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Abstract

Advances in bioengineering have led to increasingly so-
phisticated prosthetic devices for amputees and para-
lyzed individuals. Control of such devices necessitates
real-time classification of biosignals, e.g., electromyo-
graphic (EMG) signals recorded from intact muscles. In
this paper, we show that a 4-degrees-of-freedom robotic
arm can be controlled in real-time using non-invasive
surface EMG signals recorded from the forearm.
The innovative features of our system include a
physiologically-informed selection of forearm muscles
for recording EMG signals, intelligent choice of hand
gestures for easy classification, and fast, simple feature
extraction from EMG signals. Our selection of gestures
is meant to intuitively map to appropriate degrees of
freedom in the robotic arm. These design decisions al-
low us to build fast accurate classifiers online, and con-
trol a 4-DOF robotic arm in real-time.
In a study involving 3 subjects, we achieved accuracies
of 92-98% on an 8-class classification problem using
linear SVMs. These classifiers can be learned on-line in
under 10 minutes, including data collection and train-
ing. Our study also analyzes the issues and tradeoffs
involved in designing schemes for robotic control us-
ing EMG. Finally, we present details of online experi-
ments where subjects successfully solved tasks of vary-
ing complexity using EMG to control the robotic arm.

Introduction
Electromyographic (EMG) signals provide an extremely
useful non-invasive measure of ongoing muscle activity.
They could thus be potentially used for controlling devices
such as robotic prosthetics that can restore some or all of
the lost motor functions of amputees and disabled individ-
uals. Most commercially available prosthetic devices have
limited control (e.g., one degree-of-freedom in the case of a
prosthetic gripper), nowhere near the original levels of flex-
ibility of the organ they are intended to replace.

Amputees and partially paralyzed individuals typically
have intact muscles that they can exercise varying degrees of
control over. In this paper, we address the issue of whether
signals from these intact muscles can be used to control
robotic devices such as prosthetic hands and limbs with mul-
tiple degrees of freedom. We demonstrate that this is in-
deed possible by showing that activation patterns recorded

from muscles in the forearm can be classified in real-time
to control a 4 degrees-of-freedom robotic arm-and-gripper.
We demonstrate the robustness of our method in a variety
of reasonably complex online robotic control tasks involv-
ing 3D goal-directed movements, obstacle avoidance, and
picking up and accurate placement of objects. The success
of our system is based on a combination of several factors:
(1) a careful choice of actions to classify, chosen for ease
of classification and their intuitiveness for the control task,
(2) selection of muscle activity recording sites that are rele-
vant to these actions, (3) the use of a simple, sparse feature
representation that can be computed in real-time, and (4) a
state-of-the-art classification method based on linear Sup-
port Vector Machines (SVMs).

Our results demonstrate that classification accuracies of
over 90% can be achieved for an 8-class classification prob-
lem. We leverage the information gained from our offline
study of action classification to build a real-time online sys-
tem and show that subjects can successfully and efficiently
perform reasonably complex tasks involving all four degrees
of freedom of a robotic arm-and-gripper. Our results provide
a basis for building not only complex prosthetic devices for
disabled individuals, but also novel user interfaces based on
EMG signals for human-computer interaction and activity
recognition.

Background and Related Work
Muscle contraction is the result of activation of a number of
muscle fibers. This process of activation generates a change
in electrical potential and can be measured in sum at the
surface of the skin as an electromyogram (EMG). The EMG
signal is a measure of muscle activity, and its properties have
been studied extensively (Deluca 1997). The amplitude of
the EMG signal is directly correlated with the force gener-
ated by the muscle; however, estimating this force in general
is a hard problem due to difficulties in activating a single
muscle in isolation, isolating the signal generated by a mus-
cle from that of its neighbors, and other associated problems.

In the field of prosthetics, the EMG signal has been used
in one of two ways: The first approach is to use the ampli-
tude of thesteady stateEMG signal where the subject exerts
constant effort with a chosen muscle. A single recording site
or channel on this muscle is then used as a binary switch,
or to control a degree of freedom in a manner proportional
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Figure 1: Schematic for EMG-based robotic control.

to the amplitude. Many commercially available prosthetics
fall into this category and afford the use of a single degree
of freedom such as a gripper for grasping and releasing ob-
jects. The second approach uses discrete actions, i.e., where
the user performs a quick gesture with the hand, wrist or fin-
gers and the temporal structure of the transient EMG activity
during action initiation is exploited for classification.

Graupe and Cline (Graupe & Cline 1975) were the
first to classify EMG signals. They obtained 85% accu-
racy in classifying data from a single channel with au-
toregressive coefficients as features. Engelhart et al. (En-
gelhartet al. 1999) classify four discrete elbow and fore-
arm movements and capture the transient structure in the
EMG using various time-frequency representations such as
wavelets. They achieve accuracy upto 93.7% with four chan-
nels of EMG data from the biceps and triceps. Nishikawa et
al. (Nishikawaet al. 1999) classify 10 discrete movements
of the wrist and fingers using four electrodes placed on the
forearm. They propose an online learning scheme, and ob-
tain an average accuracy of 91.5%. Ju et al. (Ju, Kaelbling, &
Singer 2000) address applications in user interfaces and con-
sumer electronics. They achieve 85% accuracy in classifying
four finger movements with the aid of two electrodes placed
close to the wrist. The electrode locations are suboptimal but
chosen for appropriateness in the chosen applications.

Thus, much of the recent research has focused on clas-
sifying discrete actions, and significant effort has been di-
rected towards design of new and powerful feature represen-
tation for the EMG signal. The problem with this approach
is that each action initiation is interpreted as one command,
leading to a very slow rate of control. In contrast, we work
with steady stateEMG signals, where the user maintains
one of a set of hand poses, and windows of EMG signals
are then classified continuously as one of these poses. In
fact, we generate 16 commands/second for use in control-
ling a prosthetic device, a rate that is not possible in the other
paradigms. We show that in combination with our choice of
recording sites, steady-state gestures and powerful classifi-
cation techniques, we can get high accuracy in an 8-class
classification problem, and achieve continuous control of a
robotic arm.

System Design
Figure 1 shows the overall design of our system. The user
maintains a static hand pose that corresponds to one of a
selected set of gestures. We record EMG activity from care-
fully chosen locations on the user’s forearm. This stream of

data is transformed into feature vectors over windows of the
EMG signals, and classified by a linear SVM classifier. The
classifier output serves as a command that moves the robotic
arm by a small fixed amount in the desired direction. Thus,
maintaining a hand gesture will make the arm move contin-
uously in a chosen direction. In the following sections we
describe each of these components in greater detail.

Gestures for Robot Arm Control
Figure 2 shows a list of the actions we use to control each
degree of freedom in the robotic arm. Our goal is to map
gross actions (distinguishable via forearm musculature) at
the wrist to commands for the robotic arm.

The actions we have chosen are appropriate metaphors for
the corresponding actions we wish to control in the robotic
arm. Our study demonstrates that forearm muscles contain
enough information to reliably distinguish between a large
number of actions; the interpretation of these actions is left
to the user. Thus, for control of other prosthetic devices, one
has the option of customizing the actions to better suit the
device in question and the desired control. This customiza-
tion has to be done on a case-by-case basis. Finally, we men-
tion that although our study used healthy subjects, there is
evidence (Eriksson, Sebelius, & Balkenius 1998) that am-
putees who have lost their hand are able to generate signals
in the forearm muscles that are very similar to those gener-
ated by healthy subjects. We are currently in the process of
working with amputees to explore the customization issues
involved, and to validate our system in a real-life setting.

Electrode Placement
Our choice of electrode positions was designed to make the
interpretation of the signal as intuitive as possible and as
reproducible from subject to subject as possible. While no
electrode position will isolate a single muscle, placing a
given electrode on the skin above a given superficial mus-
cle should ensure that the largest contribution to the signal
from that location is from the desired muscle. The muscles
of the deep layer will contribute to the signal, as will other
surrounding muscles. Since our goal is classification into a
discrete set of actions, and not the study of individual mus-
cles, we rely on the classifier to extract the important com-
ponents for each class from this mixture of information in
each electrode channel.

The muscles we chose, and their relevant functions are
listed below: (1) Brachioradialis- flexion of the forearm,
(2) Extensor carpi ulnaris- extension and adduction of hand



Figure 2: Static hand gestures chosen for controlling the robotic arm. Each column shows the pair of gestures that control a
degree of freedom in the robotic arm. These are, in order, grasp and release of the gripper, left-right movement of the arm (top
view), up-down arm movement, and rotating the gripper.

at the wrist, (3) Pronator Teres- pronation and elbow flex-
ion (which was not a movement we incorporated), (4) Ex-
tensor Communis Digitorum- extension of fingers at the
metacarpo-phalangeal joints and extension of wrist at fore-
arm, (5) Flexor Carpi Radialis- flexion and abduction of
hand at wrist, (6) Anconeus- antagonistic activity during
pronation of the forearm, (7) Pronator Quadratus- initiates
pronation.

The combination of these muscles in coordination span
the movements that we classify and map to arm control. Be-
cause of redundancy amongst the actions of these muscles
as well as the redundancy amongst deeper muscles whose
signals are measured in conjunction, our channels may con-
tain correlations. This redundancy of information leads to a
more robust classifier that can handle the unavoidable varia-
tions in electrode placement and quality of EMG recordings
across subjects and sessions.

We use single electrodes, in contrast to the differential
pair at each recording site traditionally used in the litera-
ture (Deluca 1997). Instead we use an eighth electrode on
the upper arm as a reference for the other electrodes.

Feature Extraction
We record EMG signals at a sampling rate of 2048Hz. Since
we classify steady-state signals from hand poses, we need
to classify windows of EMG data from all channels. Our
feature representation is simply the amplitude of the steady-
state EMG signal from each channel. The feature extraction
procedure is thus greatly simplified: we take 128-sample
windows from each channel, and compute the amplitude of
each channel over this window. The resulting feature vec-
tor consists of only 7 values, one per channel. This feature
vector serves as the input to our classifier. The choice of 128-
sample windows is empirically motivated, and results in 16
commands/second, thus allowing for very fine control of the
robotic arm.

Classification with Linear SVMs
We use linear Support Vector Machines for classifying the
feature vectors generated from the EMG data into the re-
spective classes for the gestures. SVMs have proved to be a

remarkably robust classification method across a wide vari-
ety of applications.

We first consider a two-class classification problem. Es-
sentially, the SVM attempts to find a hyperplane of max-
imum “thickness” ormargin that separates the data points
of the two classes. This hyperplane then forms the decision
boundary for classifying new data points. Letw be the nor-
mal to the chosen hyperplane. Then, the classifier will label
a data pointx as+1 or −1, based on whetherw · x + b is
greater than 1, or less than -1. Here,b is chosen to maximize
the margin of the decision boundary while still classifying
the data points correctly.

This leads to the following learning algorithm for linear
SVMs. For the classifier to correctly classify the training
data pointsx1, ...,xn with labelsy1 , ..., yn drawn from±1,
the following constraints must be satisfied:

w · xi + b >= 1 if yi = 1
w · xi + b <= −1 if yi = −1

It can be shown that choosing the hyperplane of maxi-
mum margin corresponds to minimizingw ·w subject to
these constraints. Real-life data, however, is noisy and we
need to allow for errors in the classifier. This is achieved
by relaxing each constraint above with the use of an error
term for each point. The total error is then included in the
optimization criterion. The distances of misclassified points
from the hyperplane are represented by the error variables
ξi. The set of constraints now reads:

w · xi + b + ξi ≥ 1 if yi = 1
w · xi + b− ξi ≤ −1 if yi = −1

ξi ≥ 0∀i

With these new constraints, the optimization goal for the
noisy classification case is to minimize12w.w + CΣiξi,
where C is a user-specifiedcost parameter. Intuitively,
the criterion is trading off the margin width with the
amount of error incurred. We refer the reader to appropri-
ate texts (Scholkopf & Smola 2002) for more technical de-
tails. This is the formulation we use, and in this formulation,
the classifier has a single free parameterC that needs to be
chosen by model selection.



Multiclass Classification and Probabilities The two-
class formulation for the linear SVM can be extended to
multiclass problems, e.g., by combining all pairwise-binary
classifiers (Hsu & Lin 2002). In our system, we use the
LIBSVM (Chang & Lin 2001) package which has support
for multiclass classification. There is also support for esti-
mating class-conditional probabilities for a given data point.
This can be useful in reducing the number of false classifi-
cations due to noisiness in the data. Specifically, the class-
conditional probabilities returned can be tested against a
threshold, and a “no-operation” command can be executed if
the classifier is uncertain about the correct class label for the
data point. Indeed, we implement this scheme in our system,
for two reasons: firstly, the transitional periods when the user
switches between different steady states may generate data
that the classifier has not seen, and does not actually corre-
spond to any of the chosen classes. Secondly, although we
do not investigate this in our paper, we believe that by using
a conservative threshold, the user will adapt to the classi-
fier via feedback and produce gestures that are more easily
classifiable.

Offline Experiments

Data Collection

We collected data from 3 subjects over 5 sessions. Each ses-
sion consisted of the subject maintaining the 8 chosen action
states for 10 seconds each, thus providing 160 data points
per class. We use 5 sessions in order to prevent overfitting–
a given action may be slightly different each time it is per-
formed. All reported errors are from 5-fold leave-session-out
crossvalidation, to account for this variation in the actions.

Classification Results

We used the collected data to train a linear SVM classi-
fier, and performed parameter selection using across-session
crossvalidation error as measure. Figure 3 shows the SVM
classifier error as a function of the cost parameterC. The
graph demonstrates two aspects of our system: Firstly, 8-
class classification can be performed with accuracy of 92-
98% for all three subjects. Secondly, the classification re-
sults are stable over a wide range of parameters for all three
subjects, indicating that in an online setting, we can use a
preselected value for this parameter. It is important to note,
however, that this offline preselection is important, as the er-
ror can be significant for bad choices ofC. We also point
out that 10-fold crossvalidation on any one session of data
yielded 0-2% errors for all subjects, which is significantly
lesser than the across-session error. Since each session is es-
sentially one static hand-pose, this result indicates that over-
fitting is likely to occur if a single session of data is used for
training.

As noted in the previous section, we can threshold the
class-conditional probabilities in order to decrease the false
classification rate. In an online scenario it will simply add
to the time taken for task performance, but will not cause
errors.
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Figure 3: Classifier error on the 8-gesture classification
problem as a function of the SVM cost parameterC

Evaluating Choice of Recording Locations
In earlier sections, we noted that our choice of recording
sites for muscle activity is motivated by the relevance of
the chosen muscles to the gestures we wish to classify. We
now address the following questions pertaining to this selec-
tion: Firstly, do all the channels of EMG data contribute to
the classification accuracy–i.e., is there redundancy in our
measurements? Secondly, how many channels or electrodes
would we need for controlling a given number of degrees of
freedom with high accuracy?

Figure 4 addresses these two questions. We study per-
formance of the linear SVM classifier on problems involv-
ing various subsets of classes, as we drop the number of
channels used for classification. For any single classifica-
tion problem, the channel to drop at each step was chosen
using a greedy heuristic. That is, at each step, the channel
dropped was the one that least increased the cross-validation
error of the classifier trained on the remaining channels. This
feature-selection procedure was carried out for the follow-
ing classification problems: (1) grasp-release, (2) left-right,
(3) left-right-up-down, (4) left-right-up-down-grasp-release,
and (5) all 8 classes. These choices represent control of an
increasing number of degrees of freedom.

The figure clearly illustrates the following two points:
Firstly, as expected, more degrees of freedom require more
channels of information for accurate classification. For ex-
ample, the 2-class classification problems need only one or
two channels of information, but the 6-class problem re-
quires 3 or more channels for a low error rate. Secondly, the
full 8-class classification problem can be accurately solved
with fewer than 7 electrodes. However, the order in which
the channels were dropped was very different for each sub-
ject. We ascribe this to the variation in the performance of
actions by different individuals and in the recordings ob-
tained from these individuals. Thus our results do not favor
dropping of any one channel; however, the redundancy in
information contained in the channels makes our classifiers
more robust across subjects.
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Figure 4: Classifier Error as a function of number of chan-
nels dropped, from an initial set of 7 channels. The legend
describes the degrees of freedom included in the classifica-
tion problem: lr=left-right, ud=up-down, gr=grasp-release,
rot=rotate.

Online Experiments
Online Procedure: We had the 3 subjects return for a sec-
ond study and perform various tasks online. We studied the
performance of the subjects on various tasks of increas-
ing complexity. The subjects were once again connected
to the EMG recording system, 5 sessions of training data
were recorded and the SVM classifier was trained online
with these 5 sessions and a parameter value that was rec-
ommended by the offline study. The process of collecting
training data took 10 minutes, and the classifier was trained
in less than a minute.

Task Selection:We chose 3 different tasks for our study;
simple, intermediate and complex. The simple task is a
gross-movement task that only requires the subject to move
the robotic arm to two specific locations in succession and
knock off objects placed there. Here the goal is to test ba-
sic reach ability where fine control is not necessary. The in-
termediate task involves moving the robotic arm to a desig-
nated object, picking it up, and carrying it over an obstacle to
a bin where it is then dropped. In this task, accurate position-
ing of the arm is important, and additional commands are
used for grasp/release. Figure 5 describes the first two tasks
in more detail. The third, complex, task involves picking up
a number of pegs placed at chosen locations, and stacking
them in order at a designated place. This requires very fine
control of the robotic arm both for reaching and picking up
objects, and also for placing them carefully on the stack. Fig-
ure 6 illustrates the complex task.

Measure and Baseline:The measure used is the time
taken to successfully complete a task. Each subject per-
formed each task 3 times, and the average time across trials
was recorded. For the third task, only two repetitions were
used since the task is composed of four similar components.
We use two baselines to compare against: firstly, we mea-
sured the theoretical time needed to perform these tasks by

Figure 5: The simple and intermediate online tasks. The first
row shows the simple task, where the robot arm starts in
the middle, and the goal is to topple the two objects placed
on either side. The second row shows the intermediate task,
where the goal is to pick up a designated object, carry it over
an obstacle, and drop it in the bin.

counting the number of commands needed for the robotic
arm to perform a perfect sequence of operations, and as-
suming that the task is accomplished at the rate of 16 com-
mands/s. Secondly, we had a fourth person perform these
same tasks with a keyboard-based controller for the robotic
arm. The second baseline is used to estimate the cognitive
delays in planning various stages of a task as well as the
time spent in making fine adjustments to the arm position for
picking and placing pegs. Naturally, there are differences in
the skill of any given subject at performing the task, as well
as a learning component wherein the same subject can im-
prove their performance at the task. These issues are, how-
ever, beyond the scope of this paper; here we wish to demon-
strate that the EMG-to-command mapping is robust and pro-
vides a good degree of control over the robotic arm.

Online Task Performance

Figure 7 shows the performance of the three subjects and the
baselines on the three online tasks. For the simple task, in-
volving gross movements, all subjects take time close to the
theoretical time required. Interestingly, the keyboard-based
control takes less time, since keeping a key pressed contin-
uously can generate more than our EMG-controller’s con-
trol rate of 16 cmds/sec. For the intermediate task, since
a moderate amount of precision is required, the keyboard
baseline and the three subjects take more time than the the-
oretical time needed. Finally, for the complex task, there
is a clear difference between the theoretical time and the
time taken by the three subjects. It is interesting to note that
the keyboard-based control also takes a comparable amount
of time, thus showing that the bottleneck is not the control
scheme (keyboard or EMG-classification based control), but
the task complexity.



Figure 6: The complex online task: Five pegs are placed at various fixed locations, and the goal is to stack them according to
their size. The pictures show, in order, the initial layout, an intermediate step in moving a peg to the target location, and the
action of stacking the peg.
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Figure 7: Performance of three subjects using the EMG-
based robotic arm control for 3 online tasks. The graph in-
cludes the baselines of theoretical time required, and time
taken with a keyboard-based controller.

Conclusions and Future Work
We have shown that EMG signals can be classified in real-
time with an extremely high degree of accuracy for con-
trolling a robotic arm-and-gripper. We presented a careful
offline analysis of an 8-class action classification problem
based on EMG signals for three subjects as a function of
the number of recording sites (electrodes) used for classifi-
cation. Classification accuracies of over 90% were obtained
using a linear SVM-based classifier and a sparse feature rep-
resentation of the EMG signal. We then demonstrated that
the proposed method allows subjects to use EMG signals to
efficiently solve several reasonably complex real-time motor
tasks involving 3D movement, obstacle avoidance, and pick-
and-drop movements using a 4 degrees-of-freedom robotic
arm.

Our ongoing work is focused on extending our results to
other types of movements, e.g, discriminating finger move-
ments. A separate effort is targeted towards replicating the
results presented in this paper with actual amputees in col-

laboration with the Rehabilitation department at our uni-
versity. A parallel study involves combining EEG signals
from the scalp (reflecting underlying brain activity) with
EMG signals for more accurate classification of motor pat-
terns, with potential applications in brain-computer inter-
faces (BCIs). An interesting theoretical question that we are
beginning to study is whether the EMG-based control sys-
tem can be adapted online rather than only at the start of
an experiment. This is a difficult problem since the sub-
ject is also presumably adapting on-line to generate the best
muscle activation patterns possible for control and to com-
pensate for changes in electrode conductivity with the pas-
sage of time. We intend to explore variations of our SVM-
based classification technique to tackle this challenging non-
stationary learning problem.
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