equality tests of the
form a; = vj, where a; is the attribute and v; is one of its legal values. Conditions
on numeric attributes take the form of allowable intervals for the attributes, i.e.,
a; € [vj1,vj2], where vj; and vjs are two legal values for a;. Exemplars (i.e.,
examples used as prototypes for classification) are viewed as maximally specific
rules, with conditions on all attributes and degenerate (point) intervals for numeric
attributes. A rule is said to cover an example if the example satisfies all of the rule’s
conditions; a rule is said to win an example if it is the nearest rule to the example
according to the distance metric that will be described below.

The RISE algorithm is summarized in Table 1. RISE searches for “good” rules
in a specific-to-general fashion, starting with a rule set that is the training set
of examples itself. RISE looks at each rule in turn, finds the nearest example of
the same class that it does not already cover (i.e., that is at a distance greater
than zero from it), and attempts to minimally generalize the rule to cover it. The
generalization procedure is outlined in Table 2. If the change’s effect on global
accuracy is positive, it is retained; otherwise it is discarded. Generalizations are
also accepted if they appear to have no effect on accuracy; this reflects a simplicity
bias. This procedure is repeated until, for each rule, attempted generalization fails.

A potential difficulty is that measuring the accuracy of a rule set on the training

Table 2: Generalization of a rule to cover an example.

Inputs: R = (a1,as,...,a4,cg) is a rule,
E = (e1,€e3,...,ea,cg) is an example.
a; is either True, z; = 75, OF 7 jower < T3 < T4 upper-

Function Most_Specific_Generalization (R, E)

For each attribute 1,
If a; = True then Do nothing.
Else if ¢ is symbolic and e; # r; then a; = True.
Else if €; > 75 upper then 7; upper = €.
Else if €; < 75 jower then r; jouer = €.

set requires matching all rules with all training examples, and this would entail a
high computational cost if it was repeatedly done as outlined. Fortunately, at each
step only the change in accuracy needs to be computed. Each example memorizes
the distance to its nearest rule and its assigned class. When a rule is generalized, all
that is necessary is then to match that single rule against all examples, and check
if it wins any that it did not before, and what its effect on these is. Previously
misclassified examples that are now correctly classified add to the accuracy, and
previously correctly classified examples that are now misclassified subtract from
it. If the former are more numerous than the latter, the change in accuracy is
positive, and the generalization is accepted. With this optimization, RISE’s worst-
case time complexity has been shown to be quadratic in the number of examples
and the number of attributes, which is comparable to that of general-to-specific rule
induction algorithms [7].

2.2 Classification

At performance time, classification of each test example is performed by finding
the nearest rule to it, and assigning the example to the rule’s class. The distance
measure used is a combination of Euclidean distance for numeric attributes, and
a simplified version of Stanfill and Waltz’s value difference metric for symbolic
attributes [18].

Let £ = (e1,€2,...,€a,cE) be an example with value ¢; for the ith attribute
and class cg. Let R = (a1,ds,...,a4,cg) be a rule with class cg and condition q;
on the ith attribute, where a; = True if there is no condition on ¢, otherwise a; is
x; = r; if ¢ is symbolic and a; is 7; jower < &7 < 75 upper if ¢ is numeric. The distance

A(R, E) between R and E is then defined as:

A(R)= Y 8%() 1)

where the component distance 6(7) for the éth attribute is:

0 if a; = True
8(i) =< SVDM(r;,e;) if iis symbolic A a; # True (2)
Snum (1) if ¢ is numeric A a; # True

SV DM (r;,e;) is the simplified value difference metric, defined as:

c
SVDM (zi,2;) = Y |P(enlas) — Plenlx;)| (3)
h=1
where z; and z; are any legal values of the attribute, C' is the number of classes, cp,
is the hth class, and P(cp|2;) denotes the probability of ¢; conditioned on ;. The
essential idea behind VDM-type metrics is that two values should be considered
similar if they make similar class predictions, and dissimilar if their predictions
diverge. This has been found to give good results in several domains [5]. Notice
that, in particular, SV DM (z;, z;) is always 0 if 1 = j.
The component distance for numeric attributes is defined as:

0 if Tilower < € < T upper
€i—Ti upper
Bpum (i) = 4 Fmae—Fmin

Ti,lower—¢€;

if €; > 7 upper (a)
Tmaz—TLmin if e < Tilower
Zmar and T, being respectively the maximum and minimum observed values for
the attribute.

The distance from a missing numeric value to any other is defined as 0. If
a symbolic attribute’s value is missing, it is assigned the special value “?”. This
is treated as a legitimate symbolic value, and its distance to all other values of
the attribute is computed and used. When coupled with SVDM, this is a sensible
policy: a missing value is taken to be roughly equivalent to a given possible value
if it behaves similarly to it, and inversely if it doesn’t.

When two or more rules are equally close to a test example, the rule that was
most accurate on the training set wins. So as to not unduly favor more specific
rules, the Laplace-corrected accuracy is used [12]:

Ncorr(R) + 1
Nyon(R) +C (5)

where R is any rule, C' is the number of classes, Nyon(R) is the total number
or examples won by R, Ngorr(R) is the number of examples among those that

LAce(R) =

R correctly classifies, and C is the number of classes. The effect of the Laplace
correction is to make the estimate of a rule’s accuracy converge to the “random

guess” value of 1/C as the number of examples won by the rule decreases. Thus
rules with high apparent accuracy are favored only if they also have high statistical
support, i.e., if that apparent accuracy is not simply the result of a small sample.

3 Two-Way Induction

Applying the RISE algorithm to a training set produces a set of rules which will
henceforth be called the S rules (for “specific”). Applying the general-to-specific
learner produces a set of G rules. If CN2 is used, the rules it outputs are used
directly. If C4.5 is used, C4.5RULES is first applied to convert the decision tree it
produces into a set of rules [14].

Two algorithms for combining the S and G rules were designed, TWI-1 and
TWI-2. In TWI-1, the sets of S and G rules are merged to form a single set,
deleting any duplicates. The Laplace accuracy of each rule on the examples that it
covers is then measured, and the classification procedure is applied to each training
example in turn; each rule memorizes the number of examples it won, and how
many of them it classified correctly. At the end, the Laplace accuracy of each rule
on the examples that it won is computed, and this is the value retained. The earlier
estimates were necessary to break ties during the classification cycle that produced
the final ones. At classification time, the procedure described in the previous section
is applied without any distinction between S and G rules. The nearest rule to the
test example wins; if two or more rules are equally near, the one with the highest
Laplace accuracy prevails.

In the TWI-2 algorithm, the sets of S and G rules are kept separate, and the
Laplace accuracy of each rule on the training examples that it covers is measured.
At classification time, the two sets of rules are first applied separately. A winner
among the S rules is found by the procedure previously outlined. To select the G
winner, the G rules are matched against the test example. If only one G rule covers
it, that rule is chosen as the G winner. If more than one rule covers the example,
the one with the highest Laplace accuracy wins. If no G rule covers the example,
the default rule is chosen as the G winner. Of the two finalists (S and G), the one
with the highest accuracy then wins and classifies the example.

4 Empirical Study

An empirical study was conducted to evaluate the contribution of the specific-to-
general learner, and the performance of the two-way induction system relative to its
individual components. A recent version of CN2 was used [3]. The default settings
for C4.5, C4.5RULES and CN2 were kept. Note that all results for C4.5RULES (ab-
breviated C4.5R) and CN2 below are those obtained using their own classification
procedures, not the one above for G rules. Experiments in artificial and real-world
domains are described in turn.

4.1 Artificial domains

The goal of the study in artificial domains was to verify in ideal, controlled condi-
tions if the hypotheses put forth in the introduction to this paper hold. Following
a philosophy justified elsewhere [17, 1], classes of domains rather that individual
concept definitions were considered. The study was carried out using C4.5R, RISE
and TWI-2.

The independent variable of interest is the specificity of the target concept de-
scription. A good operational measure of it is the average length of the rules com-
prising the description: rules with more conditions imply a more specific concept.
The dependent variables are the out-of-sample accuracies of the three algorithms.
Concepts defined as Boolean functions in disjunctive normal form were used as tar-
gets. The datasets were composed of 100 examples described by 16 attributes. The
average number of literals C' in each disjunct comprising the concept was varied
from 1 to 16. The number of disjuncts was set to Min{2°~! 25}. This attempts to
keep the fraction of the instance space covered by the concept roughly constant, up
to the point where it would require more rules than could possibly be learned. Equal
numbers of positive and negative examples were included in the dataset, and pos-
itive examples were divided evenly among disjuncts. In each run a different target
concept was used, generating the disjuncts at random, with length given by a bino-
mial distribution with mean C' and variance C(1— 10—6); this is obtained by including
each feature in the disjunct with probability %. Twenty runs were conducted, with
two-thirds of the data used for training and the remainder for testing.

The results are shown graphically in Fig. 1. The most salient aspect is the large
difference in difficulty between short and long rules for all learners. Concepts with
very few (approx. three or less) conditions per rule are so simple that both types
of learner are able to learn them easily; the expected advantage of the general-to-
specific approach is not realized. In separate experiments, corrupting the data with
10% and 20% noise degraded the performance of all algorithms equally, again giving
no advantage to C4.5R. At the other end, however, specific-to-general learning has
a clear advantage for concepts with 12 or more conditions per rule; all differences
here are significant at the 5% level using a one-tailed paired ¢ test. (Error bars are
not shown to avoid further cluttering the graph.) The combined approach is able to
effectively leverage both components, even when one is substantially less accurate
than the other; TWI performs better than the best of C4.5 and RISE in 10 of the
16 data points, including better than RISE at the 5% error level for C' = 13 and
C = 14.

The slight upward trend in C4.5R’s curve for C' > 10 was investigated by re-
peating the experiments with 32 attributes, 400 examples, a maximum of 50 rules
and C'=1,...,32. C4.5R’s lag increases, but the upward trend is maintained; on
inspection of the rules C4.5R produces, this is revealed to be due to the fact that,
as the concept rules become more and more specific, it becomes possible to induce
short rules for its negation. The hardest concepts, for which both the concept and

100

85
80
75 r

Accuracy (%)

60 r
55
50

0 2 4 6 8 10 12 14 16
No. conditions

Figure 1: Accuracy as a function of concept specificity.

its negation have necessarily long rules, are for intermediate values of C.
4.2 Natural domains

Whether the expected advantages of adding a specific-to-general component to a
general-to-specific learner are realized in real-world applications was investigated
by carrying out experiments on 24 domains from the UCI repository [11]. Again, 20
runs were conducted for each dataset, with two-thirds of the data used for training.
The default classifier (assigning examples to the most frequent class) was included
as a baseline. The results are shown in Table 3 for C4.5 used as the G component,
and in Table 4 for CN2. The average accuracy and sample standard deviation are
tabulated for each algorithm in each domain. The superscripts denote significance
levels for the difference in accuracy between TWI-2 and the corresponding algo-
rithm, using a one-tailed paired ¢ test: 1 denotes 0.5%, 2 is 1%, 3 is 2.5%, 4 is 5%,
51s 10%, and 6 is above 10%. For example, in the horse colic domain in Table 3,
TWI-2 obtains an accuracy of 83.8% with a standard deviation of 3.5%, is better
than C4.5 at the 1% level, and better than RISE at the 0.5% level.

Table 5 summarizes these results. The first line shows the number of domains
in which TWI-2 achieved higher accuracy than the corresponding system, vs. the
number in which the reverse happened. The second line considers only those do-

Table 3: Experimental results when G is C4.5.

Domain TWI-2 TWI-1 C4.5 RISE Default
Audiology 78.9+4.3 66.3£6.67 70.6+£5.77 77.344.97 21.3+2.6!
Breast 69.44+4.5 67.5+5.5% 67.846.6° 68.2+4.23 67.6+7.6°
Credit 83.54+1.7 84.242.9%5 84.84+2.5% 83.1+2.0* 57.4+3.81
Echocard. 68.1+4.9 67.3+8.2°5 65.9+7.6° 67.4+4.9° 67.846.6°
Glass 70.246.5 64.1+10.12 64.949.20 69.7+6.1° 31.745.5!
Heart 79.843.7 76.6+3.1' 77.844.3* 79.6+3.95 55.0+3.4!

Hepatitis 78.1+£5.4 78.8+3.76 78.64+5.36 76.945.33 78.14+3.1°
Horse colic 83.843.5 81.2+6.3% 81.2+4.42 81.9+3.21 63.6+3.91

Iris 93.04£2.7 93.64£2.7° 93.242.5°5 92.942.8° 26.545.2!
LED 69.5+4.0 69.14£3.8°5 69.04£3.8° 67.943.63 9.943.01
Labor 83.749.9 81.6+10.7° 86.3+£8.6° 89.2410.6° 65.049.5!
Liver 64.0+£5.6 65.844.6°5 64.443.95 63.4454* 58.143.4!
Lung 48.6+15.1 40.5+£14.0* 40.54£14.0* 50.5+15.2° 26.8412.3!

Lymphogr. 78.446.2 76.943.95 75.644.9* 80.246.8! 57.345.41
Diabetes 70.843.0 73.043.17 74.343.0 70.443.0* 66.04£2.31
Post-oper. 67.846.0 71.0£5.22 68.246.9° 62.349.11 71.245.22
Pr. tumor 41.4+46 35.445.4! 37.545.71 39.845.31 24.643.21
Promoters 87.745.8 80.6+£10.1' 80.4+10.00 87.745.5° 43.14+4.2!
Solar flare 71.943.1 71.244.15 71.14+4.1° 70.842.7%7 25.244.41

Sonar T4.7+£12.1 64.3+9.4Y 65.4+7.11 76.0+11.43 50.8+7.6'
Soybean 83.146.8 75.145.8" 78.945.9' 84.846.5' 9.142.1"
Voting 95.941.6 95.7+1.7° 95.841.35 955+1.5° 60.5+3.1!
Wine 96.3+2.3 91.3+5.61 91.845.6° 96.9+1.8° 36.4+9.9!

Zoology 93.5+3.8 90.04£5.21 89.6+4.71 93.243.7° 39.446.4!

mains in which the observed difference is significant at the 5% level, and shows
that most of the previous “wins” were indeed significant. For example, when G was
C4.5, TWI-2 did better than C4.5 in 17 domains overall, and worse in 7; with 5%
significance it did better in 12 and worse in 2. All other comparisons are similarly
favorable to TWI-2. The third line shows the results of applying a sign test to the
values of line one. This consists of considering the number of wins as a binomial
variable, and asking how unlikely the value obtained is if TWI-2 is assumed to be no
more accurate than the corresponding algorithm. For example, 17 wins in 24 trials
has a probability of occurrence of only 3%. This test shows that all the numbers
of wins obtained are significant at the 5% level, resulting in high confidence that
TWI-2 is a more accurate learner than either component alone, if the set of domains
used is assumed to be representative of real-world tasks.

4.3 Discussion

The utility of two-way induction is clearly shown by the results above, but it is
important to understand why this advantage is observed. Inspection of the S and G

Table 4: Experimental results when G is CN2.

Domain TWI-2 TWI-1 CN2 RISE Default
Audiology 77.3+4.4 63.9+7.4"7 71.0+£5.17 77.344.9% 21.3+2.6!
Breast 68.44+6.3 67.946.4° 67.947.1°5 68.2+4.2° 67.6+7.6°
Credit 84.442.2 82.342.2! 82.042.21 83.1+2.0! 57.4+3.81
Echocard. 68.0+5.3 66.0+5.9% 68.2+7.25 67.4+4.95 67.8+6.6°
Glass 69.946.8 58.946.3' 63.845.50 69.7+6.1° 31.745.5!
Heart 81.244.3 7954293 79.742.9% 79.6+3.92 55.0+3.4!

Hepatitis 79.6+£5.3 80.5+4.5° 80.3+4.26 76.945.31 78.14+3.15
Horse colic 83.14+3.6 83.0+3.6° 82.5+4.26 8§1.9+3.21 63.6+3.91

Iris 93.442.7 93.242.8° 93.3+£3.6° 929428 26.545.2!
LED 69.5+4.0 68.944.5°5 69.5+£3.8° 67.943.6! 9.943.01
Labor 87.4410.6 82.948.9% 82.146.9* 89.2410.6° 65.049.5!
Liver 65.945.2 66.4+3.8°5 65.0£3.8° 63.4454! 58.143.4!
Lung 4234145 39.1£14.8° 38.6+£13.5° 50.5+15.20 26.8412.3!

Lymphogr. 80.946.3 79.445.0° 78.8+4.9% 80.2+6.8° 57.345.41
Diabetes 72.3+2.7 73.742.92 73.84£2.71 70.443.01 66.0+£2.31
Post-oper. 68.3+4.9 65.04+6.93 60.84+8.21 62.749.21 71.245.21
Pr. tumor 41.445.2 38.945.12 39.845.24 39.845.31 24.6+3.21
Promoters 85.64+6.2 78.149.11 75.94+8.81 87.745.55 43.14+4.21
Solar flare 71.442.6 69.6+3.62 70.443.05 70.8+2.6° 25.244 .41

Sonar 73.8410.6 63.249.0' 66.247.5' 76.0+£11.4°> 50.8+7.6
Soybean 83.546.7 T7.846.71 T7.447.21 84.846.5! 9.1£2.11
Voting 95.0+£1.8 955+1.5% 95.8+1.61 95.54+1.5* 60.543.1!
Wine 95.34£2.6 91.04£4.51 90.8+4.71 96.9+1.80 36.449.9!

Zoology 93.743.3 90.945.11 90.6+£5.01 93.243.7° 39.446.4!

rules shows that the S rules are indeed substantially more specific than the G ones.
G rules typically contain a small number of conditions (approx. 1 to 5), whereas
S rules often contain conditions on half of all the attributes. Further, tracing of
TWI-2 reveals that by far the majority of S wins occur when the test example is
also covered by a G rule, but G rules are still correct on most of the examples they
cover. S rules thus encapsulate small exception areas to the broad generalizations
represented by G rules, as intended.

TWI-2 performed better than TWI-1, and this was to be expected. TWI-1’s
naive method of combining S and G rules (merge all) has several disadvantages.
The G rules were not designed to be applied in a best-match manner. Being very
general, they easily win examples outside them over more appropriate S rules. The
S rules, conversely, were designed for best-match classification, but in the large
sections of the instance space covered by G rules, they can only win examples that
they actually cover.

TWI-2’s accuracy is bounded from below by the fraction of cases on which the
S and G components agree and are correct, and from above by 100% minus the

10

Table 5: Summary of TWI-2’s results vs. other algorithms.

Measure G=C45 G = CN2
TWI-1 C4.5 RISE TWI-1 CN2 RISE
No. wins 18-6 17-7 17-6 20-4 19-4 16-7
No. signif. wins 11-2 12-2 11-4 14-2 13-2 10-5
Sign test 1.0 3.0 2.0 0.1 0.2 5.0

fraction of cases on which they agree and are both incorrect. Further, when there
are more than two classes; S and G components may differ and both be wrong.
Extracting the cases where TWI-2’s decision makes a difference, we see that it
makes the correct decision approximately two-thirds of the time, on average. This
is well above chance, but still leaves substantial room for improvement, at least in
theory.

The study above was mainly concerned with accuracy. Two other variables of
interest are speed and comprehensibility of the results. In practice, RISE is slower
than C4.5 and CN2, but this is only noticeable in larger datasets (more than 500
examples). Also, because the S rules are longer, they are harder for a human to
understand; but since in TWI-2 the distinction between S and G rules is maintained,
the G rules can be seen as an approximate and accessible model of the domain, while
the S rules represent second-order refinements and exceptions that should be taken
into account to achieve higher accuracy.

5 Related Work

Mitchell’s [10] version space approach is an early example of two-way induction.
TWI is a heuristic algorithm, in contrast to Mitchell’s exhaustive candidate elim-
ination procedure, but has the advantage that its worst-case space and time com-
plexities are respectively linear and low-order polynomial, instead of exponential.
Also, unlike version spaces, TWI is able to deal with disjunctive concepts, noise,
and missing and continuous attributes.

The research described in this paper falls in the general area of empirical multi-
strategy learning, which attempts to produce more accurate learners by combining
two or more individual algorithms [9]. The MCS system combines decision trees
with the nearest-neighbor algorithm and linear machines [2]. FCLS combines rules
with specific examples in a best-match framework [20]. Quinlan has combined
decision trees and other methods with nearest-neighbor in regression tasks [15].
The post-pruning step used in many rule and decision-tree learners can be seen as
a form of specific-to-general induction, and Quinlan [13] and others have shown it
to be effective. Specific-to-general induction is performed by systems like NGE [16]
and KBNGE [19], but neither combines it with general-to-specific learning. Golding
and Rosenbloom’s Anapron system for name pronunciation [8] performs search in
neither direction, but is similar in spirit to TWI: a set of expert-supplied rules

11

functions as the G component, and a set of implicit rules (the “arules”) contained
in a case base functions as the S component.

6 Conclusions and Future Work

This paper has shown that the accuracy of general-to-specific learners like ID3/C4.5
and CN2 can be substantially improved by adding a specific-to-general component
to them. As the observations made indicate, there is still room for improvement,
and work on more sophisticated methods of combining the two components is un-
derway. Inputting unpruned rules or trees and combining the post-pruning stage
with the specific-to-general induction process is also a potentially productive av-
enue, and preliminary work has been done. Another direction for future research is
to use an expert-supplied domain theory as the G component, leading to a combined
analytical-empirical learner.

Acknowledgments

This work was partly supported by JNICT/ Programa Ciéncia and Fulbright schol-
arships. The author is grateful to Dennis Kibler and Mike Pazzani, to the creators
of the C4.5 and CN2 systems, and to all the people who provided the datasets used
in the empirical study. Please see the documentation in the UCI Repository for
detailed information.

References

[1] D. W. Aha, Generalizing from case studies: A case study, Proc. 9th International
Workshop on Machine Learning, Aberdeen, Scotland (1992) 1-10.

[2] C. E. Brodley, Addressing the selective superiority problem: Automatic algo-
rithm/model class selection, Proc. 10th International Conference on Machine Learn-
ing, Amherst, MA (1993) 17-24.

[3] P. Clark and R. Boswell, Rule induction with CN2: Some recent improvements, Proc.
6th European Working Session on Learning, Porto, Portugal (1991) 151-163.

[4] P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989)
261-283.

[5] S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning with
symbolic features, Machine Learning 10 (1993) 57-78.

[6] P. Domingos, The RISE 2.0 system: A case study in multistrategy learning, Tech-
nical Report 95-2, Department of Information and Computer Science, University of
California at Irvine (1995).

[7] P. Domingos, Rule induction and instance-based learning: A unified approach, Proc.
14th International Joint Conference on Artificial Intelligence, Montreal, Canada
(1995) 1226-1232.

8] A.R. Golding and P. S. Rosenbloom, Improving rule-based systems through case-base

A. R. Goldi d P.S. R bl 1 ; le-based h h based
reasoning, Proc. 9th National Conference on Artificial Intelligence, Menlo Park, CA
(1991) 22-27.

12

[9
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[15]

[19]

[20]

R. Michalski and G. Tecuci, eds., Machine Learning: A Multistrategy Approach, Mor-
gan Kaufmann, San Mateo, CA (1994).

T. M. Mitchell, Generalization as search, Artificial Intelligence 18 (1982) 203-226.

P. M. Murphy and D. W. Aha, UCI repository of machine learning databases,
machine-readable data repository, Department of Information and Computer Science,
University of California at Irvine, 1995.

T. Niblett, Constructing decision trees in notsy domains, Proc. 2nd European Work-
ing Session on Learning, Bled, Yugoslavia (1987) 67-78.

J. R. Quinlan, Simplifying decision trees, International Journal of Man-Machine Stud-
ies 27 (1987) 221-234.

J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,
CA (1993).
J. R. Quinlan. Combining instance-based and model-based learning, Proc. 10th Inter-

national Conference on Machine Learning, Amherst, MA (1993) 236-243.

S. Salzberg, A nearest hyperrectangle learning method, Machine Learning 6 (1991)
251-276.

C. Schaffer, Analysis of artificial data sets, Proc. 2nd International Symposium on
Artificial Intelligence (1989).

C. Stanfill and D. Waltz, Toward memory-based reasoning, Communications of the
ACM 29 (1986) 1213-1228.

D. Wettschereck, A hybrid nearest-neighbor and nearest-hyperrectangle algorithm,
Proc. 9th European Conference on Machine Learning, Catania, Italy (1994) 323-
335.

J. Zhang, A method that combines inductive learning with exemplar-based learning,
Proc. 2nd IEEE International Conference on Tools for Artificial Intelligence, San
Jose, CA (1990) 31-37.

13

