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ABSTRACT
Programmers regularly use search as part of the development
process, attempting to identify an appropriate API for a
problem, seeking more information about an API, and
seeking samples that show how to use an API. However,
neither general-purpose search engines nor existing code
search engines currently fit their needs, in large part because
the information programmers need is distributed across many
pages. We present Assieme, a Web search interface that
effectively supports common programming search tasks by
combining information from Web-accessible Java Archive
(JAR) files, API documentation, and pages that include
explanatory text and sample code. Assieme uses a novel
approach to finding and resolving implicit references to Java
packages, types, and members within sample code on the
Web. In a study of programmers performing searches related
to common programming tasks, we show that programmers
obtain better solutions, using fewer queries, in the same
amount of time spent using a general Web search interface.

ACM Classification
H5.2. Information interfaces and presentation: User Interfaces.

Keywords: Web search interfaces, implicit references

INTRODUCTION AND MOTIVATION
The explosion of information available on the Web and
on personal computers has made search a fundamental
component of modern user interface software. This has
led not only to new approaches to visualizing the results
of keyword-based Web search [24], but also applications
for quickly finding personal information [6, 9], augmenting
highly-structured sites with browser-based search [14], tools
to help people collect and summarize information from
search sessions [8], and keyword-based approaches to
invoking commands in desktop applications [18].

Because a vast number of code libraries and related
information are now available on the Web, programmers
increasingly use search as a part of their development
process. Our analysis of logs from a major search
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engine show many examples of queries related to
Application Programming Interfaces (APIs), including
queries attempting to identify an appropriate API for a
problem, queries seeking more information about a particular
API, and queries seeking samples that use an API. Interviews
with developers confirm that Web search engines are the
single most important source for this information.

Unfortunately, current Web search interfaces have important
shortcomings when used for this purpose. General search
engines, such as Google, traditionally generate a flat
listing of ranked pages, but developers seeking an API
require information dispersed on many pages: tutorials,
documentation pages, the API itself (in source or binary
format), and pages with code samples which demonstrate
usage. It is currently time-consuming to locate the
required pieces of information and difficult to get an
overview of alternatives. Unless a programmer already
has a significant understanding of an API, it is almost
impossible to judge the relevance and quality of results
or to understand dependencies contained in sample code.
Numerous queries and visits to many pages are therefore
required. Code-specific search engines have recently been
introduced, but these are also unsatisfactory, largely because
they ignore documentation, tutorials, and pages containing
a mix of code samples with explanatory text. Pages that
contain both explanatory text and sample code have generally
been intentionally created to illustrate the use of an API,
but the raw code returned by existing code-specific search
engines lacks context and is frequently incomprehensible.

This paper presents Assieme, a Web search interface for
programmers based on a novel approach to combining
information currently distributed across many pages.
Assieme analyses Web-accessible Java Archive (JAR) files,
API documentation, and pages that mix explanatory text with
sample code. By finding and resolving implicit references
from code samples to Java packages, types, and members,
Assieme can combine relevant information from different
Web-accessible resources. Assieme therefore provides a
coherent search-based interface that allows programmers to
quickly examine different APIs that might be appropriate
for a problem, obtain more information about a particular
API, and see samples of how to use an API. In a study
of programmers performing common programming-related
search tasks, we show that programmers obtain better
solutions, using fewer queries, in the same amount of time
spent using a general Web search interface, Google.
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Figure 1: Assieme provides a search-based interface that allows programmers to quickly examine different APIs that might
be appropriate for a problem, obtain more information about a particular API, and see samples of how to use an API.

This paper makes four contributions. First, we analyze
query logs of a major Web search engine and show that
many searches by programmers are related to finding an
appropriate API for a problem, finding more information
about a particular API, or seeking samples of the use
of an API. Second, we present Assieme, a Web search
interface for programmers that uses implicit references
in sample code to enable a novel interface that better
addresses the information needs of programmers. Third,
we analyze the key algorithms powering Assieme, reporting
the reliability of automatic sample code extraction and
reference disambiguation. Finally, we report on a study
of programmers performing searches related to common
programming tasks, showing that programmers obtain better
solutions, using fewer queries, in the same amount of time
spent using a general Web search interface.

AN OVERVIEW OF ASSIEME
Figure 1 presents Assieme, with a screen capture taken while
a developer seeking to programmatically generate a file in
Adobe’s PDF format is exploring the results of a query for
“output acrobat.” The interface contains three major areas.

The shaded bar across the top shows Java packages, types,
and members corresponding to the search query. In this
example, the programmer has indicated an interest in seeing
packages. The fully-qualified names of appropriate packages
are shown, ranked by their relevance to the query, as well as
how many code samples Assieme has found that demonstrate
the use of types from that package. The number of samples
that use a package, type, or member can be helpful for
determining relevance, as frequently used items may be
more robust and better supported than less known options.

Figure 2: A context-sensitive menu reveals the fully
qualified names of elements appearing in Java code
and provides links to additional information.

Choosing a package, type, or member in this area filters the
results in the next area, similar to other interfaces that use
faceted search to examine large datasets [31].

In this case, the programmer has filtered the results to focus
on the com.lowagie.text.pdf package, so the bottom-left
portion of the interface shows pages that contain code
samples that use classes from that package. The blue links
and green URLs here provide the traditional functionality,
allowing a programmer to navigate to a page. But instead of
the generic text snippet preview provided by general search
engines, Assieme presents information that is more likely to
match the information needs of programmers. Specifically,
Assieme shows what Java types are used in code samples on
the page and which libraries contain those types. Assieme
also provides a link to download those libraries. When a
programmer mouses over a link on the left side, sample code
snippets from that page are shown on the right.

Previewing code samples allows programmers to quickly
get more information about the relevance of a page. The
sample itself may provide the information a programmer



needs, or it might give the programmer more information
about whether navigating to the full page is likely to be
helpful. Assieme adds further information to the sample
code preview by providing context-sensitive menus within
the code. These reveal the fully-qualified names of packages,
types, and members used in code and provide direct links
to additional samples, Javadoc documentation, and JAR files
containing implementations.

We defer extensive discussion of Assieme’s implementation
until the body of this paper, but some aspects warrant
attention at this point. Specifically, Assieme searches
the Web and combines information from unstructured Web
pages with more structured information sources, such as
automatically-generated Javadoc pages and compiled Java
libraries. This introduces important challenges, most
notably the need to find and resolve implicit references.
In code samples like those in Figures 1 and 2, nothing
in the text of the page explicitly indicates that the token
Phrase is a reference or that it corresponds to the type
com.lowagie.text.Phrase. In fact, many code samples are
stripped of import statements (for the sake of brevity within
a Web page where the package in use is obvious to a reader)
and will not compile. Assieme infers both the presence
of implicit references (identifying code samples in Web
pages) and their referents (identifying the fully-qualified
types associated with an implicit reference). This inference
enables major components of Assieme’s interface, including
the ability to filter pages according to what types are used
in code samples, browsing from sample code to related
Javadoc pages, and improved search. For example, our query
for “output acrobat” identifies the com.lowagie.text.pdf

package, though neither keyword is contained in the name
of the package, because Assieme uses the text on pages that
implicitly reference this package.

The next section discusses related work, positioning Assieme
with regard to research on understanding programmer needs,
previous systems supporting programmers, and general
issues of search in modern user interface software. We then
examine a set of programming-related queries submitted to
an existing general Web search engine, showing that current
search patterns indicate a need for the functionality provided
by Assieme. We next present Assieme’s architecture and
implementation, including discussion of the crawl that
currently provides the basis of Assieme, the identification
of sample code in Web pages, the resolution of implicit
references in sample code, and Assieme’s approach to
indexing and scoring. This is followed by our evaluation,
examining both the reliability of Assieme’s internal inference
components and conducting a study of programmers
completing common programming-related search tasks using
Assieme and existing general and code search engines.

RELATED WORK
Ko et al. present six learning barriers faced by programmers
[17]. Design barriers occur when a programmer is unsure
what he wants to do, as when a programmer cannot conceive
of an appropriate algorithm. Selection barriers occur when a
programmer knows what he wants to do, but not what to use
to do it, as when attempting to identify an appropriate API.

Coordination barriers occur when a programmer knows what
set of things to use to achieve a goal, but not how those things
should be combined. Use barriers are related, occurring
when a programmer knows what to use, but not how to use
it. Understanding barriers occur after a potential solution
has been implemented, when a program does not perform
as expected and a programmer is unsure why. Finally,
information barriers occur when a programmer believes they
know why a program did not behave as expected, but do not
know how to check that belief.

In the terminology of Ko et al., Assieme is a novel Web
search interface intended primarily to address selection,
coordination, and use barriers. In addressing selection
barriers, Web search provides important advantages because
it allows Assieme to find APIs that would not be
found if searching only in a local code repository.
Beyond this, Assieme’s use of implicit references provides
additional power for addressing selection barriers because
the explanatory text on pages that reference an API can
be used in indexing that API. Assieme’s discovery and
previewing of code examples on the Web are similarly
powerful, as code samples on the Web have often been
constructed to explicitly illustrate the type of information
needed to address selection and coordination barriers.

Cutrell and Guan [5] present an eye-tracking study to
examine contextual snippets in search results. Motivated
by the idea that typical search result pages may not
provide enough information for people to make informed
decisions about what pages to visit, they examined the
effect of using shorter or longer contextual snippets. For
informational queries like those supported by Assieme, they
found that performance improved as more information was
made available in the contextual snippets. This work is
consistent with the results of our study, as the additional
information available with Assieme allows programmers to
more effectively perform common search tasks.

There has been extensive work on searching within code [11,
21, 23, 25], and more recent work has applied modifications
of techniques developed for Web search to code search
[1, 15, 22, 26, 27]. Relevant to this work, we use text on
Web pages to score code samples and the libraries that are
referenced in that code. This idea has some resemblance to
anchor text scoring, another Information Retrieval technique
that works well for general Web search [10]. The text on a
page serves as a description of code samples on that page
as well as descriptions of the objects in libraries implicitly
referenced in those code samples.

Other work has focused on automatically creating code
snippets by mining databases of code or API specifications
[13, 20, 29, 30]. Such systems generally provide little
assistance with selection barriers, and their output can be
more difficult to interpret than code samples that Assieme
finds on the Web, which have generally been carefully
constructed by a person with the intent of concisely and
effectively illustrating the use of an API. Further, the
page containing a code sample can also provide important
explanations of the sample code.



Prior work has also examined support for browsing among
different types of documents within a project. For example,
Cubranic et al. [4] present a recommender system that links
information from CVS repositories, bug-tracking systems,
communication channels, and online documentation. Given
a keyword query or an artifact such as a Java class, they
find related information within the project. While such tools
can help programmers find information within a project,
including non-code artifacts like CVS comments, they do not
provide Assieme’s ability to find code samples on the Web.

Assieme is unique in that we have identified shortcomings
of current interfaces for programmer Web search, designed
a new Web search interface based on providing more
appropriate previews and combining the information that
programmers currently must visit many pages in order
to obtain, and then developed the inference needed to
detect the implicit references critical to enabling such an
interface. While search and search-related technologies
are increasingly fundamental to modern user interface
software [6, 8, 9, 14, 18, 24, 31], and while the machine
learning community continues to make important advances
in extracting information and identifying relationships from
unstructured Web content [2, 7, 28], there are few examples
of leveraging these new machine learning advances in
appropriate interfaces. Assieme provides such an example,
while also illustrating the potential of future work to
address the limitations of current interfaces by automatically
identifying relationships on the Web.

EXAMINING PROGRAMMER WEB QUERIES
To better understand what developers are searching for on
the Web, we analyzed the query logs and click-through data
from 15 million queries submitted to the MSN search engine,
now called Windows Live Search, from May 2006. The data
represents a uniformly random sample of all queries in that
month and includes timestamp, session, query, as well as
click-through data with result ranks and URLs. To mitigate
privacy concerns, email addresses and numbers longer than
8 digits were replaced by placeholders.

We extracted all sessions containing at least one query which
included the term “java”, yielding 2,529 sessions. Manually
examining these sessions and formulating regular expression
filters, we removed all sessions relating to coffee or the island
of Indonesia (356), job qualifications (24), games and mobile
phones (218), the Java/byteverify security issue (115),
browser settings (49), Java runtime installation (526), and
Javascript (185). Another 661 sessions contained only overly
general and therefore ambiguous queries (mostly “java” and
“java.com”) and in 56 sessions the information the searcher
was interested in could neither be inferred from the queries
nor from click-through data. This left 339 unambiguous
sessions on Java programming, which were manually
classified into an informal taxonomy of eleven categories.
Categorization was determined using query reformulation as
well as click-through data. For example, searchers often
added terms like “example”, “download”, or “tutorial” to a
query. In other cases, click-through data revealed that users
only clicked on Javadoc pages, indicating that they were
probably interested in API reference documentation.
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Figure 3: Classification of types of query sessions
initiated by developers on the Web. The sizes of the
circles correspond to the relative number of searches.

Figure 3 depicts our results, with circle size corresponding to
the number of sessions in each category. In this analysis,
the APIs category is clearly the largest, containing 117
sessions (34.2%) versus 70 sessions (20.6%) in the next
largest category, Troubleshooting.

Looking more closely at these API-related sessions, we
found that 64.1% of the sessions contained queries that were
merely descriptive but did not contain actual names of APIs,
packages, types, or members. These sessions seem to be
focused on attempting to identify an API that might be
appropriate for a problem, corresponding to Ko et al.’s notion
of a selection barrier. As noted in our discussion of related
work, the use of Web search is particularly appropriate
for addressing such questions because it provides more
information than approaches that search only local files.

The remaining API-related sessions contained API or
package names (12.8%), type names (17.9%) or even method
names (5.1%). These sessions seem to be focused on
obtaining more information about a particular API that a
programmer was already aware of, corresponding to Ko et
al.’s notion of use barriers. Many of these queries also
contained descriptive keywords and some included a term
that indicated exactly what type of document a programmer
was looking for, e.g. “javadoc”, “tutorial” or “download”.

Among all of these API-related sessions, 17.9% contained
terms like “example”, “using”, or “sample code” that suggest
a programmer was interested in seeing samples showing
how an API is used. These types of queries correspond
to Ko et al.’s notion of a coordination barrier, as the
specially-constructed sample code that can be found on many
Web pages is usually very effective at showing how different
types or methods should be used together.

Interestingly, many sessions contain queries that fall into
several categories. For example, consider this four-query
session from our data:

java JSP current date

java JSP currentdate

java SimpleDateFormat

using currentdate in jsp



The first two queries are fairly general and descriptive,
as the programmer is not yet targeting information
about a particular package, type, or member. By the
third query, the programmer has decided that the type
java.text.SimpleDateFormat is relevant and specifically
targets it in a new search. The final search then appears to
target code samples or explanations of usage. While current
interfaces require this type of query reformulation in order to
address programmer information needs, Assieme explicitly
supports the transition from determining what API might be
relevant for a problem, to learning more about a particular
API, to obtaining samples of how to use that API.

THE ASSIEME SEARCH ENGINE
In order to power its interface, Assieme needs to identify
two types of implicit references: uses of packages, types,
and members in JAR files on pages with code samples,
and matches of these objects to corresponding Javadoc
documentation pages. In this section, we explain how our
system infers implicit references and discuss how these
references are used both to provide navigational capabilities
within Assieme’s interface and to improve search relevance.

Crawling for Code
Instead of attempting to crawl the entire Web, Assieme
currently uses existing search engines to find potentially
relevant content. Different strategies are used to obtain
Web pages likely to contain sample code, to obtain likely
documentation pages, and to obtain compiled libraries.

To collect pages that are likely to contain code samples,
Assieme uses a general Web search engine to find pages
with keywords which frequently appear in Java code.
Specifically, Assieme automatically calls Google for the
216 queries described by the pattern java ±import ±class
±interface ±public ±protected ±private ±abstract
±final ±static ±if ±while ±for ±void ±int ±long
±double, retrieving the top 1000 results for each query.

Documentation pages are similarly obtained by calling
Google for queries including the term overview-tree.html.
The term is the name of the automatically generated page
that summarizes a Javadoc site, and it contains links to all
other Javadoc pages for the same API. Assieme downloads
the summary as well as pages referenced by outgoing links.

In order to locate libraries on the Web, we manually searched
for code repositories which were referenced on a random
subset of sample pages. The most popular Java library sites
were Sun.com, Apache.org, Java.net, and SourceForge.net,
so Assieme downloads library files for all projects hosted
on these sites. We found that a library often contains other
required libraries, and Assieme extracts these as well. Since
Assieme retrieves many duplicates, it computes a hash of
each library and keeps only one copy.

This approach yielded 2,361,331 Web pages, 481,220
documentation pages, and 79,302 unique JAR files.

Extracting Code Samples
The ability to automatically extract and analyze code from
HTML pages is crucial to Assieme’s success. We note that
most code samples have several structural properties that
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Figure 4: Assieme’s system architecture.

distinguish them from text and which might be exploited
for classification. For example, code samples are often
formatted differently from text. Also, the distribution of
terms and special characters like “{” or “;” is generally very
different from that of other text on a page. A final obvious
difference stems from the fact that code mostly obeys the
language’s syntax, so one might use compliance with a parser
to differentiate code from text.

Unfortunately, none of these differences is foolproof; each
fails to discriminate correctly on a significant percentage
of Web pages (see Figure 5). A natural solution is the
construction of a classifier that identifies code using features
based on formatting, term and symbol distributions, and
syntax parse errors. In our first approach to code extraction,
we trained a Support Vector Machine with Gaussian Kernel
on 181 such features. Although this enabled us to achieve
high precision and recall, the approach has important
drawbacks. First, the cost of computing these features
was difficult to scale to millions or even billions of Web
pages. Second, note that what we care about most are not
actually the code samples themselves, but rather the external
references contained in those samples. As we will discuss
in the next section, however, external references can only be
reliably detected by parsing code. Instead of optimizing for
the number of terms classified correctly as either text or code,
it may thus be better to ensure that our system can parse as
many fragments of a code sample as possible.

Assieme currently extracts samples by first removing
formatting commands from HTML. While doing so, it tries
to preserve line breaks by taking into account semantics
of HTML commands such as <br>. The text is then
preprocessed using a number of simple heuristics that help
to remove distractions. Most importantly, line numbers
are detected and removed. Furthermore, Assieme deletes
non-code character sequences that frequently appear in
code samples such as “...” or “etc.” as well as
characters of unconventional encodings. Finally, Assieme
launches an error-tolerant Java parser 1 at every occurrence
of a line break in the preprocessed text or wherever a
HTML command appeared in the page source. If a large

1 Error-tolerant parsers can recover from many parse errors and resolve
references within syntactically incorrect code. They are frequently used
for providing code assistance during editing in an IDE. We use Eclipse’s
JDT compiler.
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Figure 5: Difficulties in extracting code snippets.

block of text parses with few reported syntax errors (such
as unexpected characters), Assieme performs corrections
suggested by the parser. The end of a code fragment
is determined by tracking the state of the parser. Since
few code samples contain complete Java compilation units,
Assieme separately attempts to parse for types, methods,
and sequences of statements. When extracted fragments are
overlapping, shorter fragments are ignored. Fragments are
then re-assembled, and Assieme creates compilation units by
heuristically adding placeholder method and type signatures
around fragments not otherwise within a method or type.

When dealing with code samples that do not fully
parse, Assieme does not need to rely on its heuristic
pre-preprocessing steps alone. By separately parsing types,
methods, and statements, Assieme can parse code fragments
around distractors and later re-assemble samples.

Resolving External Code References
Once a code sample has been extracted from a Web page,
Assieme searches it for references to code in external
libraries, using the library index created earlier to match
package, type, method, and field names. The just-discussed
code fragment re-assembly is critical to this because it allows
Assieme to use the Java compiler to obtain fully-qualified
names. A naive approach might search for pure term
matches between samples and libraries. Unfortunately, this
does not work well because names are frequently not stated
contiguously, as the following example shows.

import java.util.*;

class c {
HashMap m = new HashMap();

void f() { m.clear(); }
}

Here, the method java.util.HashMap.clear() is referenced
in line 4, but this can only be detected by combining
information from different lines of the program.

When samples contain external references, the compiler
identifies a set of unresolved names. Assieme searches the
library index to find candidate libraries that might be required
by the samples. After determining a set of libraries that
might be referenced, Assieme places these onto the Java class
path and attempts a new compilation. While compilation
can verify dependencies and eliminate false solutions, it
is computationally expensive and therefore only feasible in
moderation. Furthermore, multiple libraries will often satisfy
the compiler, necessitating further disambiguation.

Even worse, several libraries are often necessary to resolve
all references, and so there is a need to select the best subset
of libraries that supplies all references. Since the number of
potential subsets is huge, an exact solution is impractical.

To confront these problems, Assieme employs a recursive
greedy search algorithm with a utility function that uses the
number of references covered as its highest-order factor; ties
are broken by taking into account the library’s popularity, as
measured by counting its number of duplicates on the Web.
Assieme limits the number of attempted compilations for the
code samples of a page, marking a reference as unresolved if
this threshold is reached.

Using Implicit References to Improve Scoring
Most Web search engines model queries and documents as
vectors of weighted term frequencies and use a variant of
cosine distance, weighted by inverse document frequency,
for the similarity metric. Often this model is augmented
by including URL terms, document titles, font information,



and anchor text into the weighting. Hypertext link analysis
algorithms, such as PageRank [3], may also be used to
differentially weight important documents.

None of these techniques work well for APIs. JAR files with
code in binary format do not provide additional context that
can be used for finding relations to free-text keywords. Yet
such context is important for supporting the queries we found
in our query logs. Even indexing API source code does not
help much, since code contains few relevant keywords [12,
19, 27]. Finally, since Web search engines ignore structure
in code, they are unable to recognize how frequently objects
in APIs are referenced and thus how relevant they are.

Assieme overcomes these limitations by using implicit
references to simultaneously exploit structure in code and
information on Web pages. The following sections describe
how Assieme separately scores APIs and Web pages.

Scoring APIs When scoring an API, Assieme utilizes text
on Javadoc documentation pages as well as text on Web
pages with code samples that reference an API.

Many pages with code samples are tutorials and articles
containing not just code but also explanations. Not
surprisingly, we found that the text around code often
provides high-quality context which is also useful for
describing the purpose of APIs referenced in that code.
Assieme’s strategy is therefore to explicitly use text around
code samples for scoring APIs. As a result, our system
can recognize that the com.lowagie.text.pdf package may
be relevant to a programmer searching for “output acrobat.”
Assieme’s method resembles the technique of anchor text
indexing [10], which uses text of all incoming hyperlinks
to index the target document. Anchor text often serves as a
short summary of a page and therefore contains very relevant
terms. In contrast to anchor text indexing, however, Assieme
does not rely on hyperlink structure, instead using computed
implicit code references.

In addition to using text on pages with code samples,
Assieme also considers documentation on associated
Javadoc pages. Although Javadoc pages are automatically
generated from comments appearing in source code, our
approach enables Assieme to access that information even
when a library is not open-source.

To differentially weight important packages, types, and
members in the index, Assieme assigns a static score based
on a logarithm of the number of times each is referenced in
the sample code Assieme has discovered. In some ways our
approach resembles adaptations of PageRank to the graph of
code references [1, 15].

Scoring Web Pages Assieme also makes use of implicit
references when ranking Web pages. In addition to including
Web-specific properties such as URL terms or document title
into the weighting of terms of a page, Assieme considers
qualified names to external referenced objects such as
java.util.HashMap. This has three purposes: First, notice
that a type like this might be referenced multiple times in
a code sample, but with the term HashMap appearing only
once. By taking into account the number of actual references,

we can assign more accurate term weights than by merely
counting term occurrences. Sindhgatta [27] discusses this
problem in more detail. Second, as shown earlier, the
complete character sequence java.util.HashMap might not
contiguously appear in the code sample at all. Having the
fully qualified name in the index enables Assieme to retrieve
relevant pages for queries containing such references. Third,
it allows Assieme to efficiently filter a query result set to only
pages with code samples using particular APIs. This is an
essential feature of Assieme’s user interface, as it helps users
transition smoothly from API selection to coordination or use
without a need for entering new queries.

Assieme also uses information about extracted code for
differentially weighting important pages in the index. Not
all pages with code samples are helpful for programmers.
For example, we noticed that a significant number of Web
pages with code are generated by software version tools
such as WebCVS. Code on these pages tends to be long
and complex, and there is usually no accompanying text
with explanations. In contrast, high-quality tutorial pages
generally contain short and simple code samples together
with helpful documentation. Assieme therefore attempts
to favor the latter by taking into account the length of
surrounding text in proportion to code samples. Specifically,
Assieme sets the static score of a page to a weighted sum of
its PageRank and a logarithm of this proportion.

EVALUATION
Assieme includes significant inference components in
support of a new approach to searching for code on the Web,
so we take two approaches to evaluation. We first analyze the
reliability of Assieme’s inference components, specifically
our code extraction and reference resolution algorithms.
We then present a user study examining programmers
completing common search tasks using Assieme, a general
Web search engine, and a code search engine.

Code Extraction and Reference Resolution
To understand the reliability of Assieme’s code extraction
and reference resolution, we examined precision and recall.
As ground truth, we hand-labeled code samples in 350
randomly selected pages from Assieme’s data. Precision and
recall values were then computed by counting the number of
terms correctly or incorrectly classified as code or text.

Our extraction algorithm identified code on 117 pages, while
54 pages contained hand-labeled code samples. Counting
terms, our system reached a recall of 96.9% at a precision
of 50.1%. Precision was affected by a large number of Web
pages with C, C#, JavaScript, and PHP code samples, as well
as by a number of pages generated by tools like Fisheye and
diff that showed changes in Java codebases. We consider
such code fragments to be false positives because we are
interested only in high quality Java code samples.

While the recall of this initial code extraction is important,
precision is of less concern because the reference resolution
step filters many false positives when it cannot find a Java
package, type, or member that corresponds to the extracted
code. In this evaluation, 47 of the 63 pages containing false
code samples did not contain any references that resolved.



Because terms on these pages are then ignored, the effective
precision is increased to 76.7%. The majority of remaining
false positives are from pages that show changes in Java
codebases. Informed by this result, we intend future work
to develop additional inference to identify this type of page
so these tokens can be ignored.

We further analyzed Assieme’s reference resolution in
the code samples identified by our extraction algorithm.
Assieme resolved 3011 references in our 350 selected pages,
the majority of which pointed to packages, types, and
members in Java’s J2SE API. Of these, 2606 were in actual
code samples, while 405 were false positives (a precision of
86.5%). Of these false positives, 267 are the result of Java
code change sites, so the references resolved correctly but
were not contained within code samples.

Another 301 actual references were not resolved (a recall
of 89.6%). Some of these could not be resolved because
code samples were incomplete. 104 references on 13 pages
failed to resolve because necessary definitions were missing.
Another 77 references on 4 pages failed to resolve because
import statements were missing. Incomplete identification of
code samples resulted in failure to resolve 45 references on
5 pages. Finally, 75 references on 6 pages failed to resolve
because the referenced library was not in Assieme’s index.

Since Assieme indexes more than 2.3 million Web pages,
the runtime efficiency of our inference components is also
important. Using a single thread on a single 3.2 GHz Intel
Pentium D, sample code extraction took 38.3 milliseconds
per page (σ = 84.9) and reference resolution 289.22
milliseconds per page (σ = 655). Our actual system is
multi-threaded and runs on a cluster of 16 machines.

User Study
In addition to our analyses of Assieme’s inference
components, we conducted a user study comparing Assieme
to a general Web search engine (Google) and a code search
engine (Google Code Search). We planned to examine how
quickly programmers complete common tasks, the quality of
solutions obtained, and the number of queries issued.

Design Our study is based on a set of 40 search tasks
designed to represent the types of searches that programmers
perform as a part of their everyday work. We developed
these tasks by examining the query log discussed earlier.
For example, we used the query “socket java” as motivation
for the task “Write a basic server that communicates using
Sockets.” Other tasks include loading an image in JPEG
format, finding several libraries that could be used to parse
an XML file, computing an MD5 hash of a String, and
arranging four buttons in a 2x2 layout. Our complete task
list is available upon request.

Although many of our tasks were specific programming
assignments, we asked our participants not to write actual
code, but to instead find code samples that best matched the
task description, such that one could solve the actual task by
making only minor modifications. Tasks were presented in a
separate browser, and participants entered their solution for
each task into a form in that browser.

Figure 6: Summary of participant performance data.
Programmers using Assieme produce higher-quality
responses, using fewer queries, in the same amount
of time they took when using Google.

Each session started with an overview and training period.
During this training period, participants were shown 10
tasks, drawn randomly without replacement from our set of
40. The search interfaces were explained, and participants
were encouraged practice with the 10 tasks until they
felt comfortable with the interfaces. The primary portion
of the experiment then began, and participants completed
three blocks of 10 tasks, using a different search interface
for each block and again drawing tasks randomly without
replacement. Every participant was therefore exposed to
each of our 40 tasks exactly once, and there was no
systematic relationship between tasks and interfaces. A Latin
Square design was used to control for the order in which
search interfaces were presented to participants during the
primary portion of the experiment.

Participants We recruited nine participants. Four were
undergraduate students and five were graduate students, all
majoring in Computer Science. The four undergraduate
students reported between 3 and 5 years of programming
experience, while the graduate students reported between 7
and 19 years. One participant had no Java experience, five
had 2 to 3 years Java experience, and three had 8 to 11 years
Java experience. One participant reported 6 years of industry
experience, while the eight others reported less than a year.

Task Completion Time We first report on task completion
time, measured from when our browser presented a task
to the time when the participant submitted a response (by
entering it into the form in our browser and clicking a submit
button). We performed a Mixed Model analysis, modeling
ParticipantID as a random effect, finding significant
effects for UI (which interface was being used) and Order
(which task, numbered 1 to 30, was being completed).

That Order is significant (F (1, 258) = 6.22, p ≈ .013)
indicates that participants completed tasks more quickly as
the experiment proceeded. We tested for an interaction
between Order and UI , finding no effect (F (2, 138) =
0.35, p > .70). This validates our experimental design, as
completion time did improve, but the Latin Square design
ensured that this improvement was not disproportionate to
any one search interface.

UI is marginally significant (F (2, 258) = 2.89, p ≈ .057),
leading us to investigate pairwise differences. Assieme is



significantly better than Google Code Search (F (1, 258) =
5.74, p ≈ .017) but not different from Google (F (1, 258) =
1.91, p ≈ .17). Google and Google Code Search are not
significantly different (F (1, 258) = 1.03, p > .31).

Solution Quality We coded the quality of each solution on
a three-point scale, where 0 indicated a seriously flawed
solution, .5 indicated a generally good solution that fell short
in some critical regard, and 1 indicated a fairly complete
solution. This coding was done blind to what search interface
was used to obtain the solution. We again performed a Mixed
Model analysis, modeling ParticipantID as a random
effect, finding significant effects for UI and ExternalLib
(whether a task required the participant find and download a
Java Archive File) 2.

That ExternalLib is significant (F (1, 258) = 8.97, p ≈
.004) indicates that tasks with this property are significantly
more difficult. Testing for an interaction between
ExternalLib and UI again validates our experimental
design, as there is no effect (F (2, 259) = 1.42, p > .24).
So this category of task was more difficult, but the random
assignment of tasks to interfaces ensured that this property
of the tasks did not impact the overall quality of responses
associated with each interface.

UI is highly significant (F (2, 258) = 28.7, p < .0001),
leading us to investigate pairwise differences. Assieme
is significantly better than both Google Code Search
(F (1, 258) = 55.5, p < .0001) and Google (F (1, 258) =
6.29, p ≈ .013). Google is significantly better than Google
Code Search (F (1, 258) = 24.5, p < .0001).

Queries Issued We logged the number of queries issued
during each task. We performed a Mixed Model analysis,
modeling ParticipantID as a random effect, finding a
significant effect only for UI (F (2, 255) = 51.1, p <
.0001). Examining pairwise differences, Assieme is
significantly better than both Google (F (1, 259) = 9.77, p ≈
.002) and Google Code Search (F (1, 259) = 6.85, p ≈
.001). Google Code Search is better but not significantly
different than Google (F (1, 259) = 0.259, p > .61).

Subjective Ratings After completing the experiment,
participants completed a brief questionnaire, the results of
which are shown in Figure 7. Using paired t-tests to compare
interface ratings, there is no significant difference between
Assieme and Google when participants were asked about
their overall impression of the interfaces (t(8) = 0.32, p >
.75). Assieme rates significantly higher than both Google
and Google Code Search on every other question, including
how relevant the results are, how clear the presentation
is, whether the presentation helps to get an overview
of solutions, whether the presentation helps to judge the
relevance of results, whether the presentation makes it easy
to see the dependencies of code, and whether the presentation
facilitates the comprehension of complex results.

2 We model solution quality as continuous, but an argument could be made
to model it as nominal. We conducted such an analysis and obtained the
same results as we present here.

0

1

2

3

4

5

6

O
ve

ra
ll

Im
p

re
ss

io
n

Re
su

lt
Re

le
va

n
ac

e

P
re

se
n

ta
ti

o
n

o
f R

es
u

lt
s

O
ve

rv
ie

w
 o

f
So

lu
ti

o
n

s

Ju
d

g
in

g
Re

le
va

n
ce

Se
e

D
ep

en
d

en
ci

es

C
o

m
p

re
h

en
d

C
o

m
p

le
x

Re
su

lt
s

Assieme Google GCS

Figure 7: Mean and standard error of participant
preference on seven-value Likert scales.

DISCUSSION AND CONCLUSION
We have presented Assieme, a novel Web search interface
that helps programmers to quickly examine different APIs
that might be appropriate for a problem, obtain more
information about particular APIs, and see samples that show
how to use an API. Assieme is implemented using a novel
approach to finding and resolving implicit references in code
samples on the Web.

Our evaluation shows that programmers using Assieme for
common programming-related search tasks obtain better
solutions, using fewer queries, in the same amount of time
they spend using a general Web search interface (in our study,
Google). We expected the result that programmers would
issues fewer queries, as Assieme brings together information
that is otherwise accessible only by formulating new queries.
But the result that Assieme leads to better solutions in the
same amount of time (versus, for example, more quickly
leading to solutions of the same quality) is more complex.

Examining the click-through data from our study, participants
using Google visited an average of 3.31 pages per task
(σ = 2.38). In contrast, participants using Assieme visited
only 0.27 pages per task (σ = 0.68), completing 73 of 90
tasks without visiting any external page. But Assieme allows
the previewing of sample code without actually visiting a
page, and considering such previews shows that participants
saw content from 4.30 pages per task (σ = 3.31). The
extent to which this result can be interpreted is limited
by the fact that some of these previews are the result of
incidentally mousing over a link, but a Mixed Model analysis
treating ParticipantID as a random effect shows that
participants saw content from significantly more pages when
using Assieme than Google (F (1, 259) = 5.77, p ≈ .017).

Although additional studies are needed, we anecdotally
observed that participants may have viewed content from
more pages using Assieme because the ability to quickly
preview code samples seems to have changed participant
strategies. When using Google, participants seemed to issue
queries, navigate to pages, and prepare a solution for the
task based on the first page they encountered that seemed
to provide the necessary information. When using Assieme,
participants seemed more likely to continue exploring even
after encountering an initial potentially useful code sample.
Even after participants encountered an initial potentially



useful code sample, they would view several additional code
samples to see if a better sample was available.

As search becomes increasingly fundamental to modern
user interface software and as the machine learning
community continues to make important advances in
extracting information and identifying relationships from
unstructured Web content, the approaches demonstrated by
Assieme are likely to be applied to many other problems.
Beyond being a novel Web search interface for programmers,
Assieme points towards a future of understanding human
information needs, designing search interfaces to support
those needs, and then developing the Web inference needed
for those interfaces.
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