Type-Directed Completion of Partial Expressions

Abstract

Modern programming frameworks provide enormous libraries arranged in complex structures, so much so that a large part of modern programming is searching for APIs that “surely exist” somewhere in an unfamiliar part of the framework. We present a novel way of phrasing a search for an unknown API; the programmer simply writes an expression leaving holes for the parts they do not know. These expressions are called partial expressions. We present an efficient algorithm that produces likely completions ordered by a ranking scheme based primarily on the similarity of the types of the APIs suggested to the types of the known expressions. This gives a powerful language for both API discovery and code completion with a small impedance mismatch from writing code. In an automated experiment on mature C# projects, we show our algorithm can place the intended expression in the top 10 choices over 80% of the time.

1. Introduction

Modern programming frameworks such as those found in Java and .NET consist of a huge number of classes organized into many namespaces. For example, the .NET Framework 4.0 has over 280,000 methods, 30,000 types, and 697 namespaces. Discovering the right method to achieve a particular task in this huge framework can feel like searching for a needle in a haystack. Programmers often perform searches through unfamiliar APIs using their IDE’s code completion, for example Visual Studio’s Intellisense, which requires the programmer to either provide a receiver or iterate through the possible receivers by brute force. Fundamentally, today's code completion tools still expect programmers to find the right method by name (something that implicitly assumes they will know the right name for the concept, which may not be true) and to fill in all the arguments.

Our approach: We define a language of partial expressions, in which programmers can indicate in a superset of the language’s concrete syntax that certain subexpressions need to be filled in or possibly reordered. We interpret a partial expression as a query that returns a ranked list of well-typed completions, where each completion is a synthesized small code snippet. This model is simple, general, and precisely specified, allowing for a variety of uses and extensions. We developed an efficient algorithm for generating completions of a partial expression. We also developed a ranking scheme primarily based on (sub)typing information to prefer more general, and precisely specified, allowing for a variety of uses and extensions. We developed an efficient algorithm for generating completions of a partial expression. We also developed a ranking scheme primarily based on (sub)typing information to prefer more precise expressions (e.g., a method taking Object rather than T) and to fill in all the arguments.

Code-completion problems addressed: We have used our partial expression language and its implementation for finding completions to address three code-completion problems:

1. Given at most k arguments and without distinguishing one as the object-oriented receiver, predict a method call including these and possibly other arguments. Note that the name of the method being called is not given; the method name, along with the order of arguments to it, is the output of our system.

2. Given a method call with missing arguments, predict these arguments (with simple expressions such as variables or field and property lookups of variables).

3. Given an incomplete binary expression such as an assignment statement, predict field and property lookups (i.e., given e predict $e.f$) on the left or right side of the operation.

Results: We demonstrate that our approach ranks the correct result highly most of the time and often outperforms or complements existing widely deployed technologies like Intellisense. To collect a large amount of empirical data, we have chosen to leave IDE integration and user studies to future work. Instead, we take existing codebases and run our tool after automatically replacing existing method calls, assignments, and comparisons with appropriate partial expressions. On our corpus of programs, results include:

- For over 80% of method calls (and over 90% if we know the call’s return type), there are two or fewer arguments to the call such that with only those arguments, our system will rank the intended method name within the top 10.

- If a simple argument (e.g., a variable) is omitted from a method call, our system can fill it back in correctly (the top-ranked choice) 55% of the time.

- When a field or property lookup is omitted from an expression, we can use surrounding type context to rank the missing property in the top 10 over 90% of the time.

Overall, our work demonstrates that IDEs could use already-available type information to help programmers find methods they want and save keystrokes much more than they do today.

Contributions This paper includes the following contributions:

- Identification of the need for a search facility based on partial expressions which we have detailed using illustrative examples in Section 2.

- Design of the partial expressions language and how partial expressions relate to complete expressions as formally defined in Section 3.

- An efficient algorithm for completing partial expressions and ranking the results described in Section 4 which integrates the ranking procedure and off-line indexing of large libraries.

- A large experimental evaluation of the quality and performance of our algorithm on real code presented in Section 5.

- An evaluation of the relative and absolute importance of each ranking feature detailed in Section 6.

Section 7 overviews related work and Section 8 concludes the paper.

2. Illustrative Examples

This section describes three examples that use partial expressions in our system and then considers performing the same tasks using prior work. Section 2.1 describes how our system handles these examples. Section 2.2 discusses normal code completion. Section 2.3 covers the closest related work, the Prospector tool [7].

1 Properties are syntactic sugar for writing getters and setters like fields.
2.1 Our system

Synthesizing Method Names

Suppose you are writing code using an image editing API (specifically, the Paint.NET image editor) and want to figure out how to make an image smaller. Your first instinct may be to write `img.Shrink(size)`. Unfortunately, that API does not exist; the actual API for shrinking an image is `img.Shrink(size)` along with zero or more field lookups or zero-argument instance method calls after them. The top ten ranked completions for this query are listed in Figure 3. Note that by completing both holes simultaneously, only completions where the two sides have fields of compatible types are shown.

Synthesizing Field Lookups

For a more targeted version of the above, the search can be narrowed by specifying the base object to look under. We will consider synthesizing field lookups in the context of a comparison operator. The query "?m >= this.?m" includes point and this along with zero or more field lookups or zero-argument instance method calls after them. The top ten ranked completions for this query are listed in Figure 4. Note that by completing both holes simultaneously, only completions where the two sides have fields of compatible types are shown.

2.2 Code Completion

Today, programmers can use code completion such as Intellisense in Visual Studio to try to navigate unfamiliar APIs. Intellisense completes code in sections separated by periods ("."") by using the type of the expression to the left of the period and textually searching through the list for any string the programmer types. If there is no period, then Intellisense will list the available local variables, types, and namespaces. This often works well, particularly when the programmer has a good idea of where the API they want is or if there are relatively few choices. On the other hand, it performs poorly on our examples.

Synthesizing Method Names

Using Intellisense to find the nonexistent Shrink method, a programmer might type "img.shrink(), see that there is no "Shrink" method, and then skim through the rest of the instance methods. As that will also fail to find the desired method, the programmer might continue by typing in "PaintDotNet." and use Intellisense to browse the available static methods, eventually finding `PaintDotNet.Actions.CanvasSizeAction` where the method is located. Hopefully documentation on the various classes and namespaces shown by Intellisense’s tooltip will help guide the programmer to the desired method, but this is dependent on the API designer documenting their code well and the documentation us-

```
Figure 3. The first ten results generated by our system for the ? in the query Distance(point, ?).
```

```
Figure 4. The first ten results generated by our system for the query point.?m >= this.?m.
```
ing terminology and abstractions that the programmer understands. A programmer would likely search through many namespaces and classes before happening upon the right one.

Synthesizing Method Arguments

If the user has already entered “Distance(point, ” and then triggers Intellisense, Intellisense will offer the most recently used local variable, which would be point in this case. This will be in a list of every namespace, type, variable, and instance method in context even though many choices will not type-check. The programmer will have to read through many unrelated options to locate the values of type Point.

Synthesizing Field Lookups

Given “point.”, Intellisense will list all fields and methods of that object. The listing will only go one level deep: if the user wants a field of a field, they have to know which field to select first.

2.3 Prospector

The Prospector tool by Mandelin et al. is an API discovery tool which constructs values using mined “jungloids” which convert from one input type to one output type and are combined into longer jungloids. The tool uses a local variable to construct a value of the output type. The motivating example in this prior work is converting an IFile to an ASTNode in the Eclipse API which requires a non-obvious intermediate step involving a third type: IFile file = ...;

ICompilationUnit cu =
JavaCore.createCompilationUnitFrom(file);
ASTNode ast = AST.parseCompilationUnit(cu, false);
The Prospector UI only triggers queries at assignments to variables, but that is a minor implementation detail.

Synthesizing Method Names

As Prospector can consider only one type as input, a programmer might query for a conversion from Size to Document or from Document to Document. Prospector will return methods with arguments it cannot fill in. It prefers fewer unknown arguments, so ResizeDocument would likely be rather far down in the list of options for either query.

Synthesizing Method Arguments

Queried for type Point. Prospector would give a similar list to the one our tool creates, although it does not consider globals as possible inputs to its algorithm. Specifically, Prospector would give any locals of the proper type and recursively find any fields of the proper type. It may also find chains that involve downcasts found to work elsewhere in the codebase, which our tool would not find.

Synthesizing Field Lookups

Prospector does not take suggestions of starting points from the user, although its UI could theoretically be modified to do so. On the other hand, Prospector has only one target type and cannot make more complicated expressions like the one above with a varName operator. The closest corresponding use of Prospector would be to guess the type for either side of the comparison and have Prospector find fields of that type.

3. Partial expression language

Queries in our system are partial expressions. A partial expression is similar to a normal (or “complete”) expression except some information may be omitted or reordered. A partial expression can have many possible completions formed by filling in the holes and reordering subexpressions in different ways.

(a) \[e ::= \text{call} \mid e.n \mid \ldots \]
\[\text{call} ::= \text{methodCall}(e_1, \ldots, e_n) \]

(b) \[e ::= \overline{e} \mid ? \mid \diamond \]
\[\overline{e} ::= e \mid \overline{e}.?f \mid \overline{e}.?*f \mid \overline{e}.?m \mid \overline{e}.?*m \mid \text{call} \]
\[\text{call} ::= ?((\overline{e}_1, \ldots, \overline{e}_n)) \mid \text{methodCall}(\overline{e}_1, \ldots, \overline{e}_n) \]

Figure 5. (a) Expression language (b) Partial expression language

Complete expression syntax

Before defining partial expressions, we first define a simple expression language given by the e and call productions in Figure 5(a), which is reflective of features found in traditional programming languages. Our simple language has variables, field lookups, assignments, a comparison operator, and method calls. (Other operators are omitted from the formalism.) Also, the this parameter of a method call is considered to be its first argument in order to simplify notation as when reordering arguments, an argument other than the first may be chosen as the receiver.

Partial expression syntax

Partial expressions are defined by the e, \overline{e}, and \text{call} productions in Figure 5(b). Partial expressions support omitting the following classes of unknown information:

- **Entire subexpressions.** ? gives no information about the structure of the expression, only that it is missing and should be filled in. On the other hand, \diamond should not be filled in: it indicates a subexpression to ignore due to being independent of the current query (so making it a ? would only add irrelevant results) or simply being a subexpression the programmer intends to fill in later, perhaps due to working left-to-right.

- **Field lookups.** The \overline{e} production defines a series of four .? suffixes which are slightly different ways of saying that an expression is missing one or more field lookups or the desired expression is actually the result of a method call on the expression. The ‘?’ suffix is short for “field” and can be completed as a single field lookup or nothing. The .?* suffixes complete as the .? versions repeated as many times as needed.

- **Simple method calls.** The .?m suffix is like the .?f suffix. The ‘m’ is short for “zero-argument method call” and can be completed as a call to an instance method with zero additional arguments or also as a field lookup or nothing.

- **Which method to call.** ?((\overline{e}_1, \overline{e}_2)) represents a call to some unknown method with two known arguments, which may themselves be partial expressions.

- **Number and ordering of arguments to a method.** For unknown methods, there may also be additional arguments missing or the arguments may be out of order, which is represented by the use of set notation for the arguments in \?((\overline{e}_1, \overline{e}_2)).

Partial expression semantics

Figure 6 gives the full semantics of the partial expression language. The \overline{e} judgement non-deterministically takes a partial expression to a complete expression such that any \? subexpressions are left alone. With the exception of the .?* rules, each rule removes or refines some hole, making the partial expression one step closer to a complete expression. The bottom rule allows for the composition of other rules. The top leftmost rule allows any of the .? suffixes to be omitted. The actual algorithm implemented does not use these rules exactly, although it matches their semantics.
Examples

The first example from Section 2, ?{(img, size)}, is a method call with an unknown name and two complete positions as arguments. It can be expanded to any method that can take those two variables in any two of its argument positions, so triple.create(size, img) is a valid completion. Note that no attempt is made to fill in the extra argument. This is done to reduce the number of choices when recommending methods; for other applications fully completing the expression may be useful. The user may afterward decide to convert the ? to ? or some other partial expression.

Our second example from Section 2, Distance(point, ?), can take one step to one of

- Distance(point, point, ?*m)
- Distance(point, this, ?*m)
- Distance(point, shapeStyle, ?*m)
- many other possibilities.

Any local in scope or global (static field or zero-argument static method) could be chosen to appear before the ?*m. Whatever is selected is completed to some expression of type Point. Any ? suffix can be omitted when completing an expression, so point, ?*m can be completed as point which is first option in Figure 3. ?*m can also become one or more lookups by going to this. ?*m in one step and the .?m becomes some field. For arcShape, this.arcShape. ?*m is further completed to this.arcShape.Point. Any of the completions mentioned so far would have been valid for .?f instead of .?m as well. On the other hand, for shapeStyle. ?*m, the first .?m from the .?m is completed with an instance method .getSampleGlyph() that returns an object with a field RenderTransformOrigin of type Point which the remaining .?*m can complete to.

An unknown method’s arguments may themselves be partial expressions. For example, ?{(strBuilder, ?*m, e, ?*m)} could expand to Append(strBuilder, e.StackTrace) (which would normally be written as strBuilder.Append(e.StackTrace)).

The third example from Section 2, point. ?*m => this. ?*m, also uses .?*m so the completions work as above, but, as there are two of them in the expression related by the =>, there must be a definition of => which is type compatible with the two completions. In this example, all the comparable fields have types int or double, but suppose Point had a field timestamp of type DateTime. Then Point.Timestamp => this.P1.Timestamp would be a valid completion, but Point.X => this.P1.Timestamp would not.

4. Algorithm

This section describes an algorithm for completing partial expressions as represented by the boxed section of Figure 1. The algorithm takes a partial expression and an integer n as input and returns an ordered list of n proposed completions. The algorithm has access to static information about the surrounding code and libraries: the types of the values used in the expression, the locals in scope, and the visible library methods and fields. Bounding n is important because some partial expressions have an infinite list of completions. What constitutes a valid completion is defined by Figure 6.

The algorithm described in this section does completion finding and ranking simultaneously in order to efficiently compute the top n completions. Section 4.1 describes the ranking function. Section 4.2 describes the completion finder and the integrated algorithm whose design is informed by the ranking function.

4.1 Ranking

This section defines a function that maps completed expressions that may contain ? subexpressions to integer scores. This function is used to rank the results returned by the completion finder in ascending order of the ranking score. The function is defined such that each term is non-negative, so if any subset of the terms are known, their sum is a lower bound on the ranking score. The computation is a sum of various terms summarized in Figure 4. score(·) applies to all expressions while scorec(·) is a specialized version with tweaks for method calls. The computation is defined recursively, so for methods or operators with arguments, the scores of the scores of their arguments is added to the score. The scoring function incorporates several features we designed based on studying code examples and our own intuition. This section explains these features in detail. Section 4.4 evaluates each feature’s contribution to our empirical results.

Type distance

The primary feature in the ranking function is “type distance”. Informally, it is the distance in the class hierarchy, extended to consider primitive types, interfaces, etc. For example, if Rectangle extends Shape which extends Object, td(Rectangle, Shape) = 1 and td(Rectangle, Object) = 2. Far away types are less likely to be used for each other, so method calls and binary operations where the arguments have a higher type distance are less likely to be what the user wanted.

Formally, the type distance from a type α usable in a position of type β to that type β, td(α, β), is defined as follows:

\[td(\alpha, \beta) = \begin{cases}
\text{undefined} & \text{if } \alpha \text{ is not a subtype of } \beta \\
0 & \text{if } \alpha = \beta \\
1 & \text{if } \alpha, \beta \text{ primitive types} \\
1 + td(s(\alpha), \beta) & \text{otherwise}
\end{cases} \]
In-scope static methods value is intentionally chosen to be greater than the cost of a lookup, the last lookups on the two sides do not have the same name. To capture this, a 3 point penalty is assigned to comparisons where prefix, and uses its length to compute the “namespace score”.

1 adding a cost of

enclosing type or one of its super types. As an implicit preference an explicit receiver: instance methods or static methods of the calls due to considering the receiver as one of arguments. Generally,

is more, deeper namespaces tend to be more precise so a deep completions to a finite set, and therefore give an algorithm. As the constraints are equality instead of subtyping, the formal parameter and formal return type, and a type equality constraint is added whenever a value is assigned or used as a method call argument. As all constraints are equality on atoms, the standard unification algorithm can be implemented using union-find.

As related APIs tend to be grouped into Common namespace

are treated as methods with two parameters of the same type, so the next term prefers expressions with fewer subexpressions. The ranking scheme prefers shorter arguments by computing the complexity of each argument which is approximated by the number of dots in the argument and multiplying that value by 2 to weight it more heavily. For example, dots("this.foo") = 1 so it would get a cost of 2 while dots("this.bar.ToBaz()") = 2 so it would get a cost of 4.

Same name This term is only for comparisons. Comparisons are often made between corresponding fields of different objects. Whether two fields have corresponding meanings can be approximated by checking if they have the same name. That is, p.x is more likely to be compared to this.x than to this.y. To capture this, a 3 point penalty is assigned to comparisons where the last lookups on the two sides do not have the same name. The value is intentionally chosen to be greater than the cost of a lookup, so a slightly longer expression that ends with a field of the right name is considered better than a shorter one that does not.

In-scope static methods The type distance feature favors instance calls due to considering the receiver as one of arguments. Generally, users are more likely to call methods that can be written without an explicit receiver: instance methods or static methods of the enclosing type or one of its super types. As an implicit preference is given to the former, a slight preference is given to the latter by adding a cost of 1 if either the method is an instance method or the method is a static method that is not in-scope.

Common namespace As related APIs tend to be grouped into nearby namespaces, the algorithm prefers calls where the types of all the arguments with non-primitive types and the class containing the method definition are all in the same namespace. Primitive types, including string, are ignored in this step because they are used with varying semantics in many different libraries. Furthermore, deeper namespaces tend to be more precise so a deep common namespace indicates the method is more likely to be related to all of the provided arguments. Specifically, the algorithm takes the set of all namespaces of non-primitive types among the arguments, treats them as lists of strings (so “System.Collections” is [“System”, “Collections”]), finds the (often empty) common prefix, and uses its length to compute the “namespace score”.

In order to keep all terms in the ranking function non-negative, namespace similarities are capped at 3 and 3 minus the length of the common prefix is used as the common namespace term.

Abstract type inference We now introduce an important refinement to the basic ranking function that partitions types into “abstract types” based on usage, which is particularly important for commonly used types like string. Abstract types may have richer semantics than string such as “path” or “font family name”. Our approach is based on the Lackwit tool that infers abstract types of integers in C.[8]

Abstract types are computed automatically using type inference. An abstract type variable is assigned to every local variable, formal parameter, and formal return type, and a type equality constraint is added whenever a value is assigned or used as a method call argument. As all constraints are equality on atoms, the standard unification algorithm can be implemented using union-find.

As the constraints are equality instead of subtyping, the formal parameter and formal return type terms refer to the defining type except for methods defined on Object (to avoid every .ToString() method getting the same abstract return type).

For example, consider the following code from Family.Show:

```csharp
string appLocation = Path.Combine(
    Environment.GetFolderPath(
        Environment.SpecialFolder.MyDocuments),
    App.ApplicationFolderName);
if (!Directory.Exists(appLocation))
    Directory.CreateDirectory(appLocation);
return Path.Combine(appLocation, Const.DataFileName);
```

Each of Directory.Exists, Directory.CreateDirectory, and Path.Combine take appLocation as their first argument, so the analysis concludes their first arguments are all the same abstract type. Furthermore, from the first statement, that must also be the abstract type of the return values of Path.Combine and Environment.GetFolderPath. On the other hand, there is no evidence that would lead the analysis to believe the second argument of Path.Combine is of that abstract type, instead App.ApplicationFolderName and Const.DataFileName are believed to be both of some other type. Intuitively, a programmer might call those two types “directory name” and “file name”.

In the ranking function, the type distance computation is refined by adding an additional cost of 1 if the abstract types do not match.

4.2 Completion finder

This section presents a general algorithm for computing the top \(n \) ranked completions of a partial expression, first giving a naive implementation and then going on to discuss optimizations. The main logic is Algorithm[4] which returns all completions of a partial expression with a bound \(k \) on the number of lookups any \(.*f \) or \(.*m \) expression may be expanded to. As \(.*f \) and \(.*m \) are the only partial expressions that may have an infinite number of completions, this restriction is sufficient to limit the number of completions to a finite set, and therefore give an algorithm.

The top-level algorithm first runs Algorithm[4] with increasing values for the \(k \) parameter until it returns at least \(n \) completions, running the ranking function on each completion and keeping them in a priority queue of size \(n \). Let \(s_n \) be the score of the \(n \)th completion. Any expression returned by AllCompletions \((e, k)\) but not AllCompletions \((e, k-1)\) by definition must contain a subexpression with \(k \) lookups. Due to the depth feature of the ranking function, such a completion must have a ranking score of at least \(2k \). If \(s_n < 2k \), then any new completions do not have a low enough score to make the top \(n \). Therefore, once \(n \) completions

\[
\text{score}(\text{expr}) = \sum_{\text{args}(\text{expr})} \text{score}(a) + \sum_{\text{args}(\text{expr})} \text{td}(\text{type}(a), \text{type}(\text{param}(a))) + \sum_{\text{args}(\text{expr})} 2 \cdot \text{dots}(a) + 3 \cdot (\text{name}(\text{args}(\text{expr})) \neq \text{name}(\text{args}(\text{expr}))_1) + \sum_{\text{args}(\text{expr})} \text{abstype}(a) \neq \text{abstype}(\text{param}(a))
\]

\[
\text{score}(\text{call}) = \text{score}(\text{call}) + (\text{isinstance}(\text{call}) \lor \text{isNonLocalStatic}(\text{call})) + (\text{nsArgs}(\text{call}) \neq \{\text{parent}(\text{call})\}) \cdot \max(0.3 - \sum_{\text{args}(\text{call})} \text{type}(a) / \text{ns}, 0)
\]

\[
\text{nsArgs}(\text{call}) = \{a \in \text{args}(\text{call}) : \text{type}(a) \text{ is not primitive}\}
\]

\[
\text{score}(\text{expr}) = \sum_{\text{args}(\text{expr})} \text{score}(a) + \sum_{\text{args}(\text{expr})} \text{td}(\text{type}(a), \text{type}(\text{param}(a))) + \sum_{\text{args}(\text{expr})} 2 \cdot \text{dots}(a) + 3 \cdot (\text{name}(\text{args}(\text{expr})) \neq \text{name}(\text{args}(\text{expr}))_1) + \sum_{\text{args}(\text{expr})} \text{abstype}(a) \neq \text{abstype}(\text{param}(a))
\]

Figure 7. The ranking function. Note that boolean values are considered 1 if true and 0 if false and that abstract types (\(\text{abstype}(\cdot) \)) are considered not equal if both are undefined.
have been found and \(s_n \) is known. \(\text{AllCompletions}(\bar{e}, [\frac{2n}{k}]) \) must contain the top \(n \) completions overall.

Algorithm 1: AllCompletions(\(\bar{e}, k \))

input	: \(\bar{e} \): a partial expression; \(k \): the upper bound on number of lookups
output	: the set of all completions with no more than \(k \) lookups on each instance of \(.?f \) or \(.?m \)
if	\(\bar{e} = e \): \(.?f \) or \(.?m \) then
return	all expressions starting with \(e \) containing \(k \) or fewer lookups
else	\(\text{args} \leftarrow \text{the list of immediate subexpressions of } \bar{e} \) expression (ex. arguments for a method call);
Let	completions be a map from \(\text{args} \) to completions;
foreach	\(\text{a} \leftarrow \text{args} \) do
completions[\(\text{a} \)] \(\leftarrow \)	AllCompletions(\(\text{a}, k \));
end	outputSet \(\leftarrow \emptyset \);
foreach	\(\text{concreteArgs} \leftarrow \text{all choices of exactly one completion for each argument from completions} \) do
	\(\text{foreach } \text{completion } c \text{ of } e \text{ using arguments } \text{concreteArgs} \text{ do}
	\(\text{Add } c \text{ to outputSet}; \)
end	return outputSet;

Algorithm 1 is recursive on the subexpressions of the partial expression. It finds all completions of the subexpressions and then combines the completions in every possible way to use as the arguments for the expression being considered. Therefore, it produces all completions with the constraint that it never generates more than \(k \) lookups at once in order to keep the result set finite. We now discuss various useful optimizations below.

A subexpression’s score will be needed for every completion it appears in. To compute it only once, the algorithm is redefined such that it returns a set of pairs of completions and their scores.

Indexing

As written, how the algorithm iterates over possible completions is unspecified. This is especially a problem for unknown methods as simply iterating over all methods in a huge framework would take too long. An index is maintained that maps every type to a set of methods for which at least one of the arguments may be of that type. Then, given a query like \(?\{e_1, e_2\} \), each of the argument types is looked up to see how many methods would have to be considered for that type and the smallest set is chosen. That set will almost always be orders of magnitude smaller than the set of all methods.

Part of a method index is shown in Figure 8. In order to save memory, the method index is organized such that looking up a type \(\tau \) gets a set of methods which have parameters of the exact type \(\tau \) along with pointers to the method indexes for the immediate super-types of \(\tau \). Due to the type distance part of the ranking algorithm explained in Section 4.1, each method index visited will give progressively worse ranked results.

Methods are a prime candidate for indexing as there are many methods and few that take a specific type. Queries for multiple field lookups could also be made more efficient using an index that indicates for each type which types are reachable by a \(.?f \) or \(.?m \) query, how many lookups are needed, and which lookups can lead to a value of that type. For example, a Line type with Point fields \(p1 \) and \(p2 \) and a GetLength() method would have an entry saying that the type double is reachable in \(\geq 2 \) lookups using a \(.?f \) query with the next lookup being one of \(p1 \) or \(p2 \) while it is reachable in \(\geq 1 \) lookup using a \(.?m \) query with the next lookup being one of GetLength(), \(p1 \), or \(p2 \).

Avoid computing type-incorrect completions

If the possible valid types for the completions were known, then the type reachability index would be more useful: otherwise results of every type have to be generated anyway for completeness. At the top level, the context will often provide a type unless the expression being completed is the initial value for a variable annotated only as \(\text{var} \). On the recursive step of the algorithm, the possible types may not known or may not precise enough to be useful: there are methods that take multiple arguments of type \(\text{Object} \), so even knowing one of the argument types does not narrow down the possibilities for the rest. On the other hand, binary operators and assignments are relatively restrictive on which pairs of types are valid, so enumerating the types of the completions for one side could significantly narrow down the possibilities for the other side.

Grouping computations by type

Which completions (and assignments to method arguments) are valid is determined solely by the types of the expressions involved. Hence, instead of considering every completion of every argument separately, the completions of each argument can be grouped by type. This also allows type distance computations to be done once for all subexpressions of the same types. Furthermore, the per-type groups can each be grouped by abstract type for the abstract type distance computation. Then the entire ranking function can be computed for each set of expressions in that group as nothing in the ranking function depends on more detail than the types, abstract types, and scores of the subexpressions.

Refining stopping condition

As a refinement on the depth-limiting parameter \(k \), suppose we had an algorithm \(\text{AllCompletions}(\bar{e}, s) \) that returns all completions of \(\bar{e} \) with score \(\leq s \). Then define the recursive step of such an algorithm by recursing with the same value of \(s \) for all of its arguments. Furthermore, only use combinations of arguments whose scores sum to \(\leq s \); otherwise the resulting completions would necessarily have scores \(> s \). For the base case, simply generate all completions for \(?\{\} \) expressions and generate no more than \(\lceil \frac{n}{k} \rceil \) lookups. This is very similar to a branch and bound algorithm: the \(s \) parameter is the minimum upper bound on the ranking function.

This still requires finding an initial \(s \) large enough to generate at least \(n \) results. It is okay to simply use a loop starting \(s \) at 0 and incrementing it until \(n \) results have been found because when computing \(\text{AllCompletions}(\bar{e}, s+1) \) the work done by \(\text{AllCompletions}(\bar{e}, s) \) can be reused via memoization.
5. Evaluation

We implemented the algorithm described using the Microsoft Research Common Compiler Infrastructure (CCI) \cite{CCI}. CCI reads .NET binaries and decompiles them into a language resembling C#. We performed experiments where we used found expressions in mature software projects, removed some information to make those expressions into partial expressions, and then ran our algorithm on those partial expressions to see where the real expression ranks in the results.

All experiments were run on a virtual machine allocated one core of a Core 2 Duo E8400 3GHz processor and 1GB of RAM.

One minor issue is that any precompilation, specifically abstract type inference, would see the expression we are trying to recreate when in actual practice the expression would not yet exist. To avoid this situation, we re-run abstract type inference for each expression, eliminating the expression and all code that follows it in the enclosing method—we do consider the rest of the program.

We describe three case studies whose significance we have previously discussed and show that the ranking scheme is effective and the algorithm is efficient. Finally, we analyze the importance of the individual ranking features in Section \ref{SS5.4}.

5.1 Predicting Method Names

Our first experiment shows that queries consisting of one or two arguments can effectively find methods. We ran our analysis on 21,176 calls across parts of seven C# projects listed in Table \ref{table1}. We generated queries by finding all calls with \(\geq 2 \) arguments (including the receiver, if any) and giving one or two of the call’s arguments to the algorithm. We evaluated the algorithm on where in the results list the actual method appeared. While putting the correct result as the first choice is ideal, we do not consider it necessary for usefulness since users can quickly skim several plausible results.

Figure \ref{fig10} shows the results overall and partitioned between static and instance calls. Almost 85% of the time, the algorithm is able to give the correct method in the top 10 choices. An additional 5% of the time, the correct method appears in the next 10 choices out of a total of hundreds of choices on average.

Notably, the algorithm fares significantly better on instance calls than static calls. This is not too surprising as the search space is much larger for static calls. This might also indicate that the current heuristics prefer instance calls more strongly than they should.

Unfortunately, we cannot algorithmically determine which argument subset a user would use as their search query. Instead, we show that usually for some set of no more than 2 arguments the correct method being highly ranked. Our intuition, which would need a user study to validate fully, is that evaluating our approach by choosing for the best possible subset of arguments is reasonable because programmers are capable of identifying the most useful arguments (e.g., \texttt{PreciseLibraryType} instead of \texttt{string} or \texttt{Pair}).

Figure \ref{fig10} shows that a single argument is often enough for the algorithm to determine which method was desired, in this case defined as putting the method in the top 20 choices. Not shown in the graph is that adding a third argument leads to only negligible improvement in these results. Above the bars is the percentage of calls the algorithm was able to guess using only two arguments, which is high for any number of arguments. The intuition is that most of the arguments are not important, although there are also more opportunities for an argument to be of a rarely used type.

Comparison to code completion

Figure \ref{fig11} compares our ranking algorithm to Intellisense. We modeled Intellisense as being given the receiver (or receiver type for static calls) and listing its members in alphabetic order. Intellisense knows which argument is the receiver but is not using knowledge of the arguments. Intellisense was considered to list only instance members for instance receivers and only static members for static receivers. Given this ordering, we were able to compute the rank in the alphabetic list of the correct answer. We then subtracted that rank from the rank given by our algorithm, so negative numbers mean our algorithm gave the correct answer a higher rank.

About 45% of the time, our position is at least 10 higher than it is with Intellisense. Since Intellisense displays at most 10 results at a time, this means it is not initially displayed by Intellisense.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Each bar represents all calls analyzed with the number of arguments. The sections of the bar correspond to how many of those arguments the algorithm needed to put the original call in the top 20 results.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{The proportion of calls of each type with the best rank of at least the given value.}
\end{figure}
Subtracting the ranks is oversimplifying the comparison. First, the different tools have different inputs. Our tool does not require the receiver but is helped by being provided a second argument. Second, the Intellisense results are listed in alphabetic order which is likely easier to skim through than the results from our tool which will be ordered by their ranking scores. The take-away is not that our tool is “better” than Intellisense; they serve different purposes. Instead, we wanted to show that our tool is often able to greatly reduce the number of choices a user would have to sift through compared to Intellisense even if the user knew the correct receiver.

Figure 12 shows a similar comparison to the one in Figure 11 except that our algorithm additionally knew the desired return type (or void) and only suggested methods whose return type matched.

The assumption of a known return type is not used elsewhere both because, in the context of API discovery, the user may often not know what return type to use, and the var keyword in C# and equivalents in other languages allow a user to omit return types.

Speed For over 98.9% of the calls analyzed, the query with the best result ran in under half a second, which is fast enough for interactive use.

As a caveat, these times do not include running the abstract type inference algorithm. That could take as long as several minutes for a large codebase but can be done incrementally in the background.

These times were measured using CCI reading binaries as opposed to getting the information from an IDE’s incremental compiler. How that affects performance is unclear, but any such effects were minimized by memoizing a lot of the information from CCI, so the vast majority of the time was spent in our algorithm.

5.2 Predicting Method Arguments

Our second experiment investigated how often arguments to a method could be filled in by knowing their type.

Looking at the same method calls as the previous experiment, for each argument in each call, a query was generated with that argument replaced with ?. There were a total of 69,927 arguments across the 21,176 calls. 23,927 were considered not guessable due to having an expression form that our partial expression completer does not generate like an array lookup or a constant value.

Figure 13 shows how well our algorithm is able to predict method arguments, with the lower line ignoring the low-hanging fruit of local variables. Over 80% of the time, the algorithm is able to suggest the intended argument as one of the top 10 choices given out of an average of hundreds of choices.

Use of expressions other than local variables in argument positions is common as shown in Figure 14. Programmers must somehow discover the proper APIs for these expressions: Intellisense only suggests local variables given an argument position. The “not guessable” expressions are those that involve constants or computation like an addition or a non-zero argument method call that could be guessed by neither our technique nor Intellisense. Our partial expression language captures more of the expressions programmers use as arguments including field/property lookups which are relatively common and require browsing to find using Intellisense.

As our experiments are on decompiled binaries and not the original source, these arguments may not be exactly what the programmer wrote. In particular, expressions might be stored in temporary variables that they did not write or temporaries they did write might be removed, putting their definition in an argument position.

Speed Our tool is capable of enumerating suggested arguments in under a tenth of a second 92% of the time and under half a second over 98% of the time, which is fast enough for an interactive tool.

5.3 Predicting Field Lookups

Our third experiment determines how often field/property lookups could be omitted in assignments and comparisons (on either side).
Our corpus includes 14,004 assignments where the target ends with a field lookup, 7,074 where the source does, and 966 where both do. For those assignments, Figure 15 shows the rank of the correct answer when our algorithm was given the assignment with the final field lookup removed and 7m added to the end of both sides of the assignment. The correct answer was in the top 10 choices over 90% of the time when one field lookup was removed, but only about 59% of the time when a field lookup was removed from both sides, going up to 75% when considering the top 20 choices. There were a total of dozens of choices on average.

Our corpus includes 620 comparisons where the left side ends in a lookup, 162 of which end in two lookups; 620 comparisons where the right side ends in a lookup, 174 of which end in two lookups; and 125 where both sides end in a lookup. Of those, Figure 16 shows the ranks our tool gave to the expression in the source given the query containing the original expression with the lookups removed and 7m added to the end of both sides.

The numbers are significantly better than for assignments because there are fewer possibilities: few types support comparisons. One lookup can be placed within the top 10 for nearly every instance in our corpus. If we allow 20 choices, then two lookups where one lookup is on each side can be guessed 89% of the time while two lookups on the same side can be guessed 85% of the time if they are on right and 69% of the time if they are on the left. The discrepancy between the latter two appears to be that comparisons against constants are usually written with the complicated expression on the left and the constant on the right, and the name matching feature is not helpful for comparisons to constants.

Speed Over 99.9% of these queries ran in under half a second.

5.4 Sensitivity analysis of ranking function

To see which parts of the ranking function were most important, we re-ran the experiments with various modified ranking functions. Each modified version either included only one of the terms or left out one of the terms, in addition to versions that left out and included both the type distance term and the abstract type term. Table 2 shows the data for the proportion of expressions where the correct answer was in the top 20 choices for different variants of the ranking function for each of the experiments.

Methods Type distance and abstract type distance are the only features that matter. Leaving out the namespace and in-scope static terms seems to make almost no difference. Furthermore, the two type distance terms separately are both good, with abstract type distance alone being a little better, but not quite as good as the two together, confirming that both are useful.

Arguments It seems that only the depth feature seems to matter. Leaving it out makes the results much worse while leaving any other term out has almost no effect. In fact, looking at the “+d” column, using just the depth term gives almost exactly the same results as the full ranking scheme.

Assignments For just one lookup removed from either side, once again only depth matters, but when a lookup is missing from both sides, the type distance computation becomes important. In fact, in the case of a lookup missing from both sides, leaving out the depth component improves the results. This is not too surprising as there are likely many possible assignments which require adding only one lookup to either side. The interesting part is that apparently these lookups can be distinguished from the proper one by looking at more detailed type information (recall that only assignments which are type correct are even being considered).

Comparisons Depth once again seems to be most important. Except on the “2xRight” row, depth appears to be the only significant feature. The different values for that row vary little, indicating that each ranking feature is somewhat useful, but there is little gain from combining them. On average, there were hundreds of type-correct options, so the ranking function is definitely doing something to place the correct option in the top 20.

6. Related Work

Prospector [7] is perhaps the closest related work. With Prospector, as discussed in Section 5.1, a user makes a query for a conversion from one type to another and gets what the authors call a “jungloid” which is a series of operations including method calls, field lookups, and downcasts from examples in the code. That paper noted that shorter jungloids tend to be more likely to be correct and also that jungloids that cross package boundaries are less likely to be correct, both of which are ideas used by our ranking function.

PARSEWeb [13] performs the same task as Prospector except it mines code examples from web searches.

InSynth [3] also produces expressions for a given point in code using the type as well as the context to build more complicated expressions using a theorem prover. InSynth’s ranking algorithm is based on machine learning from examples. It, like Prospector, differs from our work in that it generates expressions from scratch with no input from the programmer to guide it. Their evaluation was on small snippets of Java example code translated to Scala which is difficult to compare to our evaluation on mature C# projects.

Strathcona [4] and XSnippet [11] both use context to produce queries which may be helpful to the programmer. In a similar vein, CodeBroker [14] performs searches for APIs based on the documentation of the method currently being written in order to recommend APIs the user may not even be aware of.

Little and Miller [6] propose a system using “keyword programming” to generate method calls where the user gives keywords and the system generates a method call that includes arguments that have most or all of the keywords. Their system attempts to be closer to natural language than ours at the cost of a lower success rate.
Hou and Pletcher[5] recommend various ways of filtering and sorting APIs to show the most relevant choices first. Their system is mainly based on manual annotations of APIs as well as considering how often an API is used. Their work is complementary as it could be used to filter out irrelevant methods from our results.

Searching for functions by type has been recommended for functional programming languages[10][16]. Those proposals differ in that the type signature alone, along with modifications to, for example, handle both curried and uncurried functions, tends to be sufficient for a search. In imperative languages with subtyping, inexact matches are more likely to be meaningful and side-effects make it more likely that many options have the same type.

For discovery of entire modules at once, specification matching can search by specification[17]. Semantics-based code search[9] similarly searches based on specifications including tests and keywords but additionally may make minor modifications to the code to fit the details of the specification.

SNIFF[1] returns snippets matching natural language queries by mining multiple examples from existing code, matching them based on the documentation of the APIs they use, and combining them based on their similarities to eliminate the usage-specific parts of the snippets. Unlike our algorithm, this technique requires the API being searched to be well-documented.

MatchMaker[15] handles API discovery at a different scale: given two types, it generates the glue code to connect those two types by generalizing examples from existing code.

Program sketching[12] is a form of synthesis where the programmer writes a partial program with holes and provides a specification the solution must satisfy. Our technique is similar but considers only a single expression at a time and avoids the need for an explicit specification by using type information to filter the results.

7. Conclusions and Future Work

This paper has shown that type-directed completion of partial expressions can effectively fill in short code snippets that are complicated enough to be difficult to discover using code completion. Furthermore, our ranking scheme is able to sift through hundreds of options to often place the correct answer among the top results.

Future work would be to implement an IDE plug-in and perform a user study to determine if it is useful in real development situations as well as possibly seeing if developers have other ideas for how such a plugin could be used or for similar ideas for lightweight searches. Extending the algorithm to other programming languages is also future work. The features are at least partially tied to C#/Java and will need to be adapted to make sense in other languages.

References