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ABSTRACT
Acquiring knowledge has long been the major bottle-
neck preventing the rapid spread of AI systems. Manual
approaches are slow and costly. Machine-learning ap-
proaches have limitations in the depth and breadth of
knowledge they can acquire. The spread of the Internet
has made possible a third solution: building knowledge
bases by mass collaboration, with thousands of volun-
teers contributing simultaneously. While this approach
promises large improvements in the speed and cost of
knowledge base development, it can only succeed if the
problem of ensuring the quality, relevance and consis-
tency of the knowledge is addressed, if contributors are
properly motivated, and if the underlying algorithms
scale. In this paper we propose an architecture that
meets all these desiderata. It uses first-order proba-
bilistic reasoning techniques to combine potentially in-
consistent knowledge sources of varying quality, and it
uses machine-learning techniques to estimate the qual-
ity of knowledge. We evaluate the approach using a
series of synthetic knowledge bases and a pilot study in
the domain of printer troubleshooting.1

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Knowledge
acquisition, Parameter learning

General Terms
Algorithms
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1. INTRODUCTION
Truly intelligent action requires large quantities of know-
ledge. Acquiring this knowledge has long been the ma-
jor bottleneck preventing the rapid spread of AI sys-
tems. Two main approaches to this problem exist today.
In the manual approach, exemplified by the Cyc project
[10], human beings enter rules by hand into a knowledge
base. This is a slow and costly process. Although the
original goal was to complete Cyc in ten years, it has
now been under development for seventeen.2 In the ma-
chine learning approach, exemplified by programs such
as C4.5 [16], rules are automatically induced from data.
Although this approach has been extremely successful
in many domains, it has not led to the development of
the large, diverse knowledge bases necessary for truly
intelligent behavior. Typical learning programs contain
only very weak assumptions about the world, and as a
result the rules they learn are relatively shallow – they
refer only to correlations between observable variables,
and the same program applied to two different data
sets from the same domain will typically produce dif-
ferent rules. Recognizing this problem, researchers have
invested substantial effort into developing learning pro-
grams that can incorporate pre-existing knowledge, in
effect combining the manual and automatic approaches
(e.g., Pazzani & Kibler (1992)). However, these pro-
grams have not been widely adopted, largely due to
the difficulty and expense of capturing knowledge – the
same bottleneck that has plagued purely manual solu-
tions.

The rise of the Internet has made possible a third ap-
proach to the knowledge acquisition problem, one with
the potential to greatly speed the spread of AI. The
open-source software movement, enabled by the Inter-
net, has shown that it is possible to develop very high
quality software by accumulating contributions from th-
ousands of volunteers [17]. This surprising outcome, ex-
emplified by the success of the Linux operating system,
is relevant to the construction of large-scale knowledge

2Our description of Cyc in this paper is based on the publi-
cations about it, made primarily in its founding years. Cyc
has developed since, but these developments are not publicly
available.



bases. If the work of a large number of volunteers can
be properly coordinated, knowledge bases as large as
Cyc or larger can be built in a much shorter period of
time, at a fraction of the cost. Conversely, over a period
of a decade a knowledge base dwarfing any built so far
can be inexpensively developed.

However, while building knowledge bases by mass col-
laboration avoids some of the problems of the tradi-
tional approach, it greatly exacerbates others:

Quality. Ensuring the quality of knowledge contributed
by many different sources, when little is known
about most of them, is likely to be very difficult.
We thus need mechanisms for automatically gaug-
ing the quality of contributions, and for making
the best possible use of knowledge of widely vari-
able quality. This includes taking advantage of re-
dundant or highly overlapping contributions, when
they are available.

Consistency. As the knowledge base grows in size,
maintaining consistency between knowledge enter-
ed by different contributors, or even by the same
contributor at different times, becomes increas-
ingly difficult. In a traditional logic-based sys-
tem, a single inconsistency is in principle enough
to make all inference collapse. This has been a ma-
jor issue in the development of Cyc, and will be a
much more serious problem in a knowledge base
built by many loosely-coordinated volunteers.

Relevance. The initial Cyc philosophy of simply en-
tering knowledge regardless of its possible uses is
arguably one of the main reasons it has failed to
have a significant impact so far. In a distributed
setting, ensuring that the knowledge contributed is
relevant – and that volunteers’ effort is productive
– is an even more significant problem.

Scalability. To achieve its full potential, a collective
knowledge base must be able to assimilate the work
of an arbitrarily large number of contributors, with-
out the need for centralized human screening, co-
ordination, or control becoming a bottleneck. Like-
wise, the computational learning and reasoning
processes carried out within the knowledge base
should scale at worst log-linearly in the number
of contributions. This implies making expressive-
ness/tractability trade-offs, approximations, etc.

Motivation of contributors. To succeed, collective
knowledge bases will depend on the unpaid work
of a large number of volunteers. Motivating these
volunteers is therefore essential. Following the ex-
ample of open-source software, collective knowl-
edge bases should allow user-developers to enter
knowledge that is first of all relevant to solving
their own problems. Following the example of
knowledge-sharing Web sites [4], collective knowl-
edge bases should incorporate a fair mechanism for
giving volunteers credit for their contributions.

This paper proposes an architecture for collective knowl-
edge base development that addresses the five issues
above. The next section describes the architecture. The
following section describes the preliminary experimen-
tal evaluation of the architecture we have carried out.
We conclude with a discussion of related and future
work.

2. AN ARCHITECTURE FOR
COLLECTIVE KNOWLEDGE BASES

Figure 1 shows an input-output view of the architecture.
A collective knowledge base is a continuously-operating
system that receives three streams of information:

Rules and facts from contributors. Rules and
facts are expressed in the Horn clause subset of
first-order logic. A first-order representation is
used in the great majority of knowledge-based sys-
tems, including Cyc, and is clearly necessary to ef-
ficiently capture a broad range of real-world knowl-
edge. Horn clauses are used in many expert system
shells, and form the basis of the Prolog program-
ming language. They are an effective trade-off
between expressiveness and tractability, and us-
ing them takes advantage of extensive previous re-
search on making Horn-clause inference efficient.
Horn clauses also have the key feature of high mod-
ularity: a new rule can be input without knowing
what other rules are already in the knowledge base.
Note that, although our current system requires
entering knowledge directly in Horn-clause form,
this need not be the case in general. Allowing
knowledge entry via menu-driven interfaces, on-
tology browsers, and restricted forms of natural
language (e.g., using a particular syntax, or within
specific domains) should greatly increase the num-
ber of individuals that are able to contribute. The
extensive previous research on tools for knowledge
base development (e.g., McGuinness et al. (2000))
should be useful here.

Queries and evidence from users. Following con-
ventional usage, a query is a predicate with open
variables (input directly, or obtained by transla-
tion from a user interface). Users also supply ev-
idence relevant to the queries in the form of a set
of facts (ground instances of predicates). These
facts may be manually input by the user, or au-
tomatically captured from the outside system the
query refers to. (For example, if the query is a
request to diagnose a malfunctioning artifact such
as a car or a computer, information on the state
and configuration of the artifact may be captured
directly from it.) As in many knowledge-sharing
sites, queries can also have a “utility value” at-
tached, reflecting how much the user is willing to
“pay” (in some real or virtual unit) for the answer.
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Figure 1: Input-output view of a collective knowledge base.

Feedback on the system’s replies, from users.
Given the answer or answers to a query, the user
takes actions, observes their outcomes, and reports
the results to the knowledge base. For example, if
the query is “Where on the Web can I find X?” and
the answer is a URL, the user can go to that URL
and report whether or not X was found there. In
a fault diagnosis problem, the user attempts to fix
the fault where diagnosed, and reports the result.
The outcome can also be in the form of a utility
rating for the answer. This rating can be objective
(e.g., time saved, number of “hits” in some task) or
subjective (e.g., user’s satisfaction on a five point
scale).

In return, the collective knowledge base produces two
streams of information:

Answers to queries. Answers to a query consist of
instantiations of the open variables for which the
query predicate holds true. They are sorted by
probability of correctness, in the same way that
search engines sort documents by relevance. Prob-
abilities of correctness are computed as described
below.

Credit to contributors. Contributors receive from
the knowledge base feedback on the quality of their
entries, in the form of accumulated (positive or
negative) credit for their use in answering queries.
The credit assignment computation is described
below.

The collective knowledge base is thus involved in two
continuous loops of interaction, one with contributors,
and one with users (these two populations need not be
disjoint). Contributors and users, as a result, interact
via the knowledge base. This interaction is in general
not one-to-one, but many-to-many: entries from many
different contributors may be combined by inference to
yield the answer(s) to a query, and the feedback from a
query’s outcome will in return be propagated to many
different contributors. Conversely, a single contribution
may be used in answering many different queries, and
receive feedback from all of them.

The contributed rules are likely to be noisy, so asso-
ciated with each are probabilistic parameters specify-
ing quality and/or accuracy. The result is a proba-
bilistic first-order representation. There are a variety
of approaches for reasoning in such a representation;
we chose to base our algorithms on knowledge-based
model construction [24] (KBMC) (see Section 3), the
most directly applicable method. In KBMC, queries are
answered by first compiling the knowledge base (and
associated rule weights) into a Bayesian network [15],
then applying standard Bayesian network inference al-
gorithms. Similarly, feedback is incorporated by using
standard BN methods such as expectation-maximization
[3] (EM) to find the rule weights which maximize the
likelihood of the feedback. KBMC allows for efficient
inference and learning (in space, time and the number
of samples needed to accurately learn the parameters).
We will provide more algorithmic details in Section 3.

A key feature of this architecture is that collective know-
ledge bases are built by an intimate combination of hu-
man work and machine learning, and the division of
labor between them reflects their respective strengths
and weaknesses. Human beings are best at making sim-
plified, qualitative statements about what is true in the
world, and using their judgment to gauge the quality of
the end results produced by computers. They are no-
toriously poor at estimating probabilities or reasoning
with them [23]. Machines are best at handling large
volumes of data, estimating probabilities, and comput-
ing with them. Another key feature is that the knowl-
edge base is not developed in open-loop mode, with
the knowledge enterers receiving no real-world feedback
on the quality and correctness of their contributions.
Rather, the evolving knowledge base is subjected to
constant reality checks in the form of queries and their
outcomes, and the resulting knowledge is therefore much
more likely to be both relevant and correct.

In current knowledge-sharing sites and knowledge man-
agement systems, questions are answered from an in-
dexed repository of past answers, or routed to the ap-
propriate experts. Thus the only questions that can be



answered automatically are those that have been asked
and answered in the past. In contrast, the architec-
ture we propose here allows chaining between rules and
facts provided by different experts, and thus automati-
cally answering potentially a very large number of ques-
tions that were not answered before. This can greatly
increase the utility of the system, decrease the cost of
answering questions, and increase the rewards of con-
tributing knowledge.

The architecture answers the problems posed in the in-
troduction:

Quality. By employing feedback and machine learn-
ing, we are able to determine which rules are of
high quality, and which are not. Further, since
we are tracking the utility of knowledge provided
by users, they are more inclined to provide good
rules.

Consistency. By using a probabilistic framework, we
are able to handle inconsistent knowledge.

Relevance. Since the knowledge base is being built by
users, for users, we expect the rules to be on topics
that the users find relevant and interesting. The
credit assignment process rewards those contribu-
tors whose rules are used (and produced a correct
answer), which provides incentive to create rules
that are relevant to users’ needs.

Scalability. For both training and query-answering,
the most expensive portion of the computation is
the probabilistic inference on the Bayesian net-
work. However, this computation depends only
on the size of the network, not of the entire knowl-
edge base. The Bayesian network is constructed
out of only the relevant knowledge, which we ex-
pect (and confirm empirically in the experimental
section) will lead to relatively small networks even
for very large knowledge bases.

Motivation of contributors. By tracking the utility
of rules and assigning credit to those which are
used to answer queries, we provide the means for
motivating contributors (e.g. listing the top-10,
paying in some real or virtual currency, etc.)

In the next section, we present the CKB algorithms in
more detail.

3. ALGORITHM
The internal workings of a collective knowledge base
generally follow the knowledge-based model construc-
tion (KBMC) framework of Ngo and Haddawy [13].
This has been used by, among others, Koller and Pf-
effer [9], and Kersting [8]. KBMC takes a Horn clause
knowledge base and a query as inputs, and produces a
Bayesian network relevant to answering the query. The
advantage of KBMC over ordinary logical inference is

that it allows for “noisy” knowledge (i.e., it takes into
account that facts and rules may not be believed with
certainty).

3.1 Review of KBMC
We begin by introducing KBMC for the common case of
using noisy-or [15] to combine rules (Horn clauses) with
the same consequent. Noisy-or is a probabilistic gener-
alization of the logical OR function; it makes the as-
sumption that the probability that one of the “causes”
fails to produce the effect is independent of the suc-
cess or failure of the other causes. In this case, with
each clause is associated a parameter that specifies the
probability that the consequent holds given that the an-
tecedents hold. Table 1 gives an example set of Horn
clauses and their associated parameters. For example,
the probability that a person, say “mary”, exercises is
0.8 if she owns a gym membership. Because the clause
is defined for all X, this probability is the same for all
people in the model. This parameter sharing facilitates
both a compact representation, and learning. KBMC
allows Horn clauses with relations of any arity.

To answer a query, KBMC extracts from the knowl-
edge base a Bayesian network containing the relevant
knowledge. Each grounded predicate that is relevant to
the query appears in the Bayesian network as a node.
Relevant predicates are found by using standard Prolog
backward chaining techniques, except that rather than
stopping when one proof tree is found, KBMC concep-
tually finds every possible proof tree. The multiple trees
together form a proof DAG (directed acyclic graph)
where each node of the DAG is a grounded predicate.
For example, Figure 2 shows the Bayesian network that
would result from the query “healthy(mary)?” given
“eats well(mary)” and “gym member(mary)”. Once the
query has been converted into a Bayesian network, any
standard BN inference technique may be used to answer
the query.

When there are multiple relevant clauses that have the
same grounded consequent, KBMC employs a combi-
nation function to compute the consequent’s probabil-
ity. For example, consider the second clause in Ta-
ble 1: eats well(X) ← eats(X,Y), healthy food(Y). If
eats(mary,carrots) and eats(mary,apples), both of which
are healthy food(.), then what is the probability that
eats well(mary)? To answer this, an additional set of
nodes are introduced to the Bayesian network, one for
each clause (e.g, E1 and E2 in Figure 3). The node cor-
responding to a clause represents the proposition “All of
the clause’s antecedents are true,” and is thus a deter-
ministic AND function of those antecedents. For each
(grounded) predicate, the probability that the predicate
holds is a function of the “clause” nodes (e.g., E1) that
have that predicate as the consequent. For example,
the predicate can be a noisy-or of the clauses that have
it as the consequent. In general, the combination func-



0.9 healthy(X) ← eats well(X), exercises(X)
0.7 eats well(X) ← eats(X,Y), healthy food(Y)
0.8 exercises(X) ← gym member(X)

Table 1: Sample Horn clauses defining part of
a knowledge base. The number specifies the
probability of the consequent when all of the an-
tecedents are true .

healthy(mary)

eats_well(mary)exercises(mary)

gym_member(mary)

Figure 2: Example Bayesian network formed for
a query on the knowledge base shown in table 1.

tion can be any model of the conditional distribution of
a Boolean variable given other Boolean variables, and
can be different for different predicates. Our imple-
mented system supports three combination functions,
all of which require one parameter per clause: noisy-or
[15], linear pool [5][7], and logistic regression [1].

Notice that the size of the Bayesian network produced
by KBMC in response to a query is only proportional
to the number of rules and facts relevant to the query,
not the size of the whole knowledge base; this is crucial
to the scalability of the approach.

For some combination functions (such as a leaky noisy-
or), a fact may have non-zero probability even if none of

eats_well(mary)

E1 E2

combining function
(noisy or)

eats(mary,carrots)

healthy_food(carrots)

eats(mary,apples)

healthy_food(apples)

Figure 3: When there are multiple sources of
evidence, they are combined using a node which
performs a function such as noisy-or. Above
is an example Bayesian network for the query
“eats well(mary)?”.
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Figure 4: Internal functioning of the knowledge
base.

the rules for which it is a consequent apply. When using
such functions, the results of inference are not complete:
probabilities are only computed for facts that have at
least one applicable rule. Generally, non-derivable an-
swers vastly outnumber the derivable ones, and ignoring
them greatly reduces the computational complexity of
query answering. Since these answers would presum-
ably have low probability, and users will generally only
want to look at the top few most probable answers, this
should have very little effect on the end result.

3.2 Credit and Rule Weights
For each answer to a query there is a proof DAG (di-
rected acyclic graph). Each subtree of the DAG rooted
in the answer and with facts (evidence or contributed)
as leaves corresponds to an alternate derivation of the
answer. Given feedback on the correctness of the answer
(entered by the user), the utility of the corresponding
query is propagated throughout the proof DAG. Credit
is divided equally among the proof trees, and within
each tree among the rules and facts that were used in
it. If a rule or fact was used in multiple proof trees, it
accumulates credit from all of them. Over many queries,
each rule or fact accumulates credit proportional to its
overall utility, and each contributor accumulates credit
from all the queries his/her knowledge has helped to an-
swer. If a rule or fact tends to lead to incorrect answers,
the consequent cost (or negative utility) will be prop-
agated to it; this will encourage contributors to enter
only knowledge they believe to be of high quality.

Feedback from users, in the form of confirmation of the
system’s answers, or the correct answers after they be-
come known, is also used to learn the weights of rules
and facts in the knowledge base. This is done using
the EM algorithm [3, 9], with each example being the
evidence and correct answer for a given query, and the
missing information being the remaining facts. By de-



Table 2: The CKB algorithms.

Inputs:

E Set of grounded predicates (evidence)
KB Set of horn clauses with associated probabilities

(knowledge base)
F Feedback set {f1, f2, . . . }, with fi = (E, q, a):

an evidence set, a query, and the correct answer.

AnswerQuery(KB, E, q)
N = GenerateNetwork(KB, E, q)
return P (q|E) = RunBayesNetInference(N)

Train(KB, F)
do while KB probabilities have not converged:

for each fi in F:
N = GenerateNetwork(KB, fi(E), fi(q) )
SetEvidence(N , fi(q))
RunBayesNetInference(N)
AccumulateProbabilities(KB, N)

UpdateRuleProbabilities(KB)

GenerateNetwork(KB, E, q)
G = GenerateProofDAG(KB, E, q)
N = ConvertToBayesianNetwork(G)
return N = SetEvidence(N , E)

fault, each first-order rule has only one weight, obtained
by tying (averaging) the weights of its ground instances.
The weights of all the combination nodes corresponding
to that rule in the propositionalized network are set to
this value.

The CKB algorithms are summarized in Table 2. Gen-
erateProofDAG() uses Prolog to find all possible proof
trees for the given query, and then merges these proof
trees into a proof DAG. ConvertToBayesianNetwork()
constructs a Bayesian network of AND and combination
nodes as described earlier. UpdateRuleProbabilities()
updates the probabilities in the knowledge base so as
to maximize the likelihood of the feedback.

4. EXPERIMENTAL EVALUATION
As a preliminary evaluation, we performed two sets of
experiments using our implementation of a collective
knowledge base. In the first, we generated synthetic
first-order rules and facts. In the second, we built a
printer troubleshooting knowledge base using contribu-
tions from real users. Logistic regression was used as the
evidence combination function in both experiments.

4.1 Synthetic Knowledge Bases
To our knowledge, there is currently no publicly-avail-
able knowledge base of the scope that would be desir-
able for demonstrating the advantages of our system.
We thus opted to simulate the contributions of many
different volunteers to a collective knowledge base, in
the form of first-order rules and facts.

We based our knowledge generation process on the as-
sumption that a contributor is an expert in a particular
topic. We thus first generated a random taxonomy of
topics, each of which contained some number of predi-
cates, variable types, and ground instances. An expert
is likely to know not just the concepts in a given topic,
but also the general concepts of more specialized sub-
topics. Each topic was thus divided into general and
specific predicates. An expert could form rules for a
topic3 using as antecedents any of the topic’s predi-
cates, or any of the general predicates of the immediate
sub-topics. We generated a random knowledge base of
rules in this way.

We simulated an expert by choosing a random topic and
sampling the knowledge base for rules with consequents
from nodes in the vicinity of that topic in the hierarchy.
The probability that an expert submitted a rule in a
given topic decreased exponentially with the distance
(number of hops) between that topic and the expert’s
one in the taxonomy. We randomly added and removed
antecedents from an expert’s rules to simulate noisy or
incomplete knowledge.

Positive training and testing examples were generated
by randomly choosing a consequent and backward-chain-
ing through rules in the knowledge base to find evidence
that supported them. A positive example was turned
into a negative one by removing a single evidence item,
which resulted in “near-miss” examples that are easy to
mistake as positive. Note that some samples thus re-
quired only knowledge contained within one topic, while
others required chains of inference that spanned topics
and subtopics, which we believe is often the case in the
real world.

We modeled the accumulation of knowledge as propor-
tional to the number of contributors to the system, with
25 rules and 50 feedback instances per contributor. The
ontology had 25 nodes, and the “true” knowledge base
had 50 rules per category. These and other param-
eters (provided in an online appendix) were constant
throughout the experiments, and set before seeing any
test results. We tested with 500 queries. The results
are shown in Figure 5, where “Averaged Experts” is the
performance obtained by estimating the probability of
an answer as the average of the probabilities predicted
by the relevant experts (i.e., those that were able to
answer the question). “Trained CKB” and “Untrained
CKB” refer to the performance obtained by using the
architecture presented in this paper, with or without
using the feedback to train. The performance measure
(“Accuracy”) is the fraction of queries that were an-
swered correctly (with unanswered queries counting as
failures). The advantage of the collective knowledge
base increases rapidly with the number of contribu-

3Rules for a topic are defined as rules whose consequent is
a predicate belonging to that topic.
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Figure 5: Results on synthetic knowledge bases.

tors. This is attributable to the increasing number of
connections that can be made between different con-
tributions as the knowledge base becomes increasingly
densely populated. We also see that applying machine
learning to estimate the quality of knowledge further
improves performance.

Although not optimized for speed, our current system
is fairly efficient. The time required to extract the
Bayesian network for a query from the knowledge base
was dominated by the time to run probabilistic infer-
ence on the network. The size of the extracted Bayesian
network grew sub-linearly in the size of the knowledge
base, from an average of 11 nodes for a collection of
10 experts to 24 nodes for a collection of 50 experts.
The average time spent on probabilistic inference for a
query asked of the pool of 50 experts was 400 millisec-
onds; the time required to run EM was approximately
proportional to the product of this and the number of
training examples.

4.2 Printer Troubleshooting
A significant portion of Usenet newsgroups, FAQs, and
discussion forums is devoted to the task of helping oth-
ers diagnose their computer problems. This suggests
that an automated knowledge base for this domain
would be in high demand. It is also potentially well
suited to development using our collective knowledge
base architecture, due to the availability of a large pool
of willing experts with some degree of formal knowl-
edge, the availability of objective outcomes for feedback
purposes, the composable nature of the knowledge, the
fact that evidence can potentially be captured automat-
ically from the machines being diagnosed, etc. As a first
step in this direction, we have carried out a pilot study
demonstrating that knowledge obtained from real-world
experts in this domain can be merged into a system that
is more accurate than the experts in isolation.

We used the Microsoft printer troubleshooting Bayesian
network as a model of the domain.4 (In other words,
examples generated from this network were used to sim-
ulate examples generated by the real world.) The net-
work consists of 76 Boolean variables. Seventy of these
are informational, such as “print spooling is enabled”
and “fonts are installed correctly”, and six are problem-
related, such as “printing takes too long”. Many of the
variables are labeled as fixable and/or observable with
associated costs. We considered any variable whose cost
of observation was less than one to be evidence, and any
proposition that was fixable but not evidence to be a
cause, which resulted in seventeen evidence variables
and twenty-three causes.

The system attempts to identify the most likely cause
of a problem, given the evidence and problem nodes. To
generate plausible problems a user may ask the system
about, we generated random samples from the network
and accepted only those where exactly one cause was
at fault and at least one of the problem-related propo-
sitions was true. The system was then presented with
the resulting evidence and problem nodes and asked to
diagnose which proposition was the cause of the prob-
lem. As in the first-order domain, the system may elect
not to answer a question. We report two measures of
success. One is the fraction of queries whose cause is
properly diagnosed (with unanswered queries counting
as failures). The other is the average rank of the correct
diagnosis in the list of probable causes returned (with
the most probable cause having rank one). This corre-
sponds to the number of actions a user needs to perform
before the printer is functioning again.

We gave the definitions of the seventy-six variables to
four volunteers, who were each asked to write rules de-
scribing the printer domain to the best of their ability
in a limited amount of time. All four were computer
users who have had experience printing but did not have
any particular expertise or training on the subject. Ta-
ble 3 shows for each volunteer the time spent contribut-
ing knowledge, the number of rules contributed, and
the performance before and after learning rule weights.
Two hundred examples were used for training. Random
guessing would have achieved an accuracy of 4.5%.

Table 3 also shows the results of combining the experts.
The row labeled “Average” is the result of averaging
predictions as described before.5 The “CKB” row shows
the added advantage of the collective knowledge base:
it achieves higher accuracy than a simple combination
of the individual volunteers, both when the individual
volunteers’ rule coefficients have been trained and when

4Available at http://www.cs.huji.ac.il/˜galel/Repository/-
Datasets/win95pts/.
5This can be higher than the average accuracy of the ex-
perts, if different experts answer different questions, because
an unanswered query is counted as answered incorrectly.



Table 3: Printer troubleshooting results. “Volunteer i” is the system using the ith volunteer’s rules.
“CKB” is the collective knowledge base. The accuracy of random guessing is 4.5%.

System Time Num. Accuracy (%) Rank
(mins) Rules Untrained Trained Untrained Trained

Volunteer 1 120 79 11.1 15.8 11.9 6.7
Volunteer 2 30 32 2.6 4.5 9.4 8.6
Volunteer 3 120 40 2.7 10.3 13.6 10.3
Volunteer 4 60 34 3.9 6.3 13.0 12.0
Average – – 2.2 17.6 13.3 6.7
CKB – – 4.6 34.6 12.7 5.7

they have not. Thus we observe once again that the col-
lective knowledge base is able to benefit from chaining
between the rules of different volunteers.

5. RELATED WORK
Open Mind [22] (www.openmind.org) and MindPixel
(www.mindpixel.com) are two recent projects that seek
to build collective knowledge bases. However, neither
of them addresses the issues of quality, consistency, rel-
evance, scalability and motivation that are critical to
the success of such an enterprise. The MindPixel site
asks contributors to input natural language statements
and states that they will be used to train a neural net-
work, but it is not clear how this will be done, or how
the results will be used. Open Mind appears to be
mainly an effort to gather training sets for learning al-
gorithms (e.g., for handwriting and speech recognition).
Its “common sense” component [21] is similar to Mind-
Pixel. Cycorp (www.cyc.com) has recently announced
its intention to allow contributions to Cyc from the pub-
lic. However, its model is to have contributions screened
by Cyc employees, which makes these a bottleneck pre-
venting truly large-scale collaboration. There is also no
mechanism for motivating contributors or ensuring the
relevance of contributions. Another key difference be-
tween Cyc and our approach is that Cyc is an attempt
to solve the extremely difficult problem of formally rep-
resenting all common sense knowledge, while our goal is
to build knowledge bases for well-defined, concrete do-
mains where it should be possible to enter much useful
knowledge using relatively simple representations.

The Semantic Web is a concept that has received in-
creasing attention in recent times [2]. Its goal can be
summarized as making machine-readable information
available on the Web, so as to greatly broaden the spec-
trum of information-gathering and inference tasks that
computers can carry out unaided. The Semantic Web
can be viewed as complementary to the architecture de-
scribed here, in that each can benefit from the other.
The Semantic Web can provide much of the infrastruc-
ture needed for collective knowledge bases (e.g., stan-
dard formats for knowledge). In turn, the mechanisms
described in this paper can be used to guide and op-

timize the development of the Semantic Web. Similar
remarks apply to other ongoing efforts to support large-
scale, distributed knowledge base development (e.g., the
Chimaera project [11]).

Collaborative filtering systems [18] and knowledge-shar-
ing sites [4] can be viewed as primitive forms of collec-
tive knowledge base. Their success is an indication of
the promise of mass collaboration.

The representation we use is a form of probabilistic
logic program [13]. Other recently-proposed probabilis-
tic first-order formalisms include stochastic logic pro-
grams [12] and probabilistic relational models [6]. Sto-
chastic logic programs are a generalization of probabilis-
tic context-free grammars, and assume that for a given
consequent only one rule can fire at a time. They are
thus not applicable when multiple rules can function si-
multaneously as sources of evidence for their common
consequent. Probabilistic relational models lack the
modularity required for construction by many loosely-
coordinated individuals. In the future we plan to ex-
plore ways of adapting these approaches for our pur-
poses, and to compare them with probabilistic logic
programs.

6. CONCLUSION
Knowledge acquisition is the key bottleneck prevent-
ing the wider spread of AI systems. Both current ap-
proaches to it — manual and automatic — have limi-
tations that are hard to overcome. The Internet makes
possible a new alternative: building knowledge bases
by mass collaboration. While this approach can greatly
reduce the time and cost of developing very large knowl-
edge bases, it raises problems of quality, consistency, rel-
evance, scalability and motivation. This paper proposes
an architecture that addresses each of these problems.
Experiments with large synthetic knowledge bases and
a pilot study in the printer diagnosis domain show its
promise.

Current and future research directions include: devel-
oping first-order probabilistic methods specifically for
collective knowledge engineering, focusing particularly



on the restrictions on expressiveness needed for scalabil-
ity; allowing users to provide different forms of knowl-
edge (in [20], we merge statements from experts on the
structure of a Bayesian network); studying different al-
ternatives for credit assignment (e.g. using a web of
trust [19]), leveraging results from the multi-agent sys-
tems literature; developing mechanisms for guiding con-
tributors to where new knowledge would be most use-
ful, using value-of-information computations; detecting
and overcoming malicious users; using machine learn-
ing techniques to automatically propose to contributors
refinements of their entries; developing methods for au-
tomatically translating between the ontologies used by
different subcommunities of contributors; and deploying
a pilot Web site for collective knowledge base construc-
tion, open to contributions from all sources, focusing
initially on the domain of computer troubleshooting.
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