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Abstract

We propose statistical predicate invention as
a key problem for statistical relational learn-
ing. SPI is the problem of discovering new
concepts, properties and relations in struc-
tured data, and generalizes hidden variable
discovery in statistical models and predicate
invention in ILP. We propose an initial model
for SPI based on second-order Markov logic,
in which predicates as well as arguments can
be variables, and the domain of discourse is
not fully known in advance. Our approach it-
eratively refines clusters of symbols based on
the clusters of symbols they appear in atoms
with (e.g., it clusters relations by the clus-
ters of the objects they relate). Since differ-
ent clusterings are better for predicting dif-
ferent subsets of the atoms, we allow multiple
cross-cutting clusterings. We show that this
approach outperforms Markov logic structure
learning and the recently introduced infinite
relational model on a number of relational
datasets.

1. Introduction

In the past few years, the statistical relational learn-
ing (SRL) community has recognized the importance
of combining the strengths of statistical learning and
relational learning (also known as inductive logic pro-
gramming), and developed several novel representa-
tions, as well as algorithms to learn their parameters
and structure (Getoor & Taskar, 2007). However, the
problem of statistical predicate invention (SPI) has so
far received little attention in the community. SPI is
the discovery of new concepts, properties and relations
from data, expressed in terms of the observable ones,
using statistical techniques to guide the process and
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explicitly representing the uncertainty in the discov-
ered predicates. These can in turn be used as a ba-
sis for discovering new predicates, which is potentially
much more powerful than learning based on a fixed
set of simple primitives. Essentially all the concepts
used by humans can be viewed as invented predicates,
with many levels of discovery between them and the
sensory percepts they are ultimately based on.

In statistical learning, this problem is known as hidden
or latent variable discovery, and in relational learning
as predicate invention. Both hidden variable discovery
and predicate invention are considered quite important
in their respective communities, but are also very dif-
ficult, with limited progress to date.

One might question the need for SPI, arguing that
structure learning is sufficient. Such a question can
also be directed at hidden variable discovery and pred-
icate invention, and their benefits, as articulated by
their respective communities, also apply to SPI. SPI
produces more compact and comprehensible models
than pure structure learning, and may also improve
accuracy by representing unobserved aspects of the
domain. Instead of directly modeling dependencies
among observed predicates, which potentially requires
an exponential number of parameters, we can invent
a predicate and model the dependence between it and
each of the observed predicates, requiring only a linear
number of parameters and reducing the risk of over-
fitting. In turn, invented predicates can be used to
learn new formulas, allowing larger search steps, and
potentially enabling us to learn more complex models
accurately.

Among the prominent approaches in statistical learn-
ing is a series of algorithms developed by Elidan, Fried-
man and coworkers for finding hidden variables in
Bayesian networks. Elidan et al. (2001) look for struc-
tural patterns in the network that suggest the pres-
ence of hidden variables. Elidan and Friedman (2005)
group observed variables by their mutual information,
and create a hidden variable for each group. Cen-
tral to both approaches is some form of EM algorithm
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that iteratively creates hidden variables, hypothesizes
their values, and learns the parameters of the resulting
Bayesian network. A weakness of such statistical ap-
proaches is they assume that the data is independently
and identically distributed, which is not true in many
real-world applications.

In relational learning, the problem is known as predi-
cate invention (see Kramer (1995) for a survey). Pred-
icates are invented to compress a first-order theory, or
to facilitate the learning of first-order formulas. Re-
lational learning employs several techniques for pred-
icate invention. Predicates can be invented by an-
alyzing first-order formulas, and forming a predicate
to represent either their commonalities (interconstruc-
tion (Wogulis & Langley, 1989)) or their differences
(intraconstruction (Muggleton & Buntine, 1988)). A
weakness of inter/intraconstruction is that they are
prone to over-generating predicates, many of which
are not useful. Predicates can also be invented by in-
stantiating second-order templates (Silverstein & Paz-
zani, 1991), or to represent exceptions to learned rules
(Srinivasan et al., 1992). Relational predicate inven-
tion approaches suffer from a limited ability to handle
noisy data.

Only a few approaches to date combine elements of
statistical and relational learning. Most of them only
cluster objects, not relations (Popescul & Ungar, 2004;
Wolfe & Jensen, 2004; Neville & Jensen, 2005; Xu
et al., 2005; Long et al., 2006; Roy et al., 2006).
Craven and Slattery (2001) proposed a learning mech-
anism for hypertext domains in which class predictions
produced by naive Bayes are added to an ILP system
(FOIL) as invented predicates.1 The SAYU-VISTA
system (Davis et al., 2007) uses an off-the-shelf ILP
system (Aleph) to learn Horn clauses on a database.
It creates a predicate for each clause learned, adds it
as a relational table to the database, and then runs
a standard Bayesian network structure learning algo-
rithm (TAN). Both of these systems predict only a
single target predicate. We would like SPI to find
arbitrary regularities over all predicates. The state-
of-the-art is the infinite relational model (IRM, Kemp
et al. (2006)), which simultaneously clusters objects
and relations. The objects can be of more than one
type, and the relations can take on any number of ar-
guments. Xu et al. (2006) propose a closely related
model.

In this paper, we present MRC, an algorithm based
on Markov logic (Richardson & Domingos, 2006), as a
first step towards a general framework for SPI. MRC

1To our knowledge, this is the only previous paper that
uses the term ‘statistical predicate invention’.

automatically invents predicates by clustering objects,
attributes and relations. The invented predicates cap-
ture arbitrary regularities over all relations, and are
not just used to predict a designated target relation.
MRC learns multiple clusterings, rather than just one,
to represent the complexities in relational data. MRC
is short for Multiple Relational Clusterings.

We begin by briefly reviewing Markov logic in the next
section. We then describe our model in detail (Sec-
tion 3). Next we report our experiments comparing
our model with Markov logic structure learning and
IRM (Section 4). We conclude with a discussion of
future work.

2. Markov Logic

In first-order logic, formulas are constructed using four
types of symbols: constants, variables, functions, and
predicates. (In this paper we use only function-free
logic.) Constants represent objects in the domain of
discourse (e.g., people: Anna, Bob, etc.). Variables
(e.g., x, y) range over the objects in the domain.
Predicates represent relations among objects (e.g.,
Friends), or attributes of objects (e.g., Student).
Variables and constants may be typed. An atom is a
predicate symbol applied to a list of arguments, which
may be variables or constants (e.g., Friends(Anna, x)).
A ground atom is an atom all of whose arguments are
constants (e.g., Friends(Anna, Bob)). A world is an as-
signment of truth values to all possible ground atoms.
A database is a partial specification of a world; each
atom in it is true, false or (implicitly) unknown.

Markov logic is a probabilistic extension of first-order
logic. A Markov logic network (MLN) is a set of
weighted first-order formulas. Together with a set of
constants representing objects in the domain, it de-
fines a Markov network (Pearl, 1988) with one node
per ground atom and one feature per ground formula.
The weight of a feature is the weight of the first-order
formula that originated it. The probability distribu-
tion over possible worlds x specified by the ground
Markov network is given by

P (X =x) =
1
Z

exp

∑
i∈F

∑
j∈Gi

wigj(x)

 (1)

where Z is a normalization constant, F is the set of
all first-order formulas in the MLN, Gi is the set of
groundings of the ith first-order formula, and gj(x) =
1 if the jth ground formula is true and gj(x) = 0 other-
wise. Markov logic enables us to compactly represent
complex models in non-i.i.d. domains. General algo-
rithms for inference and learning in Markov logic are
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Figure 1. Example of multiple clusterings.

discussed in Richardson and Domingos (2006).

3. Multiple Relational Clusterings

Predicate invention is the creation of new symbols, to-
gether with formulas that define them in terms of the
symbols in the data. (In a slight abuse of language,
we use “predicate invention” to refer to the creation
of both new predicate symbols and new constant sym-
bols.) In this section we propose a statistical approach
to predicate invention based on Markov logic. The
simplest instance of statistical predicate invention is
clustering, with each cluster being an invented unary
predicate. More generally, all latent variables in i.i.d.
statistical models can be viewed as invented unary
predicates. Our goal in this paper is to extend this
to relational domains, where predicates can have arbi-
trary arity, objects can be of multiple types, and data
is non-i.i.d.

We call our approach MRC, for Multiple Relational
Clusterings. MRC is based on the observation that,
in relational domains, multiple clusterings are neces-
sary to fully capture the interactions between objects.
Consider the following simple example. People have
coworkers, friends, technical skills, and hobbies. A per-
son’s technical skills are best predicted by her cowork-
ers’s skills, and her hobbies by her friends’ hobbies. If
we form a single clustering of people, coworkers and
friends will be mixed, and our ability to predict both
skills and hobbies will be hurt. Instead, we should clus-
ter together people who work together, and simultane-
ously cluster people who are friends with each other.
Each person thus belongs to both a “work cluster”
and a “friendship cluster.” (See Figure 1.) Member-
ship in a work cluster is highly predictive of technical
skills, and membership in a friendship cluster is highly
predictive of hobbies. The remainder of this section
presents a formalization of this idea and an efficient
algorithm to implement it.

Notice that multiple clusterings may also be use-
ful in propositional domains, but the need for them

there is less acute, because objects tend to have
many fewer properties than relations. (For exam-
ple, Friends(Anna, x) can have as many groundings
as there are people in the world, and different friend-
ships may be best predicted by different clusters Anna
belongs to.)

We define our model using finite second-order Markov
logic, in which variables can range over relations (pred-
icates) as well as objects (constants). Extending
Markov logic to second order involves simply ground-
ing atoms with all possible predicate symbols as well as
all constant symbols, and allows us to represent some
models much more compactly than first-order Markov
logic. We use it to specify how predicate symbols are
clustered.

We use the variable r to range over predicate sym-
bols, xi for the ith argument of a predicate, γi for a
cluster of ith arguments of a predicate (i.e., a set of
symbols), and Γ for a clustering (i.e., a set of clusters
or, equivalently, a partitioning of a set of symbols).
For simplicity, we present our rules in generic form for
predicates of all arities and argument types, with n
representing the arity of r; in reality, if a rule involves
quantification over predicate variables, a separate ver-
sion of the rule is required for each arity and argument
type.

The first rule in our MLN for SPI states that each
symbol belongs to at least one cluster:

∀x ∃γ x ∈ γ

This rule is hard, i.e., it has infinite weight and can-
not be violated. The second rule states that a symbol
cannot belong to more than one cluster in the same
clustering:

∀x, γ, γ′,Γ x ∈ γ ∧ γ ∈ Γ ∧ γ′ ∈ Γ ∧ γ 6= γ′ ⇒ x /∈ γ′

This rule is also hard. We call it the mutual exclusion
rule.

If r is in cluster γr and xi is in cluster γi, we say
that r(x1, . . . , xn) is in the combination of clusters
(γr, γ1, . . . , γn). The next rule says that each atom
appears in exactly one combination of clusters, and is
also hard:

∀r, x1, . . . , xn ∃!γr, γ1, . . . , γn

r ∈ γr ∧ x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn

The next rule is the key rule in the model, and states
that the truth value of an atom is determined by the
cluster combination it belongs to:

∀r, x1, . . . , xn,+γr,+γ1, . . . ,+γn

r ∈ γr ∧ x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn ⇒ r(x1, . . . , xn)
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This rule is soft. The “+” notation is syntactic sugar
that signifies the MLN contains an instance of this
rule with a separate weight for each tuple of clusters
(γr, γ1, . . . , γn). As we will see below, this weight is
the log-odds that a random atom in this cluster com-
bination is true. Thus, this is the rule that allows us to
predict the probability of query atoms given the clus-
ter memberships of the symbols in them. We call this
the atom prediction rule. Combined with the mutual
exclusion rule, it also allows us to predict the cluster
membership of evidence atoms. Chaining these two
inferences allows us to predict the probability of query
atoms given evidence atoms.

To combat the proliferation of clusters and consequent
overfitting, we impose an exponential prior on the
number of clusters, represented by the formula

∀γ∃x x ∈ γ

with negative weight −λ. The parameter λ is fixed
during learning, and is the penalty in log-posterior in-
curred by adding a cluster to the model. Thus larger
λs lead to fewer clusterings being formed.2

A cluster assignment {Γ} is an assignment of truth
values to all r ∈ γr and xi ∈ γi atoms. The MLN de-
fined by the five rules above represents a joint distri-
bution P ({Γ}, R) over {Γ} and R, the vector of truth
assignments to the observable ground atoms. Learning
consists of finding the cluster assignment that max-
imizes P ({Γ}|R) ∝ P ({Γ}, R) = P ({Γ})P (R|{Γ}),
and the corresponding weights. P ({Γ}) = 0 for any
{Γ} that violates a hard rule. For the remainder,
P ({Γ}) reduces to the exponential prior. It is easily
seen that, given a cluster assignment, the MLN de-
composes into a separate MLN for each combination
of clusters, and the weight of the corresponding atom
prediction rule is the log odds of an atom in that com-
bination of clusters being true. (Recall that, by de-
sign, each atom appears in exactly one combination of
clusters.) Further, given a cluster assignment, atoms
with unknown truth values do not affect the estima-
tion of weights, because they are graph-separated from
all other atoms by the cluster assignment. If tk is the
empirical number of true atoms in cluster combina-
tion k, and fk the number of false atoms, we estimate
wk as log((tk + β)/(fk + β)), where β is a smoothing
parameter.

Conversely, given the model weights, we can use in-
ference to assign probabilities of membership in com-
binations of clusters to all atoms. Thus the learning

2We have also experimented with using a Chinese
restaurant process prior (CRP, Pitman (2002)), and the
results were similar. We thus use the simpler exponential
prior.

problem can in principle be solved using an EM al-
gorithm, with cluster assignment as the E step, and
MAP estimation of weights as the M step. However,
while the M step in this algorithm is trivial, the E
step is extremely complex. We begin by simplifying
the problem by performing hard assignment of symbols
to clusters (i.e., instead of computing probabilities of
cluster membership, a symbol is simply assigned to its
most likely cluster). Since performing an exhaustive
search over cluster assignments is infeasible, the key
is to develop an intelligent tractable approach. Since,
given a cluster assignment, the MAP weights can be
computed in closed form, a better alternative to EM
is simply to search over cluster assignments, evaluat-
ing each assignment by its posterior probability. This
can be viewed as a form of structure learning, where a
structure is a cluster assignment.

Algorithm 1 shows the pseudo-code for our learning al-
gorithm, MRC. The basic idea is the following: when
clustering sets of symbols related by atoms, each re-
finement of one set of symbols potentially forms a basis
for the further refinement of the related clusters. MRC
is thus composed of two levels of search: the top level
finds clusterings, and the bottom level finds clusters.
At the top level, MRC is a recursive procedure whose
inputs are a cluster of predicates γr per arity and argu-
ment type, and a cluster of symbols γi per type. In the
initial call to MRC, each γr is the set of all predicate
symbols with the same number and type of arguments,
and γi is the set of all constant symbols of the ith type.
At each step, MRC creates a cluster symbol for each
cluster of predicate and constant symbols it receives
as input. Next it clusters the predicate and constant
symbols, creating and deleting cluster symbols as it
creates and destroys clusters. It then calls itself recur-
sively with each possible combination of the clusters
it formed. For example, suppose the data consists of
binary predicates r(x1, x2), where x1 and x2 are of dif-
ferent type. If r is clustered into γ1

r and γ2
r , x1 into

x1
1 and x2

1, and x2 into x1
2 and x2

2, MRC calls itself
recursively with the cluster combinations (γ1

r , γ1
1 , γ1

2),
(γ1

r , γ1
1 , γ2

2), (γ1
r , γ2

1 , γ1
2), (γ1

r , γ2
1 , γ2

2), (γ2
r , γ1

1 , γ1
2), etc.

Within each recursive call, MRC uses greedy search
with restarts to find the MAP clustering of the subset
of predicate and constant symbols it received. It be-
gins by assigning all constant symbols of the same type
to a a single cluster, and similarly for predicate sym-
bols of the same arity and argument type. The search
operators used are: move a symbol between clusters,
split a cluster, and merge a cluster. (If clusters are
large, only a random subset of the splits is tried at
each step.) A greedy search ends when no operator in-
creases posterior probability. Restarts are performed,
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Algorithm 1 MRC(C,R)
inputs: C = (γr1 , . . . , γrm , γ1, . . . , γn), a combination of clusters,

where γri
is a cluster of relation symbols with the same

number and type of arguments, and γj is a cluster of
constant symbols of the same type
R, ground atoms formed from the symbols in C

output: D = {(γ′
r1

, . . . , γ′
rm

, γ′
1, . . . , γ′

n)}, a set of cluster

combinations where γ′
i ⊆ γi

note: Γi is a clustering of the symbols in γi, i.e.,

Γi = {γ1
i , . . . , γk

i }, γj
i
⊆ γi,

⋃k

j=1
γj

i
= γi, and

γj
i
∩ γk

i = ∅, j 6= k. {Γi} is a set of clusterings.

Γi ← {γi} for all γi in C

{ΓBest
i } ← {Γi}

for s← 0 to MaxSteps do

{ΓT mp
i
} ← best change to any clustering in {Γi}

if P ({ΓT mp
i
}|R) > P ({Γi}|R)

{Γi} ← {ΓT mp
i
}

if P ({Γi}|R) > P ({ΓBest
i }|R)

{ΓBest
i } ← {Γi}

else if for the last MaxBad consecutive iterations

P ({ΓT mp
i
}|R) ≤ P ({Γi}|R)

reset Γi ← {γi} for all γi in C

if ΓBest
i = {γi} for all γi in C

return C
D ← ∅
for each C′ ∈ ΓBest

r1
× . . .× ΓBest

rm
× ΓBest

1 × . . .× ΓBest
n

R′ ← ground atoms formed from the symbols in C′

D ← D ∪ MRC(C′,R′)
return D

and they give different results because of the random
split operator used.

Notice that in each call of MRC, it forms a clustering
for each of its input clusters, thereby always satisfying
the first two hard rules in the MLN. MRC also always
satisfies the third hard rule because it only passes the
atoms in the current combination to each recursive
call.

MRC terminates when no further refinement increases
posterior probability, and returns the finest clusterings
produced. In other words, if we view MRC as grow-
ing a tree of clusterings, it returns the leaves. Con-
ceivably, it might be useful to retain the whole tree,
and perform shrinkage (McCallum et al., 1998) over it.
This is an item for future work. Notice that the clus-
ters created at a higher level of recursion constrain the
clusters that can be created at lower levels, e.g., if two
symbols are assigned to different clusters at a higher
level, they cannot be assigned to the same cluster in
subsequent levels. Notice also that predicate symbols
of different arities and argument types are never clus-
tered together. This is a limitation that we plan to
overcome in the future.

4. Experiments

In our experiments, we compare MRC with IRM
(Kemp et al., 2006) and MLN structure learning (Kok

& Domingos, 2005).

4.1. Infinite Relational Model

The IRM is a recently-published model that also clus-
ters objects, attributes, and relations. However, un-
like MRC, it only finds a single clustering. It de-
fines a generative model for the predicates and cluster
assignments. Like MRC, it assumes that the predi-
cates are conditionally independent given the cluster
assignments, and the cluster assignments for each type
are independent. IRM uses a Chinese restaurant pro-
cess prior (CRP, Pitman (2002)) on the cluster assign-
ments. Under the CRP, each new object is assigned
to an existing cluster with probability proportional to
the cluster size. Because the CRP has the property of
exchangeability, the order in which objects arrive does
not affect the outcome. IRM assumes that the prob-
ability p of an atom being true conditioned on clus-
ter membership is generated according to a symmetric
Beta distribution, and that the truth values of atoms
are then generated according to a Bernoulli distribu-
tion with parameter p. IRM finds the MAP cluster as-
signment using the same greedy search as our model,
except that it also searches for the optimal values of
its CRP and Beta parameters.

4.2. MLN Structure Learning

We also compare MRC to Kok and Domingos’ (2005)
MLN structure learning algorithm (MSL, beam search
version) implemented in the Alchemy package (Kok
et al., 2006). MSL begins by creating all possible
unit clauses. Then, at each step, it creates candi-
date clauses by adding literals to the current clauses.
The weight of each candidate clause is learned by opti-
mizing a weighted pseudo-log-likelihood (WPLL) mea-
sure, and the best one is added to the MLN. The algo-
rithm continues to add the best candidate clauses to
the MLN until none of the candidates improves WPLL.

4.3. Datasets

We compared MRC to IRM and MSL on all four
datasets used in Kemp et al. (2006).3

Animals. This dataset contains a set of animals and
their features (Osherson et al., 1991). It consists ex-
clusively of unary predicates of the form f(a), where f
is a feature and a is an animal (e.g., Swims(Dolphin)).
There are 50 animals, 85 features, and thus a total of
4250 ground atoms, of which 1562 are true. This is a
simple propositional dataset with no relational struc-

3The IRM code and datasets are publicly available at
http://web.mit.edu/∼ckemp/www/code/irm.html.
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ture, but it is useful as a “base case” for comparison.
Notice that, unlike traditional clustering algorithms,
which only cluster objects by features, MRC and IRM
also cluster features by objects. This is known as bi-
clustering or co-clustering, and has received consider-
able attention in the recent literature (e.g., Dhillon
et al. (2003)).

UMLS. UMLS contains data from the Unified Medi-
cal Language System, a biomedical ontology (McCray,
2003). It consists of binary predicates of the form
r(c, c′), where c and c′ are biomedical concepts (e.g.,
Antibiotic, Disease), and r is a relation between
them (e.g., Treats, Diagnoses). There are 49 rela-
tions and 135 concepts, for a total of 893,025 ground
atoms, of which 6529 are true.

Kinship. This dataset contains kinship relationships
among members of the Alyawarra tribe from Central
Australia (Denham, 1973). Predicates are of the form
k(p, p′), where k is a kinship relation and p, p′ are
persons. There are 26 kinship terms and 104 persons,
for a total of 281,216 ground atoms, of which 10,686
are true.

Nations. This dataset contains a set of relations
among nations and their features (Rummel, 1999).
It consists of binary and unary predicates. The bi-
nary predicates are of the form r(n, n′), where n, n′

are nations, and r is a relation between them (e.g.,
ExportsTo, GivesEconomicAidTo). The unary predi-
cates are of the form f(n), where n is a nation and f
is a feature (e.g., Communist, Monarchy). There are
14 nations, 56 relations and 111 features, for a total of
12,530 ground atoms, of which 2565 are true.

4.4. Methodology

Experimental evaluation of statistical relational learn-
ers is complicated by the fact that in many cases the
data cannot be separated into independent training
and test sets. While developing a long-term solution
for this remains an open problem, we used an approach
that is general and robust: performing cross-validation
by atom. For each dataset, we performed ten-fold
cross-validation by randomly dividing the atoms into
ten folds, training on nine folds at a time, and testing
on the remaining one. This can be seen as evaluating
the learners in a transductive setting, because an ob-
ject (e.g., Leopard) that appears in the test set (e.g.,
in MeatEater(Leopard)) may also appear in the train-
ing set (e.g., in Quadrapedal(Leopard)). In the train-
ing data, the truth values of the test atoms are set to
unknown, and their actual values (true/false) are not
available. Thus learners must perform generalization
in order to be able to infer the test atoms, but the gen-

eralization is aided by the dependencies between test
atoms and training ones.

Notice that MSL is not directly comparable to MRC
and IRM because it makes the closed-world assump-
tion, i.e., all atoms not in its input database are as-
sumed to be false. Our experiments require the test
atoms to be open-world. For an approximate compar-
ison, we set all test atoms to false when running MSL.
Since in each run these are only 10% of the training set,
setting them to false does not greatly change the suf-
ficient statistics (true clause counts) learning is based
on. We then ran MC-SAT (Poon & Domingos, 2006)
on the MLNs learned by MSL to infer the probabilities
of the test atoms.4

To evaluate the performance of MRC, IRM and MSL,
we measured the average conditional log-likelihood of
the test atoms given the observed training ones (CLL),
and the area under the precision-recall curve (AUC).
The advantage of the CLL is that it directly mea-
sures the quality of the probability estimates pro-
duced. The advantage of the AUC is that it is in-
sensitive to the large number of true negatives (i.e.,
atoms that are false and predicted to be false). The
precision-recall curve for a predicate is computed by
varying the threshold CLL above which an atom is
predicted to be true.

For IRM, we used all of the default settings in its pub-
licly available software package (except that we termi-
nated runs after a fixed time rather than a fixed num-
ber of iterations). For our model, we set both param-
eters λ and β to 1 (without any tuning). We ran IRM
for ten hours on each fold of each dataset. We also ran
MRC for ten hours per fold, on identically configured
machines, for the first level of clustering. Subsequent
levels of clustering were permitted 100 steps. MRC
took a total of 3-10 minutes for the subsequent levels
of clustering, negligible compared to the time required
for the first level and by IRM. We allowed a much
longer time for the first level of clustering because this
is where the sets of objects, attributes and relations
to be clustered are by far the largest, and finding a
good initial clustering is important for the subsequent
learning.

4.5. Results

Figure 2 reports the CLL and AUC for MRC, IRM and
MSL, averaged over the ten folds of each dataset. We
also report the results obtained using just the initial

4The parameters for MSL are specified in an online
appendix at http://alchemy.cs.washington.edu/papers/-
kok07.



Statistical Predicate Invention

Figure 2. Comparison of MRC, IRM and MLN structure learning (MSL) using ten-fold cross-validation: average con-
ditional log-likelihood of test atoms (CLL) and average area under the precision-recall curve (AUC). Init is the initial
clustering formed by MRC. Error bars are one standard deviation in each direction.

clustering formed by MRC, in order to evaluate the
usefulness of learning multiple clusterings.

MSL does worse than MRC and IRM on all datasets
except Nations. On Nations, it does worse than MRC
and IRM in terms of CLL, but approximately ties them
in terms of AUC. Many of the relations in Nations are
symmetric, e.g., if country A has a military conflict
with B, then the reverse is usually true. MSL learns a
rule to capture the symmetry, and consequently does
well in terms of AUC.

MRC outperforms IRM on UMLS and Kinship, and
ties it on Animals and Nations. The difference on
UMLS and Kinship is quite large. Animals is the
smallest and least structured of the datasets, and it
is conceivable that it has little room for improvement
beyond a single clustering. The difference in per-
formance between MRC and IRM correlates strongly
with dataset size. (Notice that UMLS and Kinship
are an order of magnitude larger than Animals and
Nations.) This suggests that sophisticated algorithms
for statistical predicate invention may be of most use
in even larger datasets, which we plan to experiment
with in the near future.

MRC outperforms Init on all domains except Animals.
The differences on Nations are not significant, but on
UMLS and Kinship they are very large. These results
show that forming multiple clusterings is key to the
good performance of MRC. In fact, Init does consid-

erably worse than IRM on UMLS and Kinship; we
attribute this to the fact that IRM performs a search
for optimal parameter values, while in MRC these pa-
rameters were simply set to default values without any
tuning on data. This suggests that optimizing param-
eters in MRC could lead to further performance gains.

In the Animals dataset, MRC performs at most three
levels of cluster refinement. On the other datasets,
it performs about five. The average total numbers
of clusters generated are: Animals, 202; UMLS, 405;
Kinship, 1044; Nations, 586. The average numbers
of atom prediction rules learned are: Animals, 305;
UMLS, 1935; Kinship, 3568; Nations, 12,169. We
provide examples of multiple clusterings that MRC
learned for the UMLS dataset in an online appendix
(see footnote 4).

5. Conclusion and Future Work

We proposed statistical predicate invention, the dis-
covery of new concepts, properties and relations in
structured data, as a key problem for statistical re-
lational learning. We then introduced MRC, an ap-
proach to SPI based on second-order Markov logic.
MRC forms multiple relational clusterings of the sym-
bols in the data and iteratively refines them. Empiri-
cal comparisons with a Markov logic structure learning
system and a state-of-the-art relational clustering sys-
tem on four datasets show the promise of our model.
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Directions for future work include: evaluating our
model in an inductive (rather than transductive) set-
ting; experimenting on larger datasets; using the clus-
ters learned by our model as primitives in structure
learning (Kok & Domingos, 2005); learning a hierar-
chy of multiple clusterings and performing shrinkage
over them; and developing more powerful models for
SPI (e.g., by allowing clustering of predicates with dif-
ferent arities).

We speculate that all relational structure learning can
be accomplished with SPI alone. Traditional relational
structure learning approaches like ILP build formulas
by incrementally adding predicates that share vari-
ables with existing predicates. The dependencies these
formulas represent can also be captured by inventing
new predicates. For example, consider a formula that
states that if two people are friends, either both smoke
or neither does: ∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)).
SPI can compactly represent this using two clusters,
one containing friends who smoke, and one containing
friends who do not. The model we introduced in this
paper represents a first step in this direction.
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