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Abstract

An important component of language acquisition and cognitive learning is gaze imitation. Infants as young as one year of age can follow the

gaze of an adult to determine the object the adult is focusing on. The ability to follow gaze is a precursor to shared attention, wherein two or more

agents simultaneously focus their attention on a single object in the environment. Shared attention is a necessary skill for many complex, natural

forms of learning, including learning based on imitation. This paper presents a probabilistic model of gaze imitation and shared attention that is

inspired by Meltzoff and Moore’s AIM model for imitation in infants. Our model combines a probabilistic algorithm for estimating gaze vectors

with bottom-up saliency maps of visual scenes to produce maximum a posteriori (MAP) estimates of objects being looked at by an observed

instructor. We test our model using a robotic system involving a pan-tilt camera head and show that combining saliency maps with gaze estimates

leads to greater accuracy than using gaze alone. We additionally show that the system can learn instructor-specific probability distributions over

objects, leading to increasing gaze accuracy over successive interactions with the instructor. Our results provide further support for probabilistic

models of imitation and suggest new ways of implementing robotic systems that can interact with humans over an extended period of time.
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1. Introduction

Imitation is a powerful mechanism for transferring knowl-

edge from a skilled agent (the instructor) to an unskilled agent

(or observer) using manipulation of the shared environment. It

has been broadly researched, both in apes (Byrne & Russon,

1998; Visalberghy & Fragaszy, 1990) and children (Meltzoff &

Moore, 1977, 1997), and in an increasingly diverse selection of

machines (Fong, Nourbakhsh, & Dautenhahn, 2002; Lungar-

ella & Metta, 2003). The reason for the interest in imitation in

the robotics community is obvious: imitative robots offer rapid

learning compared to traditional robots requiring laborious

expert programming. Complex interactive systems that do not

require extensive configuration by the user necessitate a

general-purpose learning mechanism such as imitation.

Imitative robots also offer testbeds for computational theories

of social interaction, and provide modifiable agents for

contingent interaction with humans in psychological

experiments.
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1.1. Imitation and shared attention

While determining a precise definition for ‘imitation’ is

difficult, we find a recent set of essential criteria due to Meltzoff

especially helpful (Meltzoff, 2005). An observer can be said to

imitate an instructor when:

(1) The observer produces behavior similar to the instructor.

(2) The observer’s action is caused by perception of the

instructor.

(3) Generating the response depends on an equivalence

between the observer’s self-generated actions and the

actions of the instructor.

Under this general set of criteria, several levels of imitative

fidelity and metrics for imitative success are possible.

Alissandrakis, Nehaniv, and Dautenhahn (2000, 2003) differ-

entiate several levels of granularity in imitation, varying in the

amount of fidelity the observer obeys in reproducing the

instructor’s actions. From greatest to least fidelity, the levels

include:

(1) Path granularity: the observer attempts to faithfully

reproduce the entire path of states visited by the instructor.

(2) Trajectory granularity: the observer identifies subgoals in

the instructor’s actions, and changes its trajectory over

time to achieve those subgoals.
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(3) Goal granularity: the observer selects actions to achieve

the same final goal state as the instructor (irrespective of

the actual trajectory taken by the instructor).

Many of the imitation tasks that span the above levels of

granularity require the instructor and observer to simul-

taneously attend to the same object or environmental state

before or during imitation. Such simultaneous attention is

referred to as shared attention in the psychological literature.

Shared attention has even been found to exist in infants as

young as 42 min old (Meltzoff & Moore, 1977). Yet, as with

other human imitative behaviors, shared attention is a

deceptively simple concept.

In seminal papers, Nehaniv and Dautenhahn (2000), and,

separately, Breazeal and Scassellati (2001) proposed several

complex questions that must be addressed by any robotic

imitation learning system. Other groups (Jansen & Belpaeme,

2005; Billard, Epars, Calinon, Cheng, & Schaal, 2004) have

applied a similar taxonomy to the design of imitative agents.

Among these questions are two that directly relate to shared

attention:

(1) How should a robot know what to imitate?

(2) How should a robot know when to imitate?

A system for shared attention must address exactly these

questions. An imitative system must determine what to imitate;

a system for shared attention must determine whether an

instructor is present, and if so, which components of the

instructor’s behavior are relevant to imitation. In the scope of

shared attention, this task encompasses both finding an

instructor and the ability to recognize if no instructor is present.

Once an instructor has been located, the observer can turn to

the question of where the instructor is directing his or her

attention. This step combines the questions of what and when.

The observer must first discern the instructor’s focus using cues

such as the instructor’s gaze, body gestures, verbalization, etc.

Determining what to imitate again comes into play as the

observer must determine, which of these cues are being used to

convey the instructor’s intent. Further, for a fully autonomous

system, the robot must be able to distinguish the intentionality

of tasks—a head-shake differs greatly from a head-movement

looking towards a specific object. The question of when to act

is then raised: the observer must determine when it has

acquired enough information to successfully imitate (cf. the

exploration–exploitation trade-off in reinforcement learning).

Action can be taken once the observer has determined where

to look, but the observer is now at an impasse: what really

matters is the instructor’s attentional focus. Consider, for

example, a person told to look to the right. This information is

not useful unless the person has knowledge about the current

task or some method to determine why they must look right.

Robotic observers learning from humans inevitably encounter

the same obstacle: the robot can look right, but is unlikely to

know the specific objects to which its attention is being

directed. Further, for the observer to direct its search towards

relevant objects or environment states, it must possess some
method to segment the scene and identify relevant subparts.

The observer must then be able to associate other factors with

the scene, such as audio cues or task-dependent context, and

identify the most salient segment. The pursuit of all-purpose

imitation depends on having a model for saliency, i.e. a model

of what components of the environmental state are important in

a given task. Low-level saliency models can be generic,

capturing image attributes such as contrast and color, but in this

paper, we focus on more useful higher-level, task- or

instructor-specific models, representing the observer’s learned

context-dependent knowledge of where to look.

Many different frameworks have been pursued for imple-

menting biologically inspired imitation in robots. Broadly,

frameworks can follow: (i) a developmental approach, where

the robot builds a model of social behaviors based on repeated

interactions with an instructor or caregiver (such as (Breazeal

& Velasquez, 1998; Breazeal, Buchsbaum, Gray, Gatenby, &

Blumberg, 2005; Calinon & Billard, 2005)); (ii) a biologically-

motivated model, such as neural networks (Billard & Mataric,

2000) or motor models (Johnson & Demiris, 2005; Demiris &

Khadhouri, 2005; Haruno, Wolpert, & Kawato, 2000); or (iii) a

combination of development and brain modeling (Nagai,

Hosoda, Morita, & Asada, 2003). Our model learns a model

of perceptual saliency based on interaction with an instructor,

bootstrapping the learned model using a neurally-inspired prior

model for saliency (Itti, Koch, & Niebur, 1998), thus

combining the developmental and modeling approaches.

As Nehaniv, Dautenhahn, Breazeal, and Scassellati note, the

complex questions of what and when to imitate are just now

being addressed by the robotics community. We do not claim

to fully answer these questions, but we wish to draw a link

between these questions with regard to imitation itself and the

sub-task of shared attention. Previous robotic systems, such as

those of Scassellati (1999), Demiris, Rougeaux, Hayes,

Berthouze, and Kuniyoshi (1997), are able to track the gaze

of a human instructor and mimic the motion of the instructor’s

head in either a vertical or horizontal direction. Richly

contingent human–robot interaction comparable to infant

imitation, however, has proven much more difficult to attain.

Price (Price, 2003), for example, addresses the problem of

learning a forward model of the environment (Jordan &

Rumelhart, 1992) via imitation (see Section 3), although the

correspondence with cognitive findings in humans is unclear.

Other frameworks have been previously proposed for imitation

learning in machines (Billard & Mataric, 2000; Breazeal, 1999;

Scassellati, 1999), although without the probabilistic formal-

ism being pursued in this paper. We view probabilistic

algorithms as critical in cases like gaze tracking, where the

instructor’s gaze target is subject to a high degree of perceptual

uncertainty. More recent imitation work has incorporated

probabilistic techniques such as principal components analysis,

independent components analysis, and hidden Markov models

(Calinon & Billard, 2005; Calinon, Guenter, & Billard, 2005,

2006). This work has concentrated on using humanoid robots to

imitate human motor trajectories, for example to write a

character using a marker. We view our system as being

complementary to these approaches: ideally, shared attention



M.W. Hoffman et al. / Neural Networks 19 (2006) 299–310 301
could help humanoid robots to direct limited sensory and

processing resources toward stimuli that are likely to allow

enaction of future motor plans. Separately, Triesch and

colleagues have used robotic platforms to study shared

attention in infants (Fasel, Deak, Triesch, & Movellan,

2002), specifically examining the gaze imitation interaction

between children and robots. For the purposes of this paper, we

assume that the goal of the instructor is to direct the attention of

the observer to an object of mutual interest. A unique

contribution of our paper is the development of a probabilistic

theory of shared attention; below we enumerate the benefits of

such a model, show results from a robotic implementation of

the model, and discuss the implications for neural and

cognitive models of imitation.

This paper presents a Bayesian model that combines gaze

imitation with saliency models to locate objects of mutual

interest to the instructor and the observer. Bayesian models are

attractive due to their ability to fuse multiple sources of

information and handle noisy and incomplete data, all within a

unifying mathematical formalism. The model described in this

paper allows a robotic system to follow a human instructor’s

gaze to locate an object and over successive trials, learn an

instructor- and task-specific saliency model for increased

object location accuracy. Our biologically-inspired, model-

based approach extends previous robotic gaze imitation results

in three main ways: (i) it provides a Bayesian description of

gaze imitation; (ii) it incorporates infant imitation findings into

an algorithmic and model-based framework; and (iii) the

system learns simple, context-dependent probabilistic models

for saliency. Our results show the value of a Bayesian approach

to developing shared attention between humans and robots.

Throughout this paper we use the term gaze imitation rather

than head imitation to describe our process of gaze

estimation—we do not, however, utilize eye-tracking in

attaining this estimate. The model developed in this paper

mirrors the learning apparatus utilized by young infants,

specifically at the stage in their development where they are

unable to distinguish between head movements and eye

movements (Brooks & Meltzoff, 2002). The use of gaze

imitation reinforces the idea that our goal is to track and imitate

the instructor’s gaze, whereas imitating the head movements is

merely a byproduct of this process.

1.2. The active intermodal mapping model

At the highest level, our model is inspired by the work of

Meltzoff and Moore, particularly their active intermodal

mapping (AIM) hypothesis (Meltzoff & Moore, 1997). This

hypothesis views infant imitation as a goal-directed,

‘matching-to-target’ process in which infants compare their

own motor states (derived from proprioceptive feedback) with

the observed states of an adult instructor. This comparison

takes place by mapping both the internal proprioceptive states

of the observer and the visual image of the instructor into a

single, modality-independent space. Mismatch in this

modality-independent space drives the motor planning system

to perform corrective actions, bringing the infant’s state in line
with the adult’s. In our case, the gaze angle of the instructor is

extracted from the input image stream using an instructor-

centric model, which allows gaze information to be easily

converted to egocentric coordinates. Proprioceptive infor-

mation from the robotic head provides information from

encoders in the motors about current camera position, which

can be compared with the target gaze angle for mismatch

detection and motor correction. Fig. 1 juxtaposes the elements

of AIM and our model. Other researchers have engaged in

similar efforts to link infant development, specifically AIM, to

systems for developmental robotics (Breazeal & Velasquez,

1998; Breazeal, 1999; Breazeal et al., 2005), although without

the emphasis on probabilistic models.

Our present system models imitation in young infants.

Infant studies have shown that, while younger infants use

direction of adult head gaze to determine where to look, older

infants use a combination of adult head direction and eye gaze

(Brooks & Meltzoff, 2002). Other studies have shown that

younger infants imitate adult gaze based on head movement

(Moore, Angelopoulos, & Bennett, 1997; Lempers, 1979),

while older infants can use static head pose (Lempers, 1979).

As noted below, our system uses a Kalman filter of frame-by-

frame observations to derive a robust estimate of gaze

direction; thus, like younger infants, our system currently

relies on observing head movement. More sophisticated feature

detectors might allow inference of gaze direction from static

images, although robust real-time gaze inference from single

images remains an open problem in machine vision.

1.3. Motor models and Bayesian action selection

Many robotic systems model the environment, whether

using a static map of an area or running a dynamic simulator of

the world over time. Forward and inverse models (Jordan &

Rumelhart, 1992) are commonplace in studies of low-level

motor control. For example, Wolpert and colleagues have

modeled paired forward and inverse models for motor control

and imitation, and investigated possible neurological

implementations (Blakemore, Goodbody, & Wolpert, 1998;

Haruno et al., 2000). Forward and inverse models also provide

a framework for using higher-level models of the environment

to yield knowledge about actions to take, given a goal.

Probabilistic forward models predict a distribution over future

environmental states given a current state and an action taken

from that state. Probabilistic inverse models encode a

distribution over actions given a current state, desired next

state, and goal state.

Learning an inverse model is the desired outcome for an

imitative agent, since inverse models select an action given a

current state, desired next state, and goal state. However,

learning inverse models is difficult for a number of reasons,

notably that environmental dynamics are not necessarily

invertible; i.e. many actions could all conceivably lead to the

same environmental state. In practice, it is often easier to

acquire a forward model of environmental dynamics to make

predictions about future state. By applying Bayes’ rule, it

becomes possible to rewrite a probabilistic inverse model in



Fig. 1. Comparison between AIM and our model: (a) the active intermodal mapping (AIM) hypothesis of facial imitation by Meltzoff and Moore (1997) argues that

infants match observations of adults with their own proprioception using a modality-independent representation of state. Mismatch detection between infant and

adult states is performed in this modality-independent space. Infant motor acts cause proprioceptive feedback, closing the motor loop. The photographs show an

infant tracking the gaze of an adult instructor (from (Brooks & Meltzoff, 2002)). (b) Our probabilistic framework matches the structure of AIM. Transforming

instructor-centric coordinates to egocentric coordinates allows the system to remap the instructor’s gaze vector into either a motor action that the stereo head can

execute (for gaze tracking), or an environmental state (a distribution over objects the instructor could be watching) to learn instructor- or task-specific saliency.

1 For example by using a unique identifier for each agent such as cues

provided by facial recognition. Separate saliency cues/preferences can be

associated with each identifier.
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terms of a forward model and a policy model (with normal-

ization constant k) (Rao & Meltzoff, 2003; Rao et al., 2004)

Pðatjst;stC1;sGÞZ kPðstC1jst;atÞPðatjst;sGÞ (1)

where at is the action to be executed at time step t, st and stC1

are states of the agent at time steps t and tC1, sG is the desired

goal state, and k is the normalization constant. Actions can be

selected in one of two ways given such an inverse model. The

observer can select the action with maximum posterior

probability, or the observer can sample from P(atjst,stC

1,sG),strategy known as ‘probability matching’ (Krebs &

Kacelnik, 1991), which seems to be used in at least some

cases by the brain. Our present system uses only maximum a

posteriori (MAP) estimates to select actions.

Previous robotic systems have employed the concepts of

forward and inverse models for imitation (Demiris &

Khadhouri, 2005; Haruno et al., 2000; Johnson & Demiris,

2005). Unlike these systems, which pair inverse and forward

models for control and for prediction of sensory consequences,

respectively, our system’s inverse model is computed from a

convolution of the forward and prior models as defined above.

This Bayesian formulation simplifies the parameterization of

the controller.

The present system does not learn a policy model, and

instead assumes a uniform prior over actions that (according to

the forward model) will move the imitator’s motor state closer

to the goal motor state. The system simply chooses the MAP

estimate of at during training and testing based on observing

the instructor’s head pose. The policy model is implemented

using a grid-based empirical distribution. Thus, according to

the taxonomy given in Section 1, our model implements

imitation at a goal-based level of granularity.
2. Probabilistic model of shared attention

In this section, we present a Bayesian approach to gaze

imitation and shared attention, focusing on the interaction

between one instructor and one observer (although this can

readily be transformed in the case of multiple agents1). We

accomplish this by presenting the observer with some set of

objects with which the instructor will interact (e.g. by looking

at one of the objects in each interaction). By watching the

instructor at each time-step of this process, the observer is then

able to learn a ‘top-down saliency model’ of these objects,

encoding the instructor’s object preferences.

Our framework provides a mathematically rigorous method

for inferring the attentional focus of the instructor based on

multiple environment cues. We draw a distinction between two

sets of environmental cues, attentional (or instructor-based)

and object-based. Attentional cues arise from observing the

instructor’s actions. Some examples of instructor-based cues

are head gaze direction, saccadic eye movements, and hand

gesture direction. Object-based cues are properties of the

objects themselves: size, color, texture, sounds emitted, etc.

This distinction allows us to view interaction in two stages:

instructor-based cues give rough estimates for the focus of

attention, whereas object-based information provides the

ability to fine tune this estimate. Our specific use of

instructor-based cues to provide an initial rough estimate is

described in Section 3.



Fig. 2. Probabilistic formulation of shared attention. A Bayesian network

describing the interaction between an instructor’s focus of attention and

perceived environmental cues. The model allows inference of the hidden

attentional focus X based on the observed shaded variables. The set of variables

{O1,.,Ok} represent the location and appearance of each object. The

observation I is an image of the scene containing objects, which may be

attended to. The set of observations {A1,.,An} represent attentional cues such

as gaze or hand tracking. The variable S denotes the parameters of a task and

instructor dependent model of saliency or object relevance.
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Graphical models (specifically Bayesian networks) provide

a convenient method for describing conditional dependencies

such those between environmental cues and the attention of the

instructor. Our graphical model used to infer shared attention is

shown in Fig. 2. We denote the focus of the instructor by a

random variable X. Depending on the specific application X can

either represent a 3-dimensional real world location or a

discrete object identifier, which is used in conjunction with a

known map of object locations. For simplicity we first assume

the latter case of a discrete object representation.

Object location and appearance properties are represented by

the variables OZ{O1,.,Ok} for some k possible objects. The

instructor’s attentional focus X is modeled as being conditionally

dependent on object location and visual properties. Thus, the

instructor’s top-down saliency or object relevance model is

represented by the conditional probability P(XjO). In general, this

conditional probability model is task- and instructor-dependent.

To account for this variability, we introduce the variable S, which

parametrizes the top-down saliency model. This corresponds to

the saliency model P(XjO,S) as shown in Fig. 2. As an example of

a top-down saliency model, suppose color is an important

property of objects Oi. The variable S could then be used to

indicate, for instance, how relevant a red object is to a particular

task or instructor.

The attentional focus of the instructor is not directly

observable. Thus, we model the attentional cues {A1,.,An} as

noisy observations of the instructor and their actions. Here, we

consider n attentional observation models P(AijX). In this

paper, we utilize a probabilistic head gaze estimator as such an

attentional observation model (see Section 3). However, it

would be straightforward to incorporate additional information

from observed gestures such as pointing.

The saliency model of the instructor (parameterized by S) is

also considered unknown and not directly observable. Thus, we

must learn S from experience based on interaction with the

instructor. Initially, P(S) is a uniform distribution, and thus

P(XjO,S) is equivalent to the marginal probability P(XjO). An
expectation maximization (EM) algorithm for incrementally

learning S is described in Section 4.

A model of shared attention between a robot and a human

instructor should be flexible and robust in unknown and novel

environments. Thus, in this work we do not assume a priori

knowledge about object locations and properties Oi nor the

number of such objects k. Our model infers this information

from an image of the scene I, as detailed in Section 4.

Ultimately, the goal of shared attention is to enable both the

imitator and the instructor to attend to the same object. We

select the object that the imitator attends to by computing the

maximum a posteriori (MAP) value of X:

X Z argmaxXPðXjA1;.;An;IÞ:

In order to infer the posterior distribution P(XjA1,.,An,I)

we first estimate MAP values of object locations and properties

Oi Z argmaxOi
PðIjOiÞPðOiÞ

where P(IjOi) is determined using a low level saliency

algorithm described in Section 4. The posterior can then be

simplified using the Markov blanket of X, Blanket(X), i.e. the

set of all nodes that are parents of X, children of X, or the parent

of some child of X. Given this set of nodes the probability

distribution P(XjBlanket(X)) is independent of all other nodes

in the graphical model. Using the known information about

objects present in the environment Oi we can calculate the

probability distribution of X given its Markov blanket:

PðXjA1.n;O1.k;SÞZP XjBlanketðXÞ
� �

ZP XjParentsðXÞ
� � Y

Z2ChildrenðXÞ

P ZjParentsðZÞ
� �

(2)

PðXjA1.n;O1.k;SÞZPðXjS;O1;.;OkÞPðA1jXÞ/PðAnjXÞ:

(3)
3. Gaze following

A first step towards attaining shared attention is to estimate

and imitate the gaze of an instructor. We use a probabilistic

method proposed by Wu, Toyama, and Huang (2000), although

other methods for head pose estimation may also be used. An

ellipsoidal model of a human head is used to estimate pan and

tilt angles relative to the camera. Inferred head angles are used

in conjunction with head position to estimate an attentional

gaze vector gZAi forming the attentional cue likelihood model

P(gjX).

The orientation of the head is estimated by computing the

likelihood of filter outputs (within a bounding box of the head)

given a particular head pose. During training, a filter output

distribution is learned for each point on the three-dimensional

mesh grid of the head. Thus, at each mesh point on the

ellipsoid, filter responses for Gaussian and rotation-invariant

Gabor at four different scales are stored. Our implementation of

the Wu–Toyama method is able to estimate gaze direction in

real-time (at 30 frames per second) on an average desktop

computer.
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The principal difficulty with this method is that it requires a

tight bounding box around the head in testing and in training

images for optimal performance. In both instances, we find the

instructor’s head using a feature-based object detection

framework developed by Viola and Jones. This framework

uses a learning algorithm based on the ‘AdaBoost’ algorithm to

find efficient features and classifiers, and combines these

classifiers in a cascade that can quickly discard unlikely

features in test images. Features such as oriented edge and bar

detectors are used that loosely approximate simple cell

receptive fields in the visual cortex. We favor this method

because of its high detection rate and speed for detecting faces:

on a standard desktop computer, it can proceed at over 15

frames per second.

The face detection algorithm described above is only trained

on frontal views of faces, allowing a narrow range of detectable

head poses (plus or minus approximately 5–78 in pan and tilt).

We circumvent this problem by first finding a frontal view of

the face and then tracking the head across different movements

using the Meanshift algorithm (Comaniciu, Ramesh, & Meer,

2000). The algorithm tracks non-rigid objects by finding the

most likely bounding box at time t based on the distribution of

color and previous positions of the bounding box. An attempt is

made to minimize the movement in bounding box location

between any two frames while also maintaining minimal

changes in color between successive frames. The meanshift

algorithm is used to track the position of the head over

subsequent images, but this process does not always result in a

tight bound. As a result, there is additional noise present in the

head pose angle calculated using this bounding box. In order to

account for this additional noise, a Kalman filter on the

coordinates output by the meanshift tracker is utilized. This

filtering of noisy gaze estimates based on an observed motion

sequence is similar to the gaze imitation process in younger

infants, who must observe head motion in order to follow the

gaze of the instructor.

To summarize, the observer begins by tracking the

instructor’s gaze when the instructor looks at the observer, a

traditional signal of attention. At this point the observer

maintains the location of the instructor’s head via a bounding

box on the instructor’s face as the instructor makes a head

movement. A bounding box on the instructor’s head allows the

observer to determine the instructor’s gaze angle at each point

in this sequence using the previously learned ellipsoidal head

model described earlier. The final gaze angle can then be

determined from the observed head-motion sequence.

4. Estimating saliency

In humans, shared attention through gaze imitation allows

more complex tasks to be bootstrapped, such as learning

semantic associations between objects and their names, and

imitating an instructor’s actions on objects. Gaze imitation

alone only provides a coarse estimate of the object that is the

focus of the instructor’s attention. Our model utilizes two other

sources of information to fine tune this estimate: (1) bottom-up

saliency values estimated from the prominent features present
in the image (to facilitate object segmentation and identifi-

cation), and (2) top-down saliency values encoding preferences

for objects (S) learned from repeated interactions with an

instructor.

Bottom-up saliency values for an image are computed based

on a biologically-inspired attentional algorithm developed by

Itti et al. (1998). This algorithm returns a saliency ‘mask’ (see

Fig. 3(f)) where the grayscale intensity of a pixel is

proportional to saliency as computed from feature detectors

for intensity gradients, color, and edge orientation. The use of

this algorithm allows interesting parts of the scene to be

efficiently selected for higher level analysis using other cues.

Such an approach is mirrored in the behavior and neuronal

activity of the primate visual system (Itti et al., 1998).

Thresholding the saliency mask and grouping similarly valued

pixels in the thresholded image produces a set of discrete

regions the system considers as candidates for objects. The

ability to identify candidate objects is contingent on a sufficient

separation placed between objects in the image. If two objects

are located in positions such that they are within some small

bound, or are overlapping, the algorithm will identify this

region as one object. This is understandable, however, as

distinguishing occluded objects would require some prior

knowledge of the object appearance—which this low-level

algorithm does not possess.

After repeated interactions with an instructor, the imitator

can build a top-down context-specific saliency model of what

each instructor considers salient—these instructor preferences

are encoded in the prior probability over objects P(XjS). As

previously noted, this top-down model provides a method to

reduce ambiguity in the instructor-based cues by weighting

preferred objects more heavily. With no prior information,

however, the distribution P(XjS) is no different from P(X).

We now consider a top-down saliency model, which is not

domain dependent, yet enables the learning of task- and

instructor-dependent information. We focus on leveraging

generic object properties such as color (in YUV space) and

size. Recall that top-down saliency corresponds to the conditional

probability model P(XjO,S). In our implementation, object

appearance Ok is represented by a set of vectors oiZ ui; vi; zih i
where ui and vi are the UV values of pixel i, and where zi is the size

of the object (in pixels) from which this pixel is drawn.

As o is a continuous random variable, we utilize a Gaussian

mixture model (GMM) to represent top-down saliency

information. For each instructor, we need to learn a different

Gaussian mixture model, thus it is intuitive to make S the

parameters of a particular mixture model. Specifically, S

represents the mean and covariance of C Gaussian mixture

components, which are used to approximate the true top-down

saliency model of the instructor.

Training the Gaussian mixture model is straightforward and

uses the well known expectation maximization (EM) algorithm

(Dempster et al., 1977). A set of data samples Ok from previous

interaction is modeled as belonging to C clusters parameterized

by S.

In inferring the attentional focus of the instructor, the system

uses the learned model parameters S to estimate the prior (or



Fig. 3. Learning instructor-specific saliency priors: (a–d) the upper values give the true top-down saliency distribution. The lower values give the current estimate for

this distribution, given t iterations. Progressing from (a–d) shows the estimate approaching the true distribution as number of iterations increases. (e) After training,

we validate the learned saliency model using a set of testing objects. Next to each testing object is its estimated probability of saliency, with the true probability

(according to the instructor) shown in parentheses. (f) A neurally-plausible bottom-up algorithm (Itti et al., 1998) provides a pixel-based, instructor-generic prior

distribution over saliency, which the system thresholds to identify potentially salient objects. (g) Thresholded saliency map. (h) Intersection of instructor gaze vector

and the table surface, with additive Gaussian noise. (i) Combination of (g) and (h) yields a MAP estimate for the most salient object in the test set (the blue wallet).

(For interpretation of the reference to colour in this legend, the reader is referred to the web version of this article).
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marginal w.r.t O) distribution over objects P(XjS) for a specific

instructor. The Gaussian mixture model yields an estimate on

which object j the system should look at based on pixels in the

connected components of the thresholded bottom-up saliency

image. For each segmented object j in the scene the system first

computes the maximum likelihood (ML) cluster label cj for the

object

cj Z argmaxc2C

1

Nx

XNx

i

oiKmc

 !T

SK1
c

1

Nx

XNx

i

oiKmc

 ! !
;

(4)

where C is the set of Gaussian clusters in the mixture model

and mc,Sc, respectively, denote the mean and covariance matrix

for cluster c. The mixture model prior for Gaussian component

cj determines the a priori probability that the instructor will

gaze at object j

P X Z j
� �

ZP cj

� �
; (5)

where P(cj) is the probability that a point is drawn from the

mixture component labeled cj. The system finally combines

this prior with the gaze and bottom-up saliency distributions to

determine the MAP estimate of which object is being attended

to. Fig. 3 illustrates the model in action.

4.1. Gaze imitation results

Our experimental set-up involved an instructor and a robotic

observer (hereafter referred to as the robot) set at opposite ends

of a table (shown in Fig. 4(a)). Initial tests focused on

ascertaining the error in our gaze imitation algorithm. The

model was first trained using video sequences from two
different instructors looking in known directions. Once

completed, the model was tested on in- and out-of-sample

instructors gazing at two different positions on the table. Each

different session was recorded as a success if the robot

correctly aligned its gaze in the direction of the instructor’s

gaze. These tests showed accuracy of approximately 90%, both

for in- and out-of-sample data (details are shown in Fig. 4(b)).

For these tests, the two points were at the center-line of the

table approximately 1 m apart, while the robot and instructor

were both approximately 0.5 m from the center of the table. In

order to view these two positions, the instructor is required to

gaze in approximately 458 in either direction. The main

constraint on these distances results from the resolution of the

robot’s cameras: both robot and instructor must be close

enough that the robot can discern individual objects when they

are present on the table. As noted earlier, our system uses a low

level saliency algorithm (Itti et al., 1998) to distinguish

between objects, which limits the distance the robot can be

from the table.

4.2. Incorporating learned instructor-specific priors

As illustrated by the example in Fig. 3(e), accurate gaze

estimation does not alleviate the problems caused by a

cluttered scene. Our next set of tests dealt with this problem

of ambiguity. The instructor and robot are again positioned at a

table as described earlier and objects are randomly arranged on

the table; each pair of objects is separated by approximately

10 cm. The instructor is assumed to have a specific internal

saliency model (unknown to the robot) encoding preferences

for various objects. The instructor chooses objects based on this

model. Once an object has been chosen, the instructor looks



Fig. 4. Experimental setup and gaze tracking results: (a) the robotic observer tracks the instructor’s gaze to objects on the table and attempts to identify the most

salient object. (b) Accuracy of the gaze imitation algorithm in distinguishing between two locations, tested with three different subjects. Only the first of these

subjects was in the training set.

M.W. Hoffman et al. / Neural Networks 19 (2006) 299–310306
towards the object, and the robot must track the instructor’s

gaze to the table in an attempt to determine the most salient

object.

Once the robot has oriented to an object in the scene, we

have the robot ‘ask’ the instructor whether it has correctly

identified the instructor’s object. We call a series of such

attempts made by the robot to identify the instructor’s object a

trial. Monitoring the number of attempts made for each trial

allows us to determine the accuracy of our system—as the

number of trials increases, the robot should correctly identify

objects with fewer and fewer attempts. A sequence of 20

successive trials was performed. Fig. 5 plots the accuracy of the
Fig. 5. Object localization accuracy over successive trials: the plot shows the acc

directing his attention, averaged over 5 sequences of trials. Values on the y-axis des

object, while values on the x-axis denote the trial number in the sequence. Line (a) s

(b) shows the inclusion of gaze information. Line (c) combines learned saliency inf

known. The error bars in this graph show the maximum and minimum number of
combined gaze imitation and saliency model, where lower

numbers represent more accurate object identification. Each

sequence of trials was performed five times, with the values

shown in Fig. 5 averaged over each sequence. The actual

values plotted are the number of attempts made by the robot to

identify the correct object, i.e. the number of incorrect

proposals plus 1 for the last correct proposal.

For comparison, the first of these plots in Fig. 5, marked (a),

shows the accuracy of the robot using random guesses to

determine the object. The plot marked (b) uses gaze-tracking

information only, and a random guess over objects in the

robot’s field of view. Finally, the plot in (c) combines the
uracy of our system at locating 10 different objects to which the instructor is

cribe the average number of attempts made by the robot to identify the correct

hows the system using only random guesses to determine the object, while line

ormation with gaze tracking, beginning with a uniform prior when no model is

attempts made for each trial.



M.W. Hoffman et al. / Neural Networks 19 (2006) 299–310 307
information gained from gaze tracking and the current learned

saliency model to propose the most likely object. It should be

noted that the final two plots align closely for the first 5 to 6

steps, a trend which occurs as a result of how these trials were

performed. The robot begins each trial with no prior

information, as described in the previous section; as such it is

expected that both this approach and just gaze-tracking

perform with approximately the same accuracy. However, it

can be seen that over time, the combined gaze imitation plus

saliency model continues to improve, with steadily declining

error, while the approach using gaze tracking remains at the

same level of accuracy.

The saliency model (as seen in Fig. 3(a–d)) is not

completely stable as of 20 trials; however, as we can see by

viewing Fig. 3(a) and (c), the approximate likelihoods for each

object class should be well established. One reason for ending

these test sequences after 20 trials is that the robot is unlikely to

perform with better accuracy than 2 or 3 attempts given the

noise present in the system, and the possibility of the instructor

gazing at rare (or less salient) objects. After 20 trials, tests

using saliency information still perform much better than those

using only gaze-imitation (an average of 2 versus 4 attempts at

identification).

5. Relation to brain mechanisms of imitation

Our system does not explicitly model the neural architecture

underlying imitative behaviors. In many cases, the neuro-

science of imitation remains unclear. We can nonetheless draw

analogies between components of our system and brain areas

hypothesized as important for imitation. For example, the

feature detectors used in the prior saliency algorithm (Itti et al.,

1998) are based on center-surround detectors for image

intensity and for each color channel, designed around the

well-known properties of bipolar cells in retinal ganglia.

Orientation detectors in the algorithm are based on simple cells

of visual cortex area V1.

Other vision-based components of our algorithm have

straightforward analogues in terms of brain structure. For

example, the detection algorithm used by our system to localize

the instructor’s face (Viola & Jones) employs numerous Haar

wavelet-like filters, measuring quantities such as the contrast

between eyes and the bridge of the nose, etc. Very similar

neuronal responses have been noted in primate inferotemporal

cortex (IT) during face recognition tasks (Yamane, Kaji, &

Kawano, 1988). Identification of facial features invariant to the

relative viewpoint of the observer and instructor is vital to the

success of our system, and is also a feature found in IT neurons

(Booth & Rolls, 1998).

Although a full review of the possible neurological

mechanisms underpinning AIM is beyond the scope of this

paper, we note the pivotal discovery of ‘mirror neurons’

(Buccino et al., 2001; di Pellegrino, Fadiga, Fogassi, Gallese,

& Rizzolati, 1992; Rizzolatti & Craighero, 2004; Rizzolatti,

Fogassi, & Gallese, 2000), initially discovered in the

macaque ventral premotor area F5, and later found in

posterior parietal cortex and elsewhere. Mirror neurons fire
preferentially when animals perform hand-related, manipula-

tive motor acts, as well as when animals observe other agents

(humans or monkeys) perform similar acts. Recent event-

related fMRI results (Johnson-Frey et al., 2003) suggest that

the left inferior frontal gyrus performs a similar function in

humans, and that this area responds primarily to images of a

goal state rather than to observations of a particular motor

trajectory. Mirror neurons provide a plausible mechanism

for the modality-independent representation of stimuli

hypothesized by AIM.

The ‘motor planning’ aspects of our system shown in

Fig. 1(b) are also linked to recent psychophysical and

neurological findings. A critical component of our system is

the predictive, probabilistic forward model that maps a current

state and action to a distribution over future states of the

environment. Imaging and modeling studies have implicated

the cerebellum in computing mismatch between predicted and

observed sensory consequences (Blakemore et al., 1998;

Blakemore, Frith, & Wolpert, 2001; Haruno et al., 2000).

Furthermore, recent papers have examined the potentially

critical importance of information flow between cerebellum

and area F5 during observation and replay of imitated

behaviors (Iacoboni, 2005; Miall, 2003).

Based on our experimental results we make predictions

about the reaction time of a human observer in obtaining shared

attention with the instructor. We define reaction time as the

time required for the subject to attend to a target object after

observing the instructor’s gaze. Reaction time can be predicted

by combining experimental error rates during saliency learning

(shown in Fig. 5) and a model of human eye movement

(Carpenter, 1988). The experimental scenario we consider

consists of a table 1 m from the observer with ten uniformly

scattered objects. Saccade duration is modeled as linearly

dependent on the angular distance between the various objects.

We assume a mean saccade delay of 200 ms, which is

consistent with such medium amplitude saccades (Carpenter,

1988). Fig. 6 shows the predicted reaction time and

demonstrates how reaction time exponentially decreases as

the observer learns the (non-uniform) preferences encoded by

the instructor’s object saliency distribution.

Based on the results in Section 4, our model makes the

following psychophysical predictions for gaze following

between an observer and an instructor in a cluttered

environment, when the observer is initially ignorant of the

instructor’s saliency preferences:

† In the absence of previous experience with the instructor,

observers will preferentially attend to objects within a

region consistent with the observed gaze, and within that

region to objects with high prior salience: regions of high

contrast or high-frequency texture.

† The observer’s error rate (percentage of objects incorrectly

fixated by our system, or reaction time in the case of human

infants) will decline exponentially in the number of trials

(see Figs. 5 and 6) as the observer learns the preference of

the human instructor.



Fig. 6. Predicted time of obtaining shared attention during learning: the predicted reaction time of the observer after observing the instructor’s gaze is plotted against

the trial number. Reaction time is computed using a saccade duration model based on saccade latency and amplitude. Note that after each trial the observer better

learns the instructor’s (non-uniform) object saliency distribution. We plot an exponential curve fitted to the experimental data to illustrate the overall effect of

saliency learning combined with gaze following behavior.
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6. Conclusion

Gaze imitation is an important prerequisite for a number of

tasks involving shared attention, including language acqui-

sition and imitation of actions on objects. We have proposed a

probabilistic model for gaze imitation that relies on three major

computational elements: (1) a model-based algorithm for

estimating an instructor’s gaze angle, (2) a bottom-up image

saliency algorithm for highlighting ‘interesting’ regions in the

image, and (3) a top-down saliency map that biases the imitator

to specific object preferences of the instructor as learned over

time. Probabilistic information from these three sources are

integrated in a Bayesian manner to produce a maximum a

posteriori (MAP) estimate of the object currently being focused

on by the instructor. We illustrated the performance of our

model using a robotic pan-tilt camera head and showed that a

model that combines gaze imitation with learned saliency cues

can outperform a model that relies on gaze information alone.

The model proposed in this paper is closely related to the

model suggested by Breazeal and Scassellati (2001). They too

use saliency, both determined by an object’s inherent proper-

ties (texture, color, etc) and by task context, to determine what

to imitate in a scene, and use prior knowledge about social

interactions to recognize failures and assist in fine-tuning their

model of saliency. A similar system is put to further use with

Kismet (Breazeal & Velasquez, 1998) (and more recently with

Leonardo (Breazeal et al., 2005)). Breazeal and Scassellati’s

results are impressive and their work has been important in

illustrating the issues that must be addressed to achieve robotic
imitation learning. Our model differs from theirs in its

emphasis on a unifying probabilistic formalism at all levels.

The early work of Demiris et al. (1997) on head imitation

demonstrated how a robotic system can mimic an instructor’s

head movements. The system, however, did not have a capacity

for shared attention in that the system made no attempt to

follow gaze and find objects of interest. The work of Nagai et

al. (2003) more closely investigates joint attention in robotic

systems, focusing on the use of neural networks to learn a

mapping between the instructor’s face and gaze direction.

Since, it relies on neural networks, their model suffers from

many of the shortcomings of neural networks (e.g. ad hoc

setting of parameters, lack of easy interpretation of results, etc.)

that are avoided by a rigorous probabilistic framework.

The importance of gaze imitation has been argued

throughout this paper, but we view gaze imitation as a building

block towards the much-more important state of shared

attention. In attaining a full-fledged shared attention model,

we foresee the use of many different attentional and saliency

cues. Such varied cues could be integrated into a graphical

model similar to that shown in Fig. 2. One important attentional

cue would include the hands of the instructor, or ‘grasping

motions’ while interacting with objects. Fast, robust identifi-

cation of hands and hand-pose is still an open problem in

machine vision, one of the reasons why this important cue was

not used in this paper.

In the future, we hope to extend our model to more

complicated and varied saliency cues, as well as integrating

more complex attentional cues. Specifically, such a system
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would allow more sophisticated forms of human–robot

interactions using a humanoid robot. Our algorithmic frame-

work is hardware-agnostic, except for the forward model; the

algorithm for instructor head pose estimation and the

instructor-specific prior model will not change under this

platform. Once we learn the forward dynamics of the

humanoid’s head, gaze imitation and saliency model learning

will employ the same code base as the one for the Biclops head

used in this paper. This extension could in turn enable more

complex imitative tasks to be learned such as building objects

from Legoe blocks from demonstration. A learned instructor-

or task-specific saliency model would bias the selection of

Legoe blocks of a particular color or shape during the

construction of an object. We also anticipate extending our

probabilistic model to accommodate more instructor-based

cues (such as auditory information and pointing) to further

increase gaze targeting accuracy.
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