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velocity using a simple linear decoder that wasfixed in the first
recording session, such that execution of motor imagery or overt
motor movement causes the cursor to travel up and remaining at
rest causes the cursor to travel down. The task consists of four
periods: rest, targeting, feedback, and reward. Because the hor-
izontal velocity of the cursor isfixed, the length of the feedback
period for each trial is alsofixed to 3 s. In subsequent discussion
of this task, targets requiring an increase of HG activity are re-
ferred to as“up targets” and targets requiring a decrease of HG
activity are referred to as“down targets.”

Behavioral Performance. Overall performance, depicted in Fig. 1,
increased significantly as subjects gained experience with the task
(P = 0.035; right-sidedt-test, n = 7). Behavioral performance
typically began above chance levels and saturated quickly. Cursor
trajectories could potentially be used to infer nonsaturating
performance metrics but would require an assumption be made
regarding optimal trajectory (seeSI Results for further discus-
sion). Thus, we used activity patterns at the controlling electrode
to assess learning-related changes and define a transition from a
learned to an unlearned state.

Volitional Modulation of Activity at the Controlling Electrode. In six
of seven subjects (S1–S6), we found a statistically significant in-
crease in HG activity during the feedback period of up targets
compared with all rest periods (right-sided two-samplet test,
Bonferonni corrected, 27< N1 < 98, 51< N2 < 187;P < 0.0001;
seeTable S1for details). The seventh subject (S7,N1 = 45,N2 =
85, P = 0.271) did not demonstrate a significant difference be-
tween up targets and rest; however, in this subject, we found
a statistically significant decrease in HG activity between down
targets and rest (left-sided two-samplet test, Bonferonni cor-
rected,N1 = 45,N2 = 85,P = 0.0028), suggesting that, although
activity suppression below baseline is generally not used as
a control strategy, it may have been the strategy used by this
subject. These same activity decreases during down targets
were not observed in the other six subjects (left-sided two-
samplet test, Bonferonni corrected, 27< N1 < 100, 51< N2 <
187; 0.075< P < 1).

Task-Modulated Activity Throughout Cortex. We recorded ECoG
data from 652 electrodes across the seven subjects. Of these
electrodes, 83 were excluded from analyses because they con-
tained nonphysiologic artifacts (resulting from poor contact,
placement over scar tissue, etc). In the remaining 569, we found
152 electrodes showing statistically significant increases in HG
activity between feedback during up targets compared with rest
(right-sided two-samplet test, Bonferroni corrected, 27< N1 <
98, 51< N2 < 187;P < 8.787× 10−5). Further, of that same 569
electrodes, we found 125 electrodes showing statistically signifi-
cant increases in HG activity between all targets and rest (right-
sided two-samplet test, Bonferroni corrected, 54< N1 < 198, 51<
N2 < 187; P < 8.787× 10−5). Electrodes showing significant ac-
tivity increase were concentrated in cortical areas previously
known to be associated with motor learning: primary motor cortex
(MC), primary somatosensory cortex (SC), dorsolateral prefrontal
cortex (PFC), and dorsal/ventral premotor cortices (PMd/PMv)
(24, 25). Additionally, electrodes showing increases were found in
posterior parietal cortex (PPC), an area associated with sensori-
motor tasks involving visual feedback (26). Additional task-mod-
ulated electrodes were found in other cortical areas, such as the
temporal parietal junction and the inferior temporal gyrus, al-
though to a lesser extent. Task-modulated activity in supplemen-
tary motor area (SMA) was noted in the only subject with SMA
coverage, but thisfinding was not included in our analyses as it
could not be verified in multiple subjects. Fig. 2A illustrates the
spatial distribution of electrodes showing significant activation for
up targets relative to rest.

Determination of Unlearned vs. Learned States. Motor skill learning
has been characterized as having multiple distinct learning phases:
cognitive, associative, and autonomous (18). These phases loosely
correspond to understanding what actions a certain skill requires,
optimization of performance at a skill through repeated action,
and development of an automatic capacity to carry out the skill,
respectively. Recent work has developed a neural model describing
the involvement of various cortical and subcortical structures dur-
ing motor learning (19, 27). This model postulates involvement of
prefrontal and premotor as well as parietal areas during the initial
cognitive phase of motor sequence learning.

With this motivation in mind, we sought to capture differences
in HG activity at the controlling electrode that changed with this
transition from an “unlearned” to a “learned” state. The meth-
odology for this is described in detail inSI Materials and Methods.
In brief, we used a data-driven approach, assuming that as a
subject transitions from an unlearned state to a learned state,
there would be a corresponding change in the subject’s ability to
differentially modulate activity at the controlling electrode for up
and down targets. To determine the approximate trial when this
transition was taking place, the difference of HG activation for
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Fig. 1. Behavioral performance. (A) Mean task performance for all users.
SEM shown in gray around trend line. Chance performance and the 95th
percentile of chance performance are shown as horizontal dashed and
dotted lines, respectively. Note that mean performance was above chance
beginning with the first run. The number of runs performed by each user
varied: all seven users contributed to data for the first three runs, six users
contributed through the first five runs, and four contributed to the sixth run.
See Table S1 for additional details. (B) Comparison of performance for the
first and last runs performed by each subject. Significant differences (P <
0.05) denoted with an asterisk.
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up and down targets was estimated and divided into unlearned
and learned trials, occurring before and after an assumed tran-
sition trial, respectively. With the location of this assumed tran-
sition trial being the single free parameter, we thenfit a model of
two Gaussian distributions to the unlearned and learned trials
such that the distance (seeSI Materials and Methods) between
these two distributions was maximized. In comparing unlearned
and learned distributions, distance value magnitudes close to

one implied that the majority of the variance in the joint
distribution can be explained by the difference in the means of
the two subdistributions. The sign of the resulting distance
measure demonstrates the direction of shift in the means of
the two subdistributions, where a positive value implies that
the mean of the learned distribution is greater than the mean
of the unlearned distribution. Within the context of this task,
a large, positive distance value for a given transition trial
implies that the subject’s ability to differentially modulate activity
during up targets compared with down targets was much greater
after the transition trial compared with before. Furthermore,
a relatively large distance value implies that one of the solution
strategies used was to increase the difference in activity at the
controlling electrode in up targets relative to down targets. This
possibility is compared with the alternative that the user only
reduces the variability of their control signal as they gain experi-
ence. If this was the case, we would have observed relatively low
distances between the unlearned and learned distributions.

In all seven subjects, relatively large distances between the
distributions of power separation for learned and unlearned
states demonstrated that the applied model effectively separated
those two states (0.2039< distance< 0.8689). Accordingly, the
differences in distributions of power separation for unlearned
and learned states were highly significant (both-sided two-sample
t test, Bonferonni corrected,P < 0.0001; seeTable S1for details).

Cortexwide Changes in Activation from Unlearned to Learned States.
HG activation of all noncontrolling electrodes was visualized on
a trial-by-trial basis to observe activity dynamics at these elec-
trodes. Fig. 3 shows example trial-by-trial plots for electrodes
located throughout motor-learning-associated cortical areas (see
Fig. S1for similar plots separated by subject). MC/SC and PMd/
PMv electrodes demonstrated activation primarily during up
targets, and PFC and PPC demonstrated activation during both
up and down targets. As can be seen inFig. S1, changes in ac-
tivation in these electrodes over the course of many trials were
often, although not always, well aligned with the transition from
unlearned to learned state as defined solely by HG power at the
controlling electrode. It is notable that in some subjects, tran-
sitions in HG activity patterns were approximately temporally
aligned with breaks in experimental sessions, suggesting that
offline learning was taking place during these periods. This result
is complimentary to previousfindings of increased sleep spindle
density local to the controlling electrode correlated with training
on an ECoG BCI (28).

Dynamics of activity in remote electrodes were quantitatively
evaluated by comparing mean activity during feedback in these
electrodes in the unlearned and learned states. Sixty-seven
electrodes showed a significant change in HG activity during all
targets from the unlearned to learned states (both-sided two-
samplet test, Bonferroni corrected,P < 8.787× 10−5, 20< N1 <
75, 15 < N2 < 166). A large portion of these changes corre-
sponded to significant lessening in activation in the frontal cor-
tex, superior parietal cortex, and posterior parietal cortex, as
depicted in Fig. 4A. A smaller portion corresponded to signifi-
cant increases of activation in areas surrounding the controlling
electrode. To determine anatomically relevant patterns of ac-
tivity dynamics, electrodes were assigned to cortical areas using
the human motor area template (HMAT) atlas (29) and the
Talairach Daemon (30, 31). Significant lessening of activation
was found in 31 electrodes corresponding to labels of PMd, PMv,
PFC, and PPC, as shown in Fig. 4B.

Discussion
Our results demonstrate that when learning a BCI cursor-control
task based on signals recorded from a single electrode over motor
cortex, there is a distributed network of cortical areas that is in-
volved in acquisition of skill in the task. This network includes, but
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Fig. 2. Cortexwide activity during BCI use and modeling of early vs. late ac-
tivity patterns. (A) Activation during up targets for all lateral electrodes for all
subjects (left coverage projected to right hemisphere) shown on the Talairach
brain. Note widespread cortical activation including frontal, middle-parietal,
and posterior-parietal areas. Controlling electrodes are circled in blue. (B)
Activation for an example subject (S4) during each feedback period normal-
ized against log HG power during rest. Each dot represents one trial; up and
down targets are shown in red and blue, respectively. Thick red and blue lines
represent mean activation for all trials, respectively. (C) Early-late trial division
shown for subject S4. Separability of high-gamma activity during up and down
trials was used as a measurement of task proficiency. A separabililty measure
(black dotted line) was modeled as two Gaussian distributions and fit to the
data such that the distance between the distributions was maximized.

Wander et al. PNAS Early Edition | 3 of 6

N
E

U
R

O
S

C
IE

N
C

E

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221127110/-/DCSupplemental/pnas.201221127SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221127110/-/DCSupplemental/pnas.201221127SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221127110/-/DCSupplemental/pnas.201221127SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221127110/-/DCSupplemental/pnas.201221127SI.pdf?targetid=nameddest=SF1


PNAS proof
Embargoed  

until 3PM ET Monday 
publication weekof 

state. This transition occurred quickly and was contemporaneous
with changes taking place in the control signal.

It is interesting to note the patterns of distributed activity
observed across multiple subjects. The time course of activation
in premotor electrodes parallels tightly that of corresponding
MC/SC electrodes. Further, premotor areas were primarily more
activated for up targets than down targets, instances in which the
controlling electrodes were required to exhibit the same activity.
These observations suggest a direct relationship between pre-
motor areas and the controlling electrode. This pattern can be
contrasted with activity patterns observed in prefrontal and pos-
terior parietal areas, which exhibited fairly equivalent activation
for both up and down targets. These activity patterns are a re-
flection of effort or engagement on the part of the subject, and
correspondingly decrease as the subject gains task automaticity.

In contrast to ECoG BCIs, noninvasive, EEG-based BCIs
typically harness power changes occurring in lower frequencies
to achieve control. When EEG subjects are performing motor
imagery, the typical frequency band chosen is in the mu-beta
range (12–30 Hz), because power changes in this band have been
demonstrated to be anticorrelated with movement and motor
imagery (33). When using the methods described above to assess
whether similar changes were taking place in the mu-beta range
as subjects develop experience with an ECoG BCI, we found
that, although activity in the mu-beta band was strongly task
modulated, it did not undergo the same spatiotemporal changes
we observed in HG activity. It is important to note, however, that
as the cursor was not being driven by mu-beta activity changes,
the impact of this observation to noninvasive BCIs will require
further investigation. Details can be found in theSI Results.

A logical and necessary extension of thesefindings is to in-
vestigate the roles that subcortical networks play in this same
learning process. Previous studies have demonstrated the vital
and differential roles of the basal ganglia and cerebellum during
motor sequence learning and motor adaptation (27, 32), but the
involvement of these subcortical networks in the process of BCI
skill acquisition remains an open question, with implications for
both fundamental neuroscience and the incremental improve-
ment of BCI frameworks. Recent work performed by Koralek
and colleagues (5) has demonstrated that the striatum is involved
in and critical to development of proficiency with a BCI in a rat
model. This finding was notable, given that effective use of the
BCI in that study did not explicitly require recruitment of the
motor system outside of motor cortex, yet task performance was
degraded in subjects with impaired cortico-striatal interaction. In-
vestigation of the role of these structures in humans will have to be
left to other recording modalities, as ECoG provides information
only regarding activity near the cortical surface and is subject to
spatial undersampling based on the distribution of electrodes.

The distributed dynamics in cortical activity that we demon-
strated here have significant implications in development of
coadaptive BCI frameworks. Investigators have recognized the
need for BCI architectures that accommodate the dynamic nature
of the neural signals used as inputs (34, 35), but ourfindings
suggest that a number of the most commonly used methods [e.g.,
common spatial patterns (36)] may require updating to handle
both the spatial and temporal variability in input signals.

The ability to detect correlates of cognitive load during BCI
task learning and execution holds great potential for expanding
the current limitations of BCIs. Continuous control of a BCI has
been demonstrated in two dimensions using ECoG (13) and
EEG (14), with degrading performance as users attempt control
in more dimensions. Real-time monitoring of cognitive load
during BCI skill acquisition would allow for titrated increases in
task complexity, potentially facilitating an increase in the total
number of dimensions that could be simultaneously controlled,
thus allowing operation of more complex devices.

Our results also demonstrate the potential that BCI holds as
a technique for probing neural systems in vivo (37). By applying
specific task requirements but allowing users to use native
learning strategies, we observed that distributed cortical net-
works are involved in the cognitive phase of BCI skill acquisition,
but the degree of involvement of these networks lessens as users
transition to automatic execution of the task. Future work will
allow us to probe whether activity in this network is renewed
when task dynamics are perturbed and the user is required to
adapt to novel task conditions.

Materials and Methods
Subjects. Seven subjects with intractable epilepsy were implanted with
platinum subdural ECoG electrodes for the purpose of seizure focus locali-
zation at Harborview Medical Center and Children’s Hospital (Seattle, WA).
Research was conducted under the oversite of Seattle Children’s Hospital
Institutional review board FWA00002443, protocol number 12193. The
specific location of the grids was determined based on clinical indication.
Electrode grids were constructed of 3-mm-diameter platinum pads spaced at
1 cm center-to-center and embedded in silastic (AdTech). Electrodes were
arranged in 8 × 2 or 8 × 8 grids or 1 × 4, 1 × 6, or 1 × 8 strips. Subjects
provided informed consent in accordance with the Institutional Review
Board’s direction, and patient data were anonymized in accordance with
Health Insurance Portability and Accountability Act mandate. None of the
subjects had previous experience with BCI. Subjects were being observed for
seizure focus localization over the course of 4–10 d, although participation
in research studies typically did not begin until the third postoperative day.

Recordings.Experimental recordings were performed at the patient’s bedside
without interrupting the clinical recording systems. Synamps2 (Neuroscan)
and g.USBamps (GugerTec) sampled at 1,000 and 1,200 Hz, respectively,
were used for recording. Cortical potentials referenced against a scalp
electrode and were digitized and processed using the BCI2000 software suite
(38), which provided real-time feedback to the user.

BCI Task.BCI paradigms were driven by spectral power changes in a portion of
the HG frequency band of a single electrode determined to be modulated by
motor imagery by an initial screening task as is described in SI Materials and
Methods. Only a subset of the HG range was used during online control
(∼75–100 Hz) for computational tractability and to eliminate the need for
real-time notch filtering to reduce line noise harmonics. HG activity was
chosen as the control feature as it has been previously postulated that HG
activity is a correlate of underlying population level firing rates or coherence
in firing (21). All subjects performed the standard right justified box task
(23), depicted in Fig. S3. Subjects were instructed to conduct or imagine the
movement associated with the chosen controlling electrode when they were
presented with a target filling the top half of the right most side of the
screen (an up target) and were instructed to rest when they were presented
with a target filling the bottom half of the right most side of the screen (a
down target). The cursor’s vertical velocity was updated every 40 ms and
controlled by changes in HG activity at the controlling electrode as calcu-
lated by an autoregressive filter using the previous 500 ms of data. This time-
variant estimate of HG activity was normalized against 6 s of stored data for
the current target type and then mapped to cursor velocity. The normalizer
was typically adapting (collecting reference data and updating normaliza-
tion parameters) only during the first run (18 trials); however, in cases where
nonstationarity of the signals showed obvious bias, the normalizer was
allowed to recalibrate. Subjects participated in the experiment over the
course of multiple days. Duration of the recording sessions was dictated by
the subjects’ willingness and capability to participate.

Anatomical Labeling. The process by which electrodes were associated with
anatomical labels is discussed in SI Materials and Methods; in brief, pre-
operative MRI was coregistered with postoperative CT scans to allow for
localization of electrodes with respect to each subject’s brain. These elec-
trode locations were then mapped to Talairach coordinates. Anatomical
labels were estimated using the HMAT (29) and the Talairach Daemon (30,
31). The HMAT atlas estimates functional areas corresponding to coor-
dinates in Talairach space; as it was constructed from the meta-analysis of
126 motor-based functional MRI studies, it does not include posterior pari-
etal cortex or prefrontal cortex. These areas were identified as consisting of
Brodmann areas 7/40 and 8/9/46, respectively. All offline data analyses were
performed using custom Matlab software.
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